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A NOTE ON THE LOCAL STABILITY THEORY FOR CAPUTO

FRACTIONAL PLANAR SYSTEM

MARVIN HOTI

Abstract. In this manuscript a local stability theory framework is proposed

for Caputo dynamical systems. It is shown that under suitable conditions that
a hyperbolic equilibrium point is a stable spiral or unstable spiral.

1. Introduction

The introduction of fractional calculus (fractional differential and integral equa-
tions) to fields such as mathematical biology has not gone without notice lately.
The application of fractional derivative to mathematical biology is thought to be a
more accurate operator as opposed to the integer order derivative. Commonly, the
Riemann-Liouville and Caputo fractional derivative/integral operators are used in
application, see [1, 2, 3, 4, 5, 6, 10, 13, 14, 15, 16, 20, 18, 19].

Many authors have made great contributions in the theoretical realm of fractional
calculus, however it still remains unclear why the fractional approach is superior
to classical, integer, order calculus. That is to say, it is not well understood what
the physical meaning of fractional calculus is, and thus it is not easy to justify
what role they play in application, such as in the field of mathematical biology; in
the modelling of predator-prey systems or compartmental epidemic models. In this
paper, using the results obtained in [24, 25] we attempt to shed some light into this
problem. Furthermore, we consider the classical local stability theory and extend
it to the fractional case. The current literature is lacking a solid foundation of a
theoretical framework for the local stability theory of equilibrium points of Caputo
fractional dynamical systems.

The first part of this paper heavily uses the results obtained in [24, 25] to set
up a clear definition of fractional integral and derivative equations of the Riemann-
Liouville type and Caputo type. Then, using the results obtained in [24], we attempt
to establish a clear picture of the physical interpretation of the fractional operators.
It is argued in this paper, that if the conclusion stated in [24] is correct. Then,
time is not homogeneous in nature and the kernel of the integral operators can be
chosen to fit (or consider) a different time scale. Thus, implying that fractional
derivatives or fractional integrals can take many forms, and their application is
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then to model the evolution of a system in different time scales. Lastly, we consider
the local stability theory for both hyperbolic equilibrium points. It is shown in
this manuscript that, under suitable conditions, the origin (0, 0) of a planar Caputo
dynamical system is a spiral (stable/unstable). More accurately, it is shown that
the stability depends on the order of fractional derivative,

α ∈ Q∗ := {α ∈ Q|α =
1

m
,m = 2, 3, 4, ..., N...}.

2. Preliminaries

The well known Riemann-Liouville (left-side) fractional integral operator of order
β ∈ (0,∞) is given by Volterra integral operator of the form

Iβ0+u(x) :=
1

Γ(β)

∫ x

0

u(y)

(x− y)1−β
dy for each x ∈ [0, b], (1)

where u : [0, b] → R is a suitable measurable function such that the Lebesgue
integral on the right hand side of(1) exists for almost every (a.e.) x ∈ [0, b], and
Γ(β) =

∫∞
0
xβ−1e−xdx is the standard euler gamma function. Let n ∈ N. The nota-

tion introduced in [25] expresses the operators In0+ and In−α0+ as nth order Riemann-
Liouville integral operator and the nth order Riemann-Liouville fractional integral
operator with fraction α, respectively. Additionally, the operator Dα defined by

Dαu(x) := (I1−α0+ u)
′
(x) for each x ∈ [0, b] (2)

is said to be first the Riemann-Liouville fractional differential operator with frac-
tion α. Adopting the notion introduced in [25], we can write the modified Caputo
fractional differential operator with fraction α as,

Dα
∗ u(x) := (I1−α0+ (u− u0))

′
(x) for each x ∈ [0, b] (3)

The advantage, as pointed out in [25], in using the aforementioned notation
to express the Riemann-Liouville fractional differential operator with fraction α ∈
(0, 1) and Caputo fractional differential operator with fraction α ∈ (0, 1) is to avoid
employing the ceiling or floor functions, as is generally done in the literature.

We now introduce the two different types of time, similarly as done so in [24].
Time can be thought off as homogeneous or non-homogeneous. In order to explain
this notion carefully we will introduce the following: let t be the last measured
instance of real measurable time. Let, τ be the time, 0 < τ < t, and set

gt(τ) :=
1

Γ(1− α)
[tα − (t− τ)α] (4)

to represent the non-homogeneous timescale. Note, that if we take α = 1, then
gt(τ) = τ and we have the homogeneous timescale. Then, the non-homogeneous
timescale, is a representation of a ”deformed” timescale. That is to say, between
each time τ the actual amount of time that has elapsed is given by gt. Thus,
we can see that in the deformed timescale the amount of actual time that elapses
between two time instances, τ1 and τ2, is not always the same. As opposed to the
homogeneous timescale in which the amount of actual that elapses between any two
time instances is always the same, traditionally 1.

We remark that from (4), we have that
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Iα0+u(t) =

∫ t

0

u(τ)dgt(τ), (5)

where, instead of integrating over t, we integrated over the function gt. This is
appropriate here, since we assume that the actual timescale is given by gt instead
of just t. In fact, if we take α = 1, then (5) reduces to

I10+u(t) =

∫ t

0

u(τ)dτ,

the classical, integer, case. It is important to mention here that, the fractional
parameter α is responsible for formation of the timescale, and ultimately the be-
havior of time. Thus, impacting the evolution dynamics of systems. Indeed, if
we consider non-homogeneous time, then between two time instances, τ1 and τ2, a
process could have evolved to a certain stage, but the time that would have elapsed
could have been slower than what would have elapsed on a homogeneous timescale.
Thus, the process would be evolving faster, than originally thought to, relative
to the homogeneous timescale. This observation is important in the justification
of fractional calculus. However, this observation does not clearly distinguish if the
overall qualitative dynamics are impacted by the change in timescale. Before we ad-
dress this topic, it is important to point out that this concept of different timescale
leads to an issue regarding fractional integral operators.

In equation (5), it is seen that the Riemann-Liouville fractional integral equation
is integrated over a different timescale, the one introduced in (4). However, no
justification is given as to why the timescale proposed in (4) is correct, or universally
true. Therefore, it is reasonable to assume that another timescale could be a more
accurate representation of the natural world. This conclusion then leads to the
following observation-Riemann-Liouville fractional integral equations would only
have any practical meaning, if the process that they are being used to describe
(or model) assumes a non-homogeneous timescale that is given in (4). In the next
section we introduce the preliminary definitions and results that are needed to
proceed to discuss Caputo Fractional Dynamical Systems.

3. Local Stability Theory

In this section we present some background theory, without loss of generality we
can take the equilibrium point to be the origin (0, 0), where an equilibrium point is
considered to be a constant solution. Here, and in the following sections, we adopt
cDα

0 to be the Caputo fractional operator. Additionally, since we are studying
the flow from the perspective of dynamical systems, it is sufficient to consider the
regular Caputo derivative, and not the modified one. Consider the Caputo planar
system below {

cDα
0 x(t) = f(x(t), y(t)),

cDα
0 y(t) = g(x(t), y(t)),

(6)

subject to the initial condition:

(x(0), y(0)) = (x0, y0)

where α ∈ (0, 1), f, g ∈ C1(R2), and we are looking for solutions x, and y such that
x and y are absolutely continuous.
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Since, f, g ∈ C1(R2), it is well known that for any (x0, y0) ∈ R2 the initial value
problem (6) has a unique solution, see [12].

We denote by A(x, y) the Jacobian matrix of f and g at (x, y), that is,

A(x, y) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(7)

and by |A(x, y)| and tr(A(x, y)) the determinant and trace of A(x, y), respectively.

Definition 3.1. A point (x∗, y∗) ∈ R2 is called an equilibrium point of (6) if
f(x∗, y∗) = g(x∗, y∗) = 0.

Below we define the linearized system of (6) about the equilibrium point (x∗, y∗).

Definition 3.2. Let A be the matrix defined in (7) is evaluated at the equilibrium
point (x∗, y∗). Then,

cDα
0X = A∗X, (8)

where X = (x, y)T , is the linearization of system (6) at the equilibrium point
(x∗, y∗).

Definition 3.3. Let α > 0, and t ∈ R+. The function Eα, defined by

Eα(t) =
∞∑
j=0

tj

Γ (αj + β)
, (9)

whenever the series converges is called the Mittag-Leffler function.

Definition 3.4. Two functions are asymptotically equivalent if

lim
t→∞

f(t)

g(t)
= 1.

Written as f ≈∞ g.

Below we introduce a special case of the result obtained in [11], chapter 1.

Lemma 3.1. If 0 < α < 1, β = 1 and µ ∈ R such that

α
π

2
< µ < απ. (10)

Then, Eα(z) ≈∞
1
αe

z1/α , as |z| → ∞ and |arg(z)| ≤ µ.

We introduce a new result that will become useful in determining the qualitative
behaviour of hyperbolic equilibrium points.

Lemma 3.2. Let c ∈ C such that c = a + ib, where a, b ̸= 0. Let 0 < α < 1, such
that α ∈ Q∗ := {α ∈ Q|α = 1

m ,m = 2, 3, 4, · · · ,N, · · · }. Then,

Eα(ct
α) ≈∞ ηeωt[cos(ψt) + i sin(ψt)], for | arg(c)| ≤ µ, (11)

where µ is defined in (10), η := 1
α , and

ω + iψ :=

(
η

0

)
aη +

(
η

1

)
aη−1(ib) + ...+ (ib)η, for some ω, ψ ∈ R. (12)
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Proof. Let c ∈ C, such that c = a+ib, where b ̸= 0. Then, there exists a µ ∈ (απ2 , απ)
such that a | arg(c)| ≤ µ. Let 0 < α < 1, such that α ∈ Q∗. By Lemma 3.1, we have

Eα(ct
α) ≈∞

1

α
e(ct

α)1/α , as t→ ∞ and |arg(c)| ≤ µ.

Since, 0 < α < 1, such that α ∈ Q∗. Then, η ∈ Z+ and,

(1/α)e(ct
α)1/α = α1e

(a+ib)ηt

= ηe

(∑η
j=0 (

n
j)a

η(ib)η−j

)
t

= ηe

(
(η0)a

η+(η1)a
η−1(ib)+...+(ib)η

)
t

= ηe

(
(η0)a

η+(η1)a
η−1(ib)+...+(ib)η

)
t

= ηe(ω+iψ)t = ηeωt
(
cos (ψt) + i sin (ψt)

)
, (13)

where ω + iψ =
(
η
0

)
aη +

(
η
1

)
aη−1(ib) + ...+ (ib)η, for some ω, ψ ∈ R. Hence,

Eα(ct
α) ≈∞ ηeωt[cos(ψt) + i sin(ψt)], for | arg(c)| ≤ µ.

�

Remark 3.1. Lemma 3.2 is new. It shows that the Mittag-Leffler function behaves
in an oscillatory manner, asymptotically. This result is crucial for the main result
of this section.

Lemma 3.3. Let α ∈ (0, 1), and t ∈ R+. Then, E1
α represents the first derivative

of the Mittag-Leffler function defined by (9), and

E1
α(t) =

∞∑
j=0

(j + 1)tj

Γ(1 + α+ αj)
. (14)

Lemma 3.4. Let α > 0, and t ∈ R+. Then, Eα ∈ AC[a, b] for all t ∈ [a, b].

Proof. We will show that

Eα(t) = Eα(a) +

∫ t

a

E1
α(s)ds for all a ≤ t ≤ b.

Indeed,
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∫ t

a

E1
α(s)ds =

∫ t

0

( ∞∑
0

(j + 1)sj

Γ(1 + α+ αj)

)
ds

=

∫ t

0

(
1

Γ(1 + α)
+

2s

Γ(1 + 2α)
+

3s2

Γ(1 + 3α)
+ ...+

(j + 1)sj

Γ(1 + (j + 1)α)
+ ...

)
ds

=

(
t

Γ(1 + α)

)∣∣∣∣t
a

+

(
t2

Γ(1 + 2α)

)∣∣∣∣t
a

+

(
t3

Γ(1 + 3α)

)∣∣∣∣t
a

+ ...+

(
tj

Γ(1 + αj)

)∣∣∣∣t
a

+ ...

=

∞∑
j=0

tj

Γ (αj + β)
−

∞∑
j=0

aj

Γ (αj + β)

= Eα(t)− Eα(a).

Hence,

Eα(t) = Eα(a) +

∫ t

a

E1
α(s)ds for all a ≤ t ≤ b.

and by definition, Eα ∈ AC[a, b] for all a ≤ t ≤ b.
�

Remark 3.2. Lemma 3.4 is new. It shows that the Mittag-Leffler function, Eα ∈
AC[a, b] for all a ≤ t ≤ b. This property of the Mittag-Leffler function defined
in (9) has not been mentioned by any authors in the past. However, it is well
known that the solution space of the Caputo derivative is in AC. Additionally,
the solution to the initial value problem (6) where f, and g are linear is given by
a linear combination of the Mittag-Leffler function defined in (9). Thus, for the
solution to the linear Caputo dynamical system to be well-defined, it must satisfy
Eα ∈ AC[a, b] for all a ≤ t ≤ b.

Below we introduce a couple of well known results regarding the stability theory
for Caputo dynamical systems. The following Lemma is a special case (n = 2) of
Lemma 3.2 in[9].

4. Hyperbolic Equilibrium Points

In this section we introduce a couple of well-known results for the local stability
theory for (6), and we propose a new result, Theorem 4.1, for the local stability of
(6) for the case α ∈ Q∗.

Below we introduce a couple of well known results regarding the stability theory
for Caputo dynamical systems. The following Lemma is a special case (n = 2) of
Lemma 3.2 in[9].

Lemma 4.1. Let (x∗, y∗) be an equilibrium point of (6) and A be defined as in
(7). Let λ1 and λ2 be the eigenvalues of A. Then, the following assertions hold.

(1) The equilibrium point (x∗, y∗) is locally asymptotically stable if and only if
|arg(λ1,2)| > απ

2 .
(2) The equilibrium point (x∗, y∗) is stable if and only if |arg(λ1,2)| ≥ απ

2 and
the eigenvalues with |arg(λ1,2)| = απ

2 have the same geometric multiplicity and
algebraic multiplicity.

(3) The equilibrium point (x∗, y∗) is unstable if and only if |arg(λ1,2)| < απ
2 .
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The following result follows from Lemma 3, where the conditions are expressed
in terms of tr(A(x∗, y∗)), and |A(x∗, y∗)|.

Lemma 4.2. If (x∗, y∗) is a equilibrium point of (6), then the following assertions
hold.

(i) If |A(x∗, y∗)| < 0, then (x∗, y∗) is unstable. (6).
(ii) If |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) > 0 and (tr(A(x∗, y∗)))2−4|A(x∗, y∗)| ≥ 0,

then (x∗, y∗) is unstable.
(iii) If |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) < 0, then (x∗, y∗) is Locally Asymptotically

stable.

The following result was obtained in [6]. It states that the local stability of
hyperbolic equilibrium points of (6) are topologically equivalent to that of system
(8).

Lemma 4.3. If the origin (0, 0) is a hyperbolic equilibrium point of (6), then
vector field (f(x, y), g(x, y)) is topologically equivalent with its linearization vector
field given by the linear system cDα

0X = AX in the neighborhood of the origin
(0, 0).

Remark 4.1. If (x∗, y∗) is an equilibrium point of (8) such that (x∗, y∗) ̸= (0, 0).
Then, the equilibrium point,(x∗, y∗), can be translated to the origin.

With the basis of stability introduced above, we now present the main result of
this section.

Theorem 4.1. Let (x∗, y∗) be an equilibrium point of (6). Let λ1 and λ2 be
eigenvalues of the matrix A defined in (7) and suppose that λ1 = a + ib and λ2 =
a− ib, with b ̸= 0. Then, if |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) > 0 and (tr(A(x∗, y∗)))2−
4|A(x∗, y∗)| < 0, then (x∗, y∗) is an unstable focus of (6) for α ∈ Q∗ ∩ (α∗, 1);
stable focus of (6) for α ∈ Q∗ ∩ (0, α∗).

Proof. By Lemma 4.3 we can study (8) to determine the qualitative behavior of
the equilibrium point (x∗, y∗). If (x∗, y∗) ̸= (0, 0), then we can use the following
substitution

x1 = x− x∗, y1 = y − y∗,

to translate the equilibrium point (x∗, y∗) to the origin. In fact, cDα
0 x1(t) =

cDα
0 (x1(t)− x∗), and cDα

0 y1(t) = cDα
0 (y1(t)− y∗). Since, x∗ and y∗ are both con-

stant.
Define | arg(λ1,2)| to be the argument of the eigenvalues λ1, and λ2, which are

equal since the eigenvalues are complex conjugates. Additionally, since b ̸= 0, then
there exists a µ ∈ (απ2 , απ) such that | arg(λ1,2)| ≤ µ. Moreover, λ1 ̸= λ2, thus the
general solution, X(t) := (x(t), y(t)), to (8) can be expressed as follows

X(t) = c1u1Eα(λ1t
α) + c2u2Eα(λ2t

α), (15)

where c1, c2 ∈ R and u1, u2 ∈ R2 are the eigenvectors corresponding to λ1 and λ2,
respectively.

Furthermore, by a direct application of Lemma 3.2, we have that
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X(t) ≈∞ c1u1

[
ηeωt(cos (ψt) + i sin (ψt))

]
(16)

+ c2u2

[
ηeωt(cos (ψt)− i sin (ψt))

]
Thus, from (16) we can see that the solutions, can be expressed strictly as real

valued solutions, similarly as the classical case. In addition, the solutions behave
in an oscillatory manner, qualitatively.

Next, recall that the eigenvalues for a planar system can can be represented as

λ1 =
tr(A(x, y)) +

√
tr(A(x, y))

2 − 4 det(A(x, y))

2
,

λ2 =
tr(A(x, y))−

√
tr(A(x, y))

2 − 4 det (A(x, y))

2
.

(1) If tr(A(x, y)) > 0, and tr(A(x, y))
2 − 4 det (A(x, y)) < 0, then the eigenval-

ues are complex conjugates. Note that the eigenvalues are independent of α, so
| arg(λ1,2)| is fixed. Specifically, the term α∗ = 2

π | arg(λ1,2)| is fixed.
(i) Suppose that α ∈ Q∗ ∩ (α∗, 1) then | arg(λ1,2)| < απ

2 ≤ µ < απ. From (16)
the solution has a oscillatory behaviour. This together with Lemma 4.2 allows us
to conclude that (x∗, y∗) is an unstable focus.

(ii) Suppose that α ∈ Q∗ ∩ (0, α∗) then there exists a µ ∈ (απ2 , απ) such that
απ
2 < | arg(λ1,2)| ≤ µ < απ. From (16) the solution has a oscillatory behavior. This
together with Lemma 4.2 allows us to conclude that (x∗, y∗) is a stable focus. �

Remark 4.2. In Theorem 4.1 we provide a new method for determining the qual-
itative behavior of solutions near equilibrium point (x∗, y∗). In particular, we use
the asymptotic expansion properties of the Mittag-Leffler functions to achieve the
results. The case where α = α∗ is not treated in Theorem 4.1, thus all that can
be concluded for α = α∗, is that the the equilibrium point (x∗, y∗) is stable., see
Lemma 4.1. In fact, the condition α = α∗, has been misrepresented in the litera-
ture, see [19]. The authors in [19] claimed that the equilibrium point (x∗, y∗) is a
stable node, if α = α∗. This claim is also not correct, in fact this would require an
additional constraint on the equilibrium point. namely, that it is locally asymptot-
ically stable, from Lemma 4.1 this is not the case. Additionally, Theorem (4) (f) in
[19] is not correct. In fact, the author states that if all the eigenvalues are complex
and satisfy | arg(λ1,2)| > απ

2 , then the equilibrium point (x∗, y∗) is a stable focus
of (6). However, this can only be concluded in its entirety for the linear system
(8), provided that the equilibrium point is hyperbolic (8) has no zero eigenvalues).
Indeed, consider the case when the complex eigenvalues have a zero real part, then
| arg(λ1,2)| = π

2 ≥ απ
2 . However, since the eigenvalues zero real parts, then this equi-

librium point is a non hyperbolic equilibrium point, and the linearization Lemma
4.3 does not apply.
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5. Conclusion

To summarize, in this manuscript we present a couple of new results for the local
stability theory of both hyperbolic equilibrium points. In section 4, we show that
the solution of a hyperbolic equilibrium point, in a neighbourhood of the equilibrium
point, behave in a spiral manner. This result is new, and it extends the behaviour
observed in the classical dynamical systems, as demonstrated in [21], to the Caputo
kind. This extension seems natural due to the continuity property of the Caputo
derivative. However, as shown in Theorem 4.1, the result depends heavily on α,
and as such we can only conclude this for α ∈ Q∗. The reason for this, is due to
the use of Lemma 3.2 in the proof of Theorem 4.1.
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