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Introduction

Inventories are stocks of goods stored for some reasc
in spite of the storage costs and the typing up of capital wh.

would be invested elsewhere.

There are different reasons for keeping inventories.
Frequently they are held because of economics in scale of produc-
tion or because of the seasonal fluctuations in the prices of
raw materials used in production. Uncertainty of future demaﬁds
and the existance of time lag between the placing of orders and
the delivery of goods are also strong reasons for holding inven-
tories. As in the case of keeping cash balances, the motives
for maintaining inventories may be summerized in three main kinds:

transactions, precautionary, and speculative motives.

In fact, the problem of controlling inventories is s
general problem which appears in various fields of s tudy and
which is not restricted to the economical management of stocks
of commodities as such. Arrow, Karlin, and Scarf [1] point out
the wide scope of the subject: "An inventory problem might, for
example 1involve deciding how much typing paper to stock each
month for an office, or how many spare parts to keep on hand for
a given machine. When production is involved, the inventory
problem might requige determining how much wheat to plant per year

or how much gasoline of a certain variety to have blcnded. How



much water to release from a dam for electricity and irrigation
purposes 1is an inventory problem; how many workers to hire for

a given labor force 1s another. Inventory problems may involve
scheduling, production, determining efficient distribution of
commodities in certain markets, finding proper replacement polic-—
ies for old equipments, determining proper prices for goods produc—
ed, or combinations of these elements." Scarf [#] states that:"

In addition, large areas of economic theory are concerned with
sdmilar problems. Any dynamic problem in economic theory is
hecessarily concerned with stocks, whether these be interpreted

as capital, manufacturers inventories, bank reserves or the accum-

ulated savings and assets on an individual consuming unit."

The inventory theory is concerned with questions such as:
when to replenish inventories and how much to order for replenis-
hment, such that the relevant costs are minimized? To answer such
questlions, a mathematical model for the inventory system has to be
constructed. By analysing the model and studying its properties,
the rules for operating Bhe system in the "best"™ possible way are
obtaiﬂed.' So, 1f the model considers some cost function as its
objective function, these rules will define the inventory policy
which mirimizss this objecvive function , i.e., the "optimal®

inventory policy.
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The costs relivent to inventory problems play be classif-

ied into three typs:

1. The "set-up" or ordering cost; which is the cost of
ordering, purchasing, or producing the commodity in

order to increase or replace inventories.

2. The "holding"or garrying cost; which is the cost of

storing the commodity. It includes the opportunity cost.

%3, The "shortage" or penalty cost; which is the cost associe-
ted with either a delay in meeting dewmand, or the inab-

ility to meet it at all.

In this note several mathematical models of inventory
systems will be presented and analysed. We will start by the
simple models having deterministic dewmand. Next, a one-period
model where demand is a random variable with a known probability
distribution will be discussed followed by tne multi and infinite-
period models with stochastic demand. All these models are presen~
ted under different assumptions concerning the relivent costs,
but all of them have in common the property that the organization
controlling inventories can declde to either increase the inventory
level or leave it as it is. The last section discusses a model
where it is also possible to decide to decrease the inventory

level (i.e. the dispcsal of stocks is rvermitted).
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It should be noticed that all the models considered in
this note discussthe single commodity case and assume that the
inventory system has no control over the demand, on the other
hand, 1t can determine when and in what quantity the inventory
level should be changed. It is also assumed that costs remain

constaent over time.



I. Deterministic Models.

In this section we consider a number of simple inventory
models where the demand is assumed to be known with certainty
and to have a fixed rate over time. Although this is an unrea-
listic assumption, these models are studied in order to see how
the different kinds of costs interact and affect the decisions

about inventory levels.

Case l. Iead time = o,

No shortage is allowed,

Suppose a retailer expects to sell exactly Z units of a
certain commodity during time T and thet this commodity has a
fixed demand rate, R, over time ( R = % ). Suppose also that
the retailer is not allowed to have any unsatisfied demand and
that there is no time lag between ordering to replenish inven—

tories and recieving the order, i.e., the lead time equals zero.

Iet:

h, (h > o), denote the holding cost per item per unit of time,

K+k ¥ ,(K,k » 0), denote the set-up cost, i.e., the cost of

increasing the inventory level by ¥ units(§>o).
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Now, if the retailer starts by keeping the amount Z in
inventory, the holding cost will be high. On the other hand if
he decides to keep a small amount in inventory and to replenish
the inventory level at different intervals, then he has to pay
the set-up costs which depend on the number of orders he places,
in addition to the holding costs which will be less than before.
So, the retailer's problem is to determine how often he should
order and how much should be ordered every time in order to satisfy
all the demand and at the same time keep his total costs at a

minimum,.

Iet N be the number of orders placed during the time T,
and tﬁ_be the length of the HEE period, (i.e., the time between
N
receiving the nth and the (n+l)St-order)o Then.éfﬁ-tn = T. We
n=1

will assume that the retailer has no initial stock on hand.

It is clear, since the lead time equals zero, that the
retailer will not reorder except when the inventory is reduced

to zero. If ¥, denotes the amount he orders at the beginning of
N
period n, then & . y, = Z (because failure to meet demand is
=l
not allowed), and the situation can be summerized by the followiag

diagram:
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Notice that the straight lines representing the inventofy levels
during the different periods have the same negatiﬁe‘SIOPe which

should equal the constant demand rate R.

Now, what is the optimal number of periods, andrwhat is

the optimal value of T for each n?

Answering these questions is the same as finding the

values of N and Fos which minimize the total cost fuﬁction:
CT v, yll)

To calculate Cp(N , y,) notice that the infentory level
is 3}1at the beginning of period n, and is reduced at a constant
rate during the period till it reachs zero by the end of the

period.  Thus the average inventory level during the period is

In
2 : :
. . ) In ‘
¢ The holding cost during period n = h tn - bt nsljess N
Ty o

° The total cost during period n = K+k yn+h tn 5 Nl ywne N

L] Ll
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; . N
.'. GT(N " yn),the total cost during time T:iEi_[K}k Y, +h tﬁ?f%
N N
:NK+k£yn+§£ T,
n=1 n=1
N N y2
. h
o B CTCN’yn) = NE + Kk éf;-yn * =5 & _ﬁg;
n=1 n=1
J.
where R = 4 R sfor all n.
i tn

So, we want to find the values of N and Y, that minimize

GT(N,yn)’Which is a convex function, subject to the constraint:

N
C. yn - Z‘n
n=1
For a given N, and by using Lagrange multiplier technique,

this is equivalent to finding the values of T that minimize the

new function C’and then finding the optimal value of N.

| N
Iet C= Cp(N,y ) -. 7\(2"_3@1—2) )
Tzl

where ):is Lagrange multiplier.

Putting the first partial derivative ;;%— equal to zero,
n

we get

h -~ .
"R'yi“'k—o Il--l,...N.



A
". yi = EE_ n=l1l,..0.0N. (for a given N)
N
." Z - E yn
n=1
. _ NRH
s s A B Ty
= 2h
L] L ) - N R
. E 3 A :

) Jp= F B-= Laisee W (for a given N)
'.‘ tz = %. % = % n=1,... N (for a given )
.Op(W,yS)= WK + kz 4 BEZT (for a given N)

.0 :
Putting ST equal to zero, we get the optimal N:
°% . _ hz1

2 N 2N>

. ¥ _ & b
s a N8 7K

Thus, the optimal inventory level at the begnningof evry period
is given by: .
E 3 2 K Z

- L _ - 2K
J= = - h T a h R.

(This formula is known by: the Economic Lot Size Formula.) And the

optimal policy can be summerized bys
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Devide the time T into NE equal periods, each of length

. At the beginning of every period the retailer will have zero

units on hand and should order the amount y* = qug R.

= |3
L

This result shows that, as expected, the optimal inven-
tory level increases when the demand rate,R, and/or the fixed
ordering cost)K)increases,while it decreases if the holding cost,
h/increases. It also shows that the inventory level should incr-
cagse only in proportion to the square root of sales (or demand),
contrary to the intutive idea of keeping the inventory level as

a fixed proportion of sales.

Case 2 : Iead time = g > ©
fr ]

No shortage is allowed.

In stead of assuming that there 1s no time lag between
placing an order and receiving it, we will assume here that there
ig a fixed lead time of length g , S0 any order placed at time
t will be received at time t + gZ. How does this assumption affect

the opbimal inventory policy?

We will use the same notation as in Case l. Here, y,
denotes the order size as before, and it also denotes The inven~
tory level at the begirning of period n after receiving the order.

Iet a, Arnnke the "reorder inventory level™ in period n. Applying
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the same analysis as in Case 1, we get:

‘bl g ta <) -t5 g g s
The optimal inventory policy is to devide T into
NE = qZLﬁ—g equal periods each of length t* = L . At the
2 K NE
beginning of each period, the inventory level before receiving

the order should be zero and should be increased to the level

¥y = “QEE R after receiving the order.
p

We still have to define the "optimal" reorder level qx.
Since the lead time equals g, then the total demand during the
lead time is (g R). 8o, the optimal policy should specify:

Whenever the inventory level reachesthe level

qaE = RE8 , place an order of size y*.

So, Case 1 is a special case of Case 2, where

g = 0 and consequently qx = 0,

EFor simplicity g is taken to be less than t] 5
Case 3 : Iead time = g,
Backlog is allowed.

Here we have the same model as in Case 2 except for

relaxing the assumption of not allowing any shortage. In stead,
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we assume that the retailer may not satisfy the demand when it
occurs, but still he has to satisfy it when the commodity next
becomes available. this isknown by the backlog case. In addi-
tion to the costs considered in the previous models, the retailer

has to pay penalty costs proportional to the unsatisfied demand.

Iet:

¢ , ¢ >0, denote the shortage cost per unit of unsatisfied
demand per uﬁit of time,
X €0 denote the inventory level at the beginning of the

nth period, before receiving the order,

Vs Ty > ¥, denote the inventory level at the beginning of

the nth period, after recelving the order,

ra®, S N is the amount received at the beginning of

period n)

Ty denote the part of period n in which the inventory

level is negative.

(a v @ tn—l‘n

level is positive.)

is the part of period n in which the inventory

This model can be represented by the following diagram:
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As before, we have:

N N
= t, =T and & . (yn—xn) = Z.
n=1 n=1

The average (positive) inventory level during time t,-r

J
:n—éﬁ' ﬂ:loo;N

The average shortage (negative) inventory level during time o

X - n
s "2'3"1:!-"-—}_']1 :—'0,.~.. N“’"‘l

The holding and shortage cost during period n

© o

y -X
_ n _ n+l |
= h = (tn Ty + ¢ 2 “n

X

. h + S +1
= Z R 2 R
* OBy a®, Yo . K+k( —X)+Q'y121+3'-——x§
oo, Ip WX )= S InXp+* 3 TRt 3 R
n=1

‘H N
h [4
= NK+kZ+—2—R & 3'121' 3R " xi_,,l
n=1 n=0
we want to find the values of Yno¥ne and N that minimizZe
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C which is a convex function) subject to the constraint:

p (

N

= (yn—xn) = Zs
=1 ‘
Again, using the ILagrange multiplier technique, and for

a fixed N, this is equivéleﬁfto minimizing C(N) and then finding

the optimal value of N, where
N

C(N) = Cp(N, ¥y Xy = )[5 (F=,) = Z] :
. : ) n=l

= o; yealds:

Putting 20 = o and =
In 2Xn41
R2A . 4 ~RA
yz = = and X, = —Ejl n=l.ss¢« Ny £Lor a given N,
". y: - xi = R [ % + % ] n=l,... N, given N.
N
;L E= & Gp- o3
n=l
_ h+c
= N AR =47
N Z he
o o -~ NR h+ec
T S R ¥ __2 b -
Ty = T Tao and X, "~ % TBeo B2ly wee Ny ZiVEn N
. x ¥ 2
. .90~ X
E 3
. oF yif *p
‘. w n oo R

il
=
B
1
j—.J
=
(0]}
l_h
<
o
=
=
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. N v E LY h Z C e, ¢ Z _h 2
‘ @ CT(N’ Ins xn) = HE + 2k 4 2R N( N °® h+c) t IR B N °® h+n)
&
= NK + Zk + E%ﬁ_ hig
= 0K + 7k + 5% P for a given N.
20
To get the optimal value of N, put SR = o
¢ ZT he
e K- 2N§2 h+c e
. n® - (4L _hc
. » " \2K h + ¢
. % 15 _ 2K +C
o o - NI - —E % he
« R aF L - \2x B¢
o o T oaE B he
i E 3 Z ¢ ] 2¢K o
e = = B ““h(h+o) e

Now, since the demand during the lead time is kg, the
optimal reorder level should be:

Rg + x*

Rg—%y‘-

q!

Il

il

Tris result shows that the time horizon T should be

devided into N¥ equal periods each of length t*., When the
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inventory level reachesthe level q!, the retailer should place
an order of size (yi— §!). At the beginning of each period the
retailer will have x* ynits of unsatisfied demand and should

receive the quantity (3% - %) which depends on R, K, .c, and h,

It is noticed that as ¢ —>® , E%E = % + 1 —> 1.
Thus, the form defining y* - x¥) is reduced to the form WE%E“,
and x¥ —> 0, which is the same result as in Casesl and 2.
This should be true since having ¢ ——3>0@ means that unsatisfied
demands are too expensive, hence not allowed to occur, which is

exactly the assumption of Casesl and 2.

It should also be noticed that k, the proportional order-
ing cost, does not appear in the formulea defining the optimal
policy in CaseBl, 2, and 3. This is also clear since the retailer

has to pay the cost (k Z) over the time horizon T whatever isthe

policy he follows.

Case 4. Iead time = 0,

Tost sales Cases

Here as in Case 3%, shortages aré allowed to take place,
but once the demand is not satisfied when it occurs, the retailer
will lose- it -and will be unable to satisfy 1t later. [?his is

known by the lost sales caseJ This means that the inventory level



).

is not allowed to take any negative values. 8o, using the same
notation as before with ¢ > o still denoting the shortage cost
per unit of unsatisfied demand per unit of time, and x, denoting

the level of lost sales at the begiming of period n (or by the

end of period n-1),we have:

J
7y T2 5
r T r
1 \ 2 1|
*1 ‘\ N |
X, 3 4
tl t2 t3
N N
&t =1 , = (y,%,) =%, and
n=1 n=1
N 5y X, 1
o
CT(N’ n’%ﬁi= s [$+k Yot b §E (tn—rn) + C —52 rni}
n=1
N 2 x2
b, Jn_ ¢ n+l]
. éf:_[K+k In*3 T *t3 R
=l

i}

NK + k Zy, + %ﬁ‘éi-yi + gﬁ‘fixiwl |

We will assume, for simplicity that the lead time equals ZETO0.,

Define the function € by:



) B

C = CgpN,¥ys¥p)- A (=5, - 2)

x_ _which minimize C, also minimize C

gtr-‘l

Then, the values yz-and .

for a given N.

¢ CFmel 4
K Xn +1 i

Putting these derivatives equal to zero, we get:

= = Qﬁ—kl R D=1, «.. N
X§+J.: - i% "R A& ly wee Hs
oz = & (- %)
= - £ RN + 2 Rid
& A= gfh s %ﬁ ( 2+ % RN)
° * C Z k
.. Y = Tt+h N T T+h B
F - F S R
,o. yi_xi = % (for a given N)
. . % (for a given N)



2 2
» x _¥ kc k NR h .
) CT(N,y yX ) = NK + = & - S & % %:~ %ﬁﬁ (for a given N)
2% _ o_ BB en PP
>N T 2(c+h) c+h 2ﬁN?T

Equating this with zZero, we geb:

NE | ch 27
2K(c+h)—k°R
. x _ __k B 2cK B kac RS
.. Y 7GR \(c+h)h (c+h)2h
2
¥ _  k 2hK kK°h 5
2 B =g B 4 \(c+h)c R (osn)20 R

This shows that the optimal policy is to devide the
interval T into N® equal periods each of length B, At the
begining of each period, the retailer should order the amount

y*, and by the end of the period he loses x* units,

Notice that putting k = o reduces y‘ to the form:

cK - . e
yE= T%%ETC R which is the same as the result of Case 3. This

has to be true since k = o means that the proportional ordering
cost does not affect the inventory level, consequently the optimal
decision depends on the other costs ¢, h, and K in the same way

as in Case 2.
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II. Stochastic Onengeriod Model

Tn the previous models it has been assumed that the
demand rate is known with certainty . In mos?t practical problems,
this is not the case. It is more realistic to consider the dem-

and as a random variable having a known probébility distribution.

We will start by the one-period model, where the inven-
tory management has %0 decide, once and for all, the inventory
level that it should have at the begiming of a given period. - It

is assumed here that unsatisfied demands are permitted and that

the lead time is zZeI'O.

Iet h, ¢, k, and K denote the relevant costs as defined

in the previous models.

et X9 denote the initial inventory level (before

. ordering),

Jis 1 2 Xq denote the inventory level right after

replenishment,

% , Z zo denote the quantity demanded which is a
random variable with a continuous probability -
distribution having known density p(z),

L(yl) denote the expected holding and shortage costs.
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Cxi(yl) denote the total expected cost if x; is the
initial inventory level and ¥y is the inventory

level after ordering.

Notice that in this model we can no longer talk about
the "total cost", dinstead we should consider the "total expected

cost"™ and try to find out the policy which minimizes it.
3'1!‘\ ‘
X ' \l

'.‘ L(yl) = expected holding and shortage cost,
by .,
o Wy =(h ](yl-Z) p(z) dz + cj (z=y)p(z)dz if y; > o
o = yl
c](z—yl) p(z) dz if y;=<o
which is a convex function.
.., cxl(yi) = K:S(yl- l) + k (yl- 1) + L(yl)

= K:S(yi_xl) - kxl + Gl(yi)
where S(f):{l it x >o
o if = o , and

Gl(yi)= k I + L(yl)'
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Since L(yl) is convex, then G (yl) is a convex function

too. Suppose Gl(yl) reaches its minimum at a p01nt Vi = Sla Then

o4 G (¥
Sl must be defined by : ——~a—§——~ = 0
1 :>f1=s;L
But —3—=— =k + 3% L(yl) =k + h p(z)dz—c/p(z)dz
d Iy 5 :
o ,yl
Then S 1s defined by: k + L'(8))= o
S .
i.ee k 4+ h p(z)dz - c// p(z)dz = @
S |
°e J[ p(z)dz = l-wJ/. (z) az
e 5 S
1
s ;
° k + h - (h+c) )[ plel)ds. = ©
P Sl
k+h
AR EIOLIEE -
Sy

Now, we will describe the optimal inventory policy in

two different cases:

Case 1 : if- B = &
Case 2 :.1if 'K > o

Case 1. If X = o:

In this case, CXl (yl) =k X+ Gl(yl) , and the optimal

policy is given by:

If X < Sl : order the quan%ityslmxl y 1l.e. increase the

inventory level to the level %.
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LL Xy 2 Sl : do not order

i.e. leave the inventory level as it is,
k+h

where S, is defined by:fa};(z)dz = p=
By
Proof:
To prove that this policy minimizes the total expected
costs, we consider the different regions that X, may fall in ané

compare the values of C_ (yl) for different yis.
X
i, If x; < 8;: - Gy (y7)

Gl(yl) reaches&ts minimum at Sl

... Gl(yl) >Gl(Sl) for all el L .

"ok x4 Gl(yl)> ~k 8.+ Gl(Sl) for: all 7y

L3 L

o Cxl(yl)> le(Sl) for all y,
- cxl(yl) reaches\lts minimum at y,=8;

ile IFE X, > Sl $
Since Gl(yl) is convex and reach;eﬁits minimum at Sl, and

since Xl>Sl, then
Gl(yl) > Gl(xl) for all I, > %
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. ky, + L(yl) > kx4 L(xl) for all y; > %,
. k(yl"Xl) +L(yl),>~L(Xl) for all y; > ¥
L Cxl(yl),>.CX1(Xl) for all y; > %,

1l

‘°° Cxl(yl) reaches its minimum at ¥y,

*q
Case 2: If K> o :

Iet sq be defined by: slsgsl and Gl(sl)zGl(Sl)+K. Then

the opbimal policy in this case is given by:

If x; <87 3 order the quantity (Sl—xl), LB

increase bhe inventory level up to Sl

do not order, i.e.

e

5 i X1; 8

leave the inventory level as it is.

Proof:

Again, we consider'the different regions that x, may
fall in and find out the values of 3y at which Ex (yl) reaches
i
its minimum.
je oLE Xy < 8y ¢

° Gl(YT) reachesits minimum at Sy
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L Gl(yl) >Gl(Sl) for all vl
g K - kx, + Gl(yl) > K—k:xl + Gl(Sl) for all Y1
’o Cxl(yl) 5 OXl(Sl) for all el
o CXl(yl) reachesits minimum at Y1 = 84, Gy (71)

ii. If s) ¢ X5 8

It is clear from the figure that: |
|

HM

i |
K+ G (7)) =26 (%)  for all ¥ 2%y S1 ¥1 8
o KB4k + L)) 2 kxy + I(x) for all Y, > %X

‘_ K + k(yl-xl)+L(yl) e L(xl) for all T > %

* Cxl(yl) > CXl(xl) for all Y1 > %

* CX (yl)reaches its minimum at y1 =%

iii. If X > Sl:
"?' Gl(yl) is convex and reachs its minimum at S,
. Gl(yl) > Gy (xy)  for all Yy > %
.‘. K + Gl(yl) >G1(Xl) for all I >%

.,". K + k(yl- l) + L(yl) > L(xl) for all I1> %
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. Cxl(yl);> Cxl(%) for all yy > %

o

L Cxl(leEQCQeS its minimum at y; = %
[Note: A1l the given results hold true if L(y) is any convex

function.]

The policy described here is called the (8 , s) policy.
Tt shows that the order size should not be less than (8, - sl)
which depends on K (by the definition of sl). S0, this optimal
policy shows that the effect of the economies of scale 1s having

(Sl - sl) as the minimum order size.
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III. Stochastic Multiperiod Model
e o v POTI 0d Model

Consider now the N-period model with independent ldentically
distributed demands having common distribution Wwith continuous den-
sity p(z). In this model, the inventory'management can take decis-
ions concerning inventory levels at the beginning of each of N equal
periods. It is assumed that backlogs, but not lost sales, are

allowed and that the lead time is gzero,

The solution for this problem is not to use the optimal
one-period policy N times. Smaller costs may be achieved by
viewing the problem from a dynamic programming point of view.
After numbering the periods in g backword order, so that the beginn-~
ing of period n implies that there are n periods left in the horizen,
we try to find the sequence of inventory decisions which minimigzeg

the total expected discounted cost over the N periods.

The situation may be bPresented in the following diagram:

Ty YN-1 | ¥

\ - J1
*y : Ly o \

\\\%Enl =2 ;§\ \\\\




where:

X g The 1nitlial INVenuvolyY .eveld

h

ore taking any decision,

Using %hs gzeme notation as before, we get:
The T expected cosu in period n

=)

Iet ¢ (x ) ke the 1 mum expected diScounted cost over n
J..L
periods, if X is the dniti:. inventory level, and an optimal
i Ll

policy is followed.

an
& N min [ G o o VYalel s o 3 f - s
Cp(x) = K o (y 2 )+ k(T ~%,) +L(*yn)+°: gl(.yn Z)P(Z)dzj

X S(__y__ﬁn.,x:, ) - k X, i+ Gn{yn)J 5

where: o <« < 1 is the discount factor, and

=-]

r
G, (y,) = Ky, + L(yﬂ)ﬂ» o<j Cnul(yn-z)p(z)dz.
v

As before, we will describe the optimal policy in two

|
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Case 1l.. K = o.
'In‘this-cgse C (x,) is given by:
1'én($n)':yn§}§n [.—k X, + Gn(yn)] , and;

. The optimal;pblicy in period n (n=l...N) is of the form:

IR e Sn; ; order the amount(sn—xn), i.e. increase

the 1nventory level to Sn“

do not order, i.e.

e

leave the inventory level as it is.
- where -Sn is defined Dby:

Gh(Sn)'ss Gh(YP) for all y_.

Proof:
Forn=11:

Ihe result has been proved for the one period case.

Forn =2 ¢ Siﬁce the optimal Policy.in period 1 is of the
iven f =
: o3 rom t@en Cl(xi) = k(Sl—xl)+L(Sl) X g Sl

L&) X > 8

e * I(.) is convex

. 3'cl(xl) is convex

Now, -~
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o

4 Ga(y2> = kyz + L(Ya) + N_[ Cl<y2—Z)P(Z) dz -

. Gz(ya) ig also convex. 1 reaches 1its minimum at 82’

* a

where 82 is defined by:

d G2(y2)

dy _ =0
2 y2_82
18 ey G2(Sa).$§G2(y2) for all ¥y,
272
e o.(x,) = W& [ = Kk % & Gy )]
LR Ty, 2% 2 = Mgkip
=(-k X5 + G2(82) if X, < 82 é Xé
2

= I X, + (}2(}:2) if X5 2 82 _

* DThe opbimal policy 1in period 2 is to order up to 82 it

° @

X, <§32‘J and to leave the inventory level as it is if %, Z Soe

For n > 2  (An induction proof)

Assume that all the results proved for n = 2 hold true
for all periods up to and including period n-1, We”ﬁill.prove

that they are true for period ns

Since the optimal policy in pericd n-1 is as described,

r Cn_l(xn_l)zgk(sn_l—xn_l)1I(Sn_l)*%[bﬁ_l(sn_l—z)p(Z)dz

N if X, 1€ 80
LL(Xn—l)+aifcnvl(xn—l_Z)P(z)dZ if x, 1 28,4
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tt Cn_g(-) is convex, by the induction assumption

. Cn_l(.) is convex

* Gn(yn) is also convex;it reaches itg unique minimum at

Sn’ where SIl is given by:

d
. G (¥

y:

; (x
. _ min _ DM n
. . Cn(xn) "yn_}_,xn[ Ky * Gn(yn)_]
= {—k:xn + G (8,) if x <8 Sl x_
n
~kx  + Gn(xn) if x, >8 .

This shows that the optimal policy for period n is of the

given form.

Case 2: KX > 0.

Iet s, be defined by: s, <8, and Gh(sn)zqn(sn)+K,

Whove 8, is still defined by &(8,) &G(yy). | for all y,,
Eﬁor simplicity assume s, 1s unique. Otherwise define it

to be the £m allest value that satisfies the definitionz]
Then,the optimal policy in this case is given by:

If x, < s, i order the amount (Sn-xn); tid,

increase the inventory level to Sn;
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If x, > sy "3y do not order, i.c.

leave the inventory level as it is.

Proof: _
For n =.1 : This result has been proved for the one—pefiod

case.

For n = 2 : To carryon the proof for n= 2, we have to intro-

duce a new definition:

Definition. A function f(.) is"right-hand K-convex" iff:
f(x+a) - f(x) - af'(x) + K =z o0

(If K=o, then f(.) is a convex function)

Now, since the optimal policy in period 1 is of the given
form,

then: Cl(xl) =(K - kxq + G1(81> if x) < sy
~le + Gl(xl) if‘x1 Z s
This function is right-haﬁd K-convex. In order to prove
this, consider the different regions that Xy may fall in:
i. 1f %) >89 ¢
Cl(xl) = - kx; + Gl(xl)

L(Xl) which is a convex function

il
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ii. if X< 81 < X +a
Cl(xl+a) - Cl'(xl) - a_C;_(xl) + K
= L(Xl-t-a)—K-k(Sl-xl)--L(Sl)+ak+K
= L(xl+a) + k(xl+a) —L(Sl)-ksl
= G(xl+a) - G(Sl)

2 o by definition of 8,

iii. 1fxlg_xl+assl

¥
Gl (Xl+a)~=Cl (xl)ma Cl(Xl) +K

= K-k(xl+a)+Gl(Sl) —K+kxlel(§l )+ak+K

=K >0

right-hand .

This completes the proof that Cl(xl) is

K=convex.

¢ G2(y2) 1s right-hand K-convex and reachesits minimum at

82 where 52 is defined by:

G2(82) < Ga(;y2) for all T

. _ min _ "
v w MR Sp XEEKS(‘YE xp) -k, + Gy(3) |
= ( K-kx, + G,(S,) if x, < s,

—kx, + Gg(xg) if X5 > 8,
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[ﬁhe detailed proof for this last result goes in exactly
the same steps as in the one period model except for using the
property of the right-hand K-convextry of Gz(yz) in place of

the convextry property.J

For n> 2

Using the right-hand K-convexty and the induction proof
(as in Case 1, n > 2) we can prove that the optimal policy for

period n is of the given form.

[?ﬂote: The fact that Gﬁ(xn) is right-hand K-convex
implies that, although i1t might have different local minimums,
yet thefoscillations are never large enough to cause a divergencs

from the (Sn, Sn) poliey. ]
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IV. Stochastic Infinits-~Period Model

Instead of having a finite number of periods, we will
assume that the retailer has an infinite horizon and wants to
know the inventory policy that he should follow at the begiming
of every period, in order to minimize the total expected discour~
ted costs over the whole horizon. We are still assuming that the

lead time is zero and that unfulfilled demands are backlogged.

If C(x) denotes the total expected discounted costs
if an optimal policy is followed, then it should satisfy the

functional relation:

0= T2 [ X § Gem)4kr-04LGn) + [ C(r-2)p(nraz | .

The analysis of this case follows directly from the
n-period analysis by considering the properties of the sequence
of functions: {Cn(xy}:i:)o It had been proved that this sequance
is montone increasing and bounde & from above. It had been also
proved that the sequence converges uniformly for all x in any
finite interval. The limit function C(x) is right-hand K-convex

and is the unique solution to the functional equation:

C(x) = ymi:nx (K &(y-x) + k(y—X)+L(y)+°<f C(y—Z)p(Z)dzJ-
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These properties are enough to prove that the optimal
policy for the infinite-period problem is of the (8,s) type,
and is given by

if x <« s : order the quantity S-x, l.e. increase invant-
ories to the level &5 ,

if x >s : do not order, i.e. leave the inventory level

as it dis.

where: S ig defined by: G(8S) £ G(y) for all y ,
s £S5 and G(s) = G(8) + K.

(as usual G(y) = ky + L(y) + “,[EkY“Z)P(Z)dZa

and s is assumed to be unique).

In the special case where K = o, we have S = s, and 1t

, _ lim
can be proved that S = 5t il Sn and that

d
k(1 - &%) + & (7)) = © at ¥ = By

As for the Case where K > 0, the computations of the

ralues of S and s are quite difficult.
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V. Stochastic Model with the
possibility of deciding to
reduce the inventory level.

In this section we assume that at the beginning.of each
period, the inventory management has the choice between repleni-
shing and depleting the inventory level, So, if X, is the inven-
tory levelat: the beginning of period n before taking any decision,
and if Y, 18 the inventory level after taking the decision, then
J, way take any value greater than, less than, or equivalent

=
to Xpe (yn Z Xn) &

Let d € 0 represent the cost of decreasing the inventory

level by one unit,

ay = (kg ify > o
0 if' ¥= o

¢ if ¥< o
°% = 1 if § > o0
Io if § < o

Then K & (y-x) + a(y-x) represents the "set-up" costs
under the new assumption. The total expected cost during period
n is K § (y-x) + a(y-x) + L(y), and the total expected discounted

COST vve  n=-poriods if the optimal policy is followed is:
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Cn(xn) = m;i [K é(yn-xn) + a(yn—xn) + L(yn)

* X[zn_l(yn-z)p(z)dz] .

[We still have the backlog case with lead btime = oj

Under these assumptions, 1T had been proved that the cptimal

policy is given by:
At the beginning of period of'¢

if X, < Sy increase the inventories to the level Sn 5

if s, £ %, € Y, decrease the inventories to the level

n< *n
zn(xl'[_sn<_¥n (%) = Xn]

if un e decrease the inventories to the level u,.

Where Y 1s defined Dby:
d(u -X )+L(u )+o</0n l(u z)p(z)dz
< Ay, )+L(:}’n)+°<f0 1y -z)p(z)dz
for all y,

Sn ig defined bys

k(8, -x )+I(S )+ %/ Oy (8,-2)p(2)az

< Ky, —x )+ iy )+ <) Oy (7-2)p(2)az
for all y

B = Sn and is defined by:

-

K(e_-x,)+I(s) +«fcw L (5.~2) _o(z.,w

= K+k(S, -x )+L(S )+o<fcn L(8~2)p(z)dz

(s, = 8, if K = 0)
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For the infinte period problem, the optimal policy will

have the same form.

The proof of these results is similar to the proofs in
parts II, III, and IV, It depends on the right-hand K-convexty of
Cn(x) and the convergence properties of this sequence of functions

as n tends to infinity.
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