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ABSTRACT: The thermocapillarity motion of a non-deformable spherical droplet embedded in a concentric 

permeable spherical cavity, filled with a Newtonian viscous fluid, and subjected to a uniformly prescribed 

temperature gradient, is investigated analytically. The energy and momentum field equations are resolved within 

the quasi-steady limit, considering small Péclet and Reynolds numbers. Additionally, in this investigation, it is 

assumed that the capillary number at the droplet interface is small, ensuring the perpetuation of the droplet's 

spherical shape throughout its motion. We have derived normalized thermocapillarity velocity results across a 

broad spectrum of relative thermal conductivity values, cavity permeabilities, and viscosity ratios. The obtained 

normalized thermocapillarity velocity is emphasized using graphs and tables, allowing for a comparison with 

existing literature data. Additionally, specific cases available in the literature have been examined to further 

validate our findings. This research is motivated by a variety of flow conditions, such as particle deposition in 

dialysis and reverse osmosis, as well as in different biological organs where fluid passes through cell cavity walls 

or membranes. 

1. INTRODCTION 
 

 

A droplet is characterized as a liquid mass surrounded by a 

second liquid or gaseous medium, and a bubble is identified as a 

gas mass within an external medium. Together, the two objects 

are called fluid particles. The particle's external phase is 

referred to as the continuous phase, and its internal phase is 

called the scattered phase.  

When a continuous phase is mixed with a tiny droplet of the 

scattered phase with a temperature gradient, it exhibits motion 

towards the warmer region. This movement is attributed to the 

temperature-induced interfacial tension gradient along the 

droplet's surface and is recognized as thermocapillary motion 

[1,2]. The thermocapillary migration of liquid droplets, initially 

showcased through experimentation and subsequently analysed 

mathematically by Young et al. [3], holds significant 

importance in numerous practical applications [4,5]. Young et 

al. [3] also derived an equation for the thermocapillary velocity 

0U of a droplet with radius a immersed in an infinite 

Newtonian fluid of viscosity  , when there is a constant 

temperature gradient 0E   in the direction of z  axis: 
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In this equation, k  and   represent the ratios of thermal 

conductivities and viscosities, respectively, between the internal 

and ambient fluids. Additionally,  T  denotes the variation 

of the interfacial tension  at the droplet surface concerning the 

local temperature T . It is noteworthy to mention that equation 

(1.1) was independently derived by Fedosov [4]. In the majority 

of thermocapillary systems, as the temperature increases, the 

interfacial tension lowers, indicating that droplets move toward 

regions with higher temperatures [5]. It is important to highlight 

that expression (1.1) was developed under the condition of 

neglecting the effects of inertia and convection energy terms 

and assuming a small capillary number to retain the droplet's 

spherical shape. When the spherical droplet is sufficiently 

small, these hypotheses are accepted. References demonstrate 

how common it is in the literature to ignore the convection 

energy factor in the thermocapillary theory [5–14]. A spherical 

gas bubble's thermocapillary mobility, with its low viscosity 

and heat conductivity in relation to the surrounding liquid, can 

be determined using equation. (1.1) with the limiting values 

0k  and 0  .  
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As per this equation, bubbles with a radius of 10 µm in water 

will undergo thermocapillary migration at a velocity of 

approximately 0.7 mm/s in temperature gradients of the order of 

1 K/mm [2].  

In many real instances of thermocapillary motion, fluid droplets 

are not isolated, and it is crucial to comprehend how the 

proximity of a boundary impacts the applicability of equation 

(1.1) to a fluid droplet. Quasi-steady problems related to the 

thermocapillary migration of a spherical gas bubble or liquid 

drop in the presence of boundaries have been addressed under 

various physical conditions and employing different 

methodologies e.g. [15,16]. These investigations suggest that 

the migration velocity of the confined drop, in comparison              

to that of an isolated one, diminishes as it approaches                     

the boundary. Generally, it increases with rising values            of

k and , owing to the thermal and hydrodynamic interactions 

between the boundary and the droplet. Chen et al. [17] 

addressed the thermocapillary motion of a fluid sphere moving 

along the central axis of an insulated circular tube, employing 

the boundary collocation technique for drop-to-tube radius 

ratios up to 0.9 . They observed that the normalized migration 

velocity of the confined droplet consistently decreases with an 

increase in the radius ratio. Moreover, it was noted to increase 

with a decrease in k  but decrease as  increases. Mahesri et al. 

[18] explored the impact of interface deformability on the 

axisymmetric thermocapillary migration of a fluid drop (with a 

finite capillary number) within an insulated circular tube, 

utilizing the boundary integral method. They found that the 

normalized droplet velocity exhibits an opposite trend to the 

results of Chen et al. [17], aligning with the outcomes of 

migration parallel to one or two plane walls [19]. Specifically, 

the normalized droplet velocity increases with an increase in   

or a decrease in k , and it decreases monotonically with an 

increase in the drop-to-tube radius ratio. 

The literature encompasses numerous studies focusing on 

particle interactions with naturally permeable boundaries. 

Examples include filter beds in water purification plants, 

particle deposition in reverse osmosis processes, and fluid 

passage through cell walls in dialysis or various biological 

organs. O’Neill and Bhatt [20] achieved precise Solutions to the 

motion of a spherical particle within a Newtonian fluid confined 

by a naturally permeable planar surface, utilizing bispherical 

coordinate. 

In this study, our objective is to derive precise analytical 

solutions for the quasi-steady problem related to the 

thermocapillary migration of a droplet within a permeable 

spherical cavity. The impermeable cavity wall can either be 

insulated or specified with a linear far-field temperature 

distribution. A key focus of this research is to assess the 

influence of the permeability parameter, which characterizes the 

permeability of the cavity, on the thermocapillary velocity. 

2. Equations Governing Thermal Transport and 

Momentum  

The equations that describe the flow of an incompressible 

Newtonian fluid without external body forces are [21]:  

0,u                                                                              (2.1) 

   ,
u
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   (2.2) 

and the equation that describes the thermal transport in a fluid is 

   2 .
p

T k
u T T

t c


   

 

                                            (2.3) 

Here, u , T , and p  represent the velocity, pressure, and 

temperature, respectively. The constants  , , , pk c 

correspond to the density, viscosity coefficient, thermal 

conductivity, and specific heat. The constitutive equations 

governing the flow are as follow: 

  ,TpI u u                                                 (2.4) 

,q k T                                                                           (2.5) 

Here,   is the stress tensor, q  is the heat flux vector, I  is a 

unit dyadic, and  
T

   denotes the transpose of a dyadic. 

3. Description of the Problem  

Consider the quasisteady axially symmetric thermophoresis 

movement of a sphere droplet. Of radius a ,  viscosity
d  and 

thermal conductivity 
dk  situated instantaneously at the center 

of a naturally permeable cavity of radius b filled with a 

Newtonian viscous fluid of viscosity and thermal conductivity

fk . The region outside the cavity is filled with a porous 

medium of small permeability K . The particle translates along 

a vertical diameter with a velocity  U , as shown in Figure. 1. 

Consider  ,  ,  r    as a set of spherical coordinates centred at 

the origin and let  , ,re e e 
 represent the corresponding unit 

vectors. In the porous region outside the cavity, a constant 

temperature gradient  0zE E e E    (
ze is a unit 

vector in the direction of z  axis ) is applied parallel to a 

vertical diameter. It is assumed that all thermal properties of the 

system remain constants.  
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Figure 1.  Geometrical sketch of a thermocapillarity droplet 

translates within permeable cavity. 
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The objective of this study is to investigate how the permeable 

cavity wall influence droplet mobility. To determine the 

droplet's thermocapillarity velocity, Determining the 

temperature both within and outside the droplet is crucial at 

first, as well as the fluid velocity distributions in both regions. 

In instances where the temperature varies with time at any 

position within the system, the heat transfer is characterized as 

transient or unsteady state. Many practical scenarios involving 

heat transfer under different physical conditions, a steady-state 

temperature is established once the transient period concludes. 

If external temperature changes or internal heat generation 

occurs too rapidly to reach a steady state, the system remains in 

a state of continual change. Consequently, It makes sense to 

take into account a steady-state temperature for the cavity's fluid 

as well as the droplet. Additionally, When there is little droplet 

size and slow fluid flow, the Reynolds and Péclet numbers are 

significantly low. In these cases, convective effects are 

disregarded and heat energy transfer between the fluid and 

droplet mostly happens through heat conduction [22]. 

Nevertheless, for larger droplet undergoing thermocapillarity in 

high-temperature gradients, the Péclet number values could be 

around 0.1, and It is impossible to ignore convective heat 

transfer when compared to fluid conduction [23]. Hence, 

assuming steady-state conditions and low Reynolds and Péclet 

numbers, equations (2.2) and (2.3) can be simplified to: 

2
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p u a r b

p u r a
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                                          (3.1)
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                                                 (3.2) 

4. Permeability of the Cavity Wall  

To grasp the interaction between the droplet and the permeable 

cavity wall, it is crucial to consider the outer surrounding region 

of the cavity wall r b  as a porous material. This porous 

region is represented in our model using Darcy's law: 

   ,P v r b
K


                                                           (4.1) 

In this context, P  represents the pressure gradient within the 

porous medium r b , and v  denotes the filter velocity. The 

permeability coefficient K  remains unaffected by the fluid's 

nature but is contingent upon the medium's geometry. The next 

step involves determining the appropriate boundary condition 

for the naturally permeable cavity wall. Beavers and Joseph [24] 

conducted experimental studies revealing the inaccuracy of the 

no-slip condition at naturally permeable walls. Instead, they 

proposed the following semiempirical slip condition: 

  ,s
s s

u
u v

n K

 
  



                                                 (4.2) 

where n  and s  representing distances normal and tangential to 

the permeable cavity wall, respectively, and   indicating a 

nondimensional slip parameter dependent on the porous 

medium's structure. Saffman [25] provided a theoretical 

justification for Equation (4.1) when dealing with small 

permeability values K . This reasoning required balancing 

flows in the Stokes and Darcy regions using a boundary layer. 

Additionally, Saffman demonstrated that for small permeability 

values,  v O K , allowing v  to be considered zero 

 0v  . Consequently, for low permeability values K , the 

Stokes region flow's first-order solution is still applicable, 

,s
s

uK
u

n




                                                                  

 (4.3)  

at the naturally permeable cavity wall, Condition (4.3) has been 

used by many authors, for example, [16, 20]. 

5. Distribution of Thermal Transport  

In order to determine solutions for equations (3.2), which 

govern the temperatures T  and the boundary conditions at the 

droplet's surface and the permeable cavity wall must be 

specified. The usual heat flux and temperature continuity at the 

droplet surface are determined by the boundary conditions. 

Additionally, they specify that the local temperature gradient at 

the cavity wall should align parallel to the uniformly applied 

temperature gradient in the absence of the droplet. Thus, 

d

d
f d

,

,

T T

TT
k k r a

r r

 



  
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                                                 (5.1) 

The boundary condition at the permeable cavity is given by, 

cos ,
T

E r b
r




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
                                              (5.2) 

The boundary condition for the temperature at the cavity surface 

can be considered as the distribution that induces the gradient 

zE e  in the system in the absence of the droplet. In this 

scenario, Equation (5.2) transforms into 

0 cos ,T T E r r b                                           (5.3) 

where 
0T  is the temperature at the center of the droplet. These 

conditions should be supplemented with the boundedness 

condition of 
dT as 0r  . 

The solutions of (3.2) and (5.1) - (5.3) are [26], 

 d 0 3 cos ,T T E r r a                         (5.4) 

    3 3

0 1 2 cos ,T T k k a r E r a r b

                     (5.5) 

d f/k k k  represents the ratio between the thermal 

conductivities of the droplet and the fluid within the cavity. 

Here, when the boundary condition (5.2) is used, is given by, 

  
1

32 2 1 ,k k


                                                (5.6) 

while when the boundary condition (5.3) is used we obtain  as  

  
1

32 1 ,k k


                                                   (5.7) 

where /a b   is the ratio of the between the radii of the 

droplet and cavity. 

6. Distribution of Components of Velocity 

Having obtained information about the temperature distribution 

solution, we can now move forward to determine the flow field 

within the droplet and cavity. The assumption is made that the 

fluids exhibit Newtonian behavior and are incompressible both 

inside and outside the droplet. Owing to the low Reynolds 
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number, a quasisteady fourth-order differential equation 

characterizing viscous axisymmetric flow governs the fluid 

motion caused by the droplet's thermocapillarity migration. 

Since fluid motion is axisymmetric, the velocity components of 

the fluids can be depicted in terms of the Stokes stream 

functions  , a r b   and  ,d r a   through the 

relations, 

2

1 1
, ,

sin sin
ru u

r r r


 
  

   
                      (6.1)

 

d d
d d2
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sin sin
ru u

r r r
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 
  

   

                 (6.2)  

Inserting (6.1) and (6.2) into (3.1), we obtain the differential 

equations satisfied by the stream functions as 

 4 0,E a r b                                               (6.3)
 

 4

d 0,E r a                                                    (6.4) 
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2 2
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r r r
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   

is the Stokes operator. 

The boundary condition for the fluid velocity at the droplet 

surface r a are, 

cos ,ru U                                                                      (6.5) 

d cos ,ru U                                                                     (6.6) 

d ,u u 
                                                                            (6.7) 
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Here zU U e is the thermocapillarity migration velocity to 

be specified. Note that 
T

T

 
 
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
 assumed to be constant on the 

scale of the droplet radius. Also note that 1 T

r




 able can be 

assessed from the temperature distribution given by (5.5).         

The expressions of the tangential stresses 
r 

and 
dr 

can 

be found from the constitutive (2.4) as 
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The boundary condition at the permeable cavity wall r b  are, 

0,ru                                                                                (6.11) 

.
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u
r





 
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Where 

K


   is the permeability of the cavity wall slip 

parameter with dimension  
1

length


. The limiting cases 

  and 0  , correspond, respectively, to the rigid 

cavity walls and cavity with free surface. In addition to the 

above condition, we have  

0
dlim 0.

r
u


                                                                        (6.13)               (6.13) 

Solutions of (6.3) and (6.4) appropriate to satisfy the stated 

boundary conditions are given by:  

 1 2 4 2sin ,Cr Dr Er Fr                            (6.14) 

 2 4 2

d 1 1 sin ,E r F r                                              (6.15) 

where the unknown constants
1, , , ,C D E F E and 

1F  are to be 

determined.  

Inserting (6.14) and (6.15) into (6.1), (6.2), (6.9) and (6.10),   

we obtain,  

 -3 -1 22 cos ,ru Cr Dr E Fr                         (6.16) 

 3 1 22 4 sin ,u Cr Dr E Fr 
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We obtain also, 
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           (6.22) 

Applying  the boundary conditions by inserting (6.16) - (6.22) 

into  (6.5) - (6.8), (6.11) and (6.12), We get the following set of 

equations to determine the unknown constants 
1, , , ,C D E F E

and 
1F :  
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Where 
0

Ta E
U 

 


 is a characteristic velocity, d 


 

is the viscosity ratio between the droplet and the fluid within the 

cavity, and a    is a non-dimensional parameter 

representing the permeability of the cavity wall. The solution of 

the set of equations (6.23) is given by: 
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Here,              
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 (6.31) 

Thermocapillarity migration velocity 

The external fluid exerts a drag force
zF  in the z   direction on 

the droplet, given by [21]  

8 .zF D                                                                       (6.32)                          

As the droplet is in free suspension within the surrounding fluid, 

the resultant force from externally fluid must be zero, 0D  . 

Under this constraint, equation (6.25) provides the 

thermocapillarity migration velocity in the form:  

    
      
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6 5
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 (6.33) 

We record the following particular cases: 

 For rigid cavity,   

 
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3 5
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                                         (6.34) 

 For free surface cavity, a completely permeable cavity, 0   
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                              (6.35) 

 For a gas bubble in a permeable cavity, 0   
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         (6.36) 

 

 

 

 

 For droplet in an unbounded viscous fluid 0 , 

0

2
,

2 3

U

U




 
                                                               (6.37) 

with  
1

2k


   , which recovers the result (1.1). 
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Figure 2.   Normalized thermocapillarity migration velocity 

versus the permeability of the cavity  for 

different thermal conductivity parameter with 

viscosity ratio, , , and  

(A) case I and (B) case II. 
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Figure 3. Normalized thermocapillarity migration velocity 

versus the permeability of the cavity  for 

different viscosity ratio  with thermal 

conductivity parameter, , , and 

 (A) case I and (B) case II. 

 

Figure 4. Normalized thermocapillarity migration velocity 

versus the viscosity ratio  for different thermal 

conductivity parameter  with permeability 

parameter  and  (A) case I 

and (B) case II. 
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Figure 5.  Normalized thermocapillarity migration velocity 

versus the viscosity ratio  for different 

permeability parameter  with for thermal 
conductivity  and  (A) case 

I and (B) case II. 

Figure 6. Normalized thermocapillarity migration velocity 

versus the radii ratio  for different for thermal 

conductivity  with permeability  

and  (A) case I and (B) case II. 
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 Figure 7.  Normalized thermocapillarity migration velocity versus the 

radii ratio  for different permeability  with thermal 

conductivity  and  (A) case I and (B) 

case II. 
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Table 1.  The thermocapillarity migration velocity 

0/U U  

versus the permeability of the cavity   for 

different viscosity ratio 0, 1, 100    

with 0k  and 0.8   for the case I 

 

 

Table 2. The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for different 

thermal conductivity 1, 10k k   with 5  and 

0.5   for the case I 

 

 

 

Table 3.   The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for 

different viscosity ratio 0, 1, 100    

with 0k  and 0.8   for the case II 

 

 

Table 4. The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for 

different thermal conductivity 1, 10k k   with 

5  and 0.5   for the case II 

 

k = 0 σ = 0.8 

λ η = 0 η = 1 η = 100 

0 0.650789 0.228328 0.00349842 

0.1 0.625283 0.224036 0.00347187 

0.5 0.544675 0.209187 0.00337518 

1 0.475384 0.194604 0.00327214 

5 0.283527 0.141962 0.00281501 

10 0.225361 0.121025 0.00258413 

100 0.154639 0.0910804 0.00218469 

η = 5 σ = 0.5 

λ k = 1 k = 10 

0 0.0354966 0.00747298 

0.1 0.0352162 0.00741393 

1 0.0335178 0.00705639 

10 0.0304802 0.00641688 

100 0.0295705 0.00622537 

k = 0 σ = 0.8 

λ η = 0 η = 1 η = 100 

0 0.252854 0.0887134 0.00135926 

0.1 0.242944 0.0870457 0.00134894 

0.5 0.211626 0.0812766 0.00131138 

1 0.184703 0.0756106 0.00127134 

5 0.11016 0.0551574 0.00109373 

10 0.0875605 0.0470226 0.00100403 

100 0.0600827 0.0353879 0.000848831 

η = 5 σ = 0.5 

λ k = 1 k = 10 

0 0.354966 0.00979218 

0.1 0.0352162 0.00971481 

1 0.0335178 0.0092463 

10 0.0304802 0.00840833 

100 0.0295705 0.00815738 
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7. Results and Discussions 

The graphical representations of the normalized 

thermocapillarity migration velocity 
0/U U given by (2.6.33), 

are presented for various non-dimensional parameters:  

1. The permeability parameter of the cavity wall 

 0     , this parameter measures the 

permeability of the cavity wall. The value 0 

represents a perfect permeation of the cavity wall, while 

   represents impermeable cavity wall (solid wall). 

2. The viscosity ratio  1 /    , this ratio ranges from 

zero to infinity. The value 0   represents a gas bubble. 

3. The thermal conductivity parameter  1 /k k k . 

4. The radii parameter  /a b  , 0  represents a 

droplet moving thermally in an unbounded viscous 

medium. 

Because of variations in the boundary conditions of the 

temperature solutions on the surface of the permeable cavity, 

two cases can be established: Case I, the boundary condition 

(2.5.2) is used in which   
1

32 2 1 ,k k


       and 

Case II, the boundary condition (2.5.3) is used in which

  
1

32 1 .k k


       In the following figures, case I 

labelled as (A) and case II labelled as (B).      

Figures. 2 and 3 represent plots for the normalized 

thermocapillarity migration velocity 
0/U U versus the 

permeability of the cavity  . For the entire range of thermal 

conductivity parameter, k   and viscosity ratio , the 

normalised migration velocity 
0/U U decreases monotonically 

as the permeability parameter increases. For fixed value of 

permeability parameter  , the normalized migration 
0/U U

increases as the conductivity parameter k  and the viscosity 

ratio  decrease with 
0/ 0U U  as k  and  increase 

indefinitely. It observed that the values of 
0/U U are greater 

for case I than the values for the case II with respect to the 

permeability of the cavity. 

Figures. 4 and 5 represent plots for the normalized 

thermocapillarity migration velocity 
0/U U  versus the 

viscosity ratio  . For the entire range of thermal conductivity 

parameter, k   and permeability parameter ,  the normalised 

migration velocity 
0/U U decreases monotonically as the 

viscosity ratio increases. For fixed value of viscosity ratio  , 

the normalized migration
0/U U increases as the conductivity 

parameter k  and the permeability parameter  decrease. For 

large values of thermal conductivity parameter  10k  , the 

normalized migration 
0/U U is almost has the same values for 

the entire range of permeability parameter  .   

 

 

It observed also that the values of 
0/U U are greater for case I 

than the values for the case II with respect to the viscosity ratio. 

Figures. 6 and 7 represent  plots for the normalized 

thermocapillarity migration velocity 
0/U U versus the radii 

ratio  . For the entire range of thermal conductivity parameter, 

k and permeability parameter 1  , the normalised migration 

velocity 
0/U U decreases monotonically as the radii ratio 

increases. For fixed radii ratio , the normalized 

thermocapillarity migration velocity 
0/U U increases with the 

decrease of k and  . 

Table. 1 The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for different viscosity 

ratio 0, 1, 100    for the case I , the normalised 

migration velocity 
0/U U decreases as the permeability of the 

cavity   increases. For fixed 0k  and 0.8  . 

Table. 2 The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for different thermal 

conductivity 1, 10k k   for the case I , the normalised 

migration velocity 
0/U U decreases as the permeability of the 

cavity   increases. For fixed 5  and 0.5  . 

Table. 3 The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for different viscosity 

ratio 0, 1, 100    for the case II , the normalised 

migration velocity 
0/U U decreases as the permeability of the 

cavity   increases. For fixed 0k  and 0.8  . 

Table. 4 The thermocapillarity migration velocity 
0/U U  

versus the permeability of the cavity   for different thermal 

conductivity 1, 10k k   for the case II , the normalised 

migration velocity 
0/U U decreases as the permeability of the 

cavity   increases. For fixed 5  and 0.5  . 

 8. Conclusions   

This article explores the theoretical analysis of the quasisteady 

axisymmetric thermocapillarity slow motion of a spherical 

droplet positioned concentrically within a spherical permeable 

cavity wall. The investigation focuses on the limit where the 

Péclet number is considered negligible. The system experiences 

a uniformly specified temperature gradient. In this study, In 

order to guarantee that the droplet keeps its spherical shape 

during its journey, we assume a minimal capillary number at the 

droplet interface.  By employing the energy and momentum 

equations, An equation for the normalized thermocapillary 

migration velocity was obtained by considering pertinent 

geometrical and physical characteristics.  
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Our results are compared with the available data in the 

literature. The primary discovery in this research is that the 

normalized thermocapillary migration velocity decreases 

monotonically as the permeability of the cavity, viscosity ratio, 

thermal conductivity ratio, and radii ratio increase. This 

investigation draws inspiration from a range of flow scenarios, 

encompassing particle deposition in processes such as reverse 

osmosis, dialysis, and within different biological organs where 

fluids traverse membranes or cell cavity walls. 
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