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ABSTRACT: Cancer treatment has been confronted with serious ,*’ RN AR Ny b

Recsived: challenges. These challenges stemmed from the heterogeneity of tumor _ o

_ microenvironment, as well as genetic and epigenetic factors related to cancer g 3
April 18,2023 cells. The changes imposed by the tumor lead to the development of acquired ol et e
Accepted: resistance. Drug efflux, inhibition of apoptosis and immunosuppression are . o ¥
June 11, 2023 examples of resistance mechanisms imposed by cancer cells. Nanotechnology F::“"“
Published: has sought to overcome these resistance mechanisms through enhanced cellular akoriaed w_'::,
uptake, activation of alternative pathways by combined drug delivery, or s s, Chamical Conjugaton

August 10, 2023 targeting immune cells leading to their activation and proliferation. Several

types of nanomedicine-based systems were implemented; however, protein and Overcoming Cancer Drug resistance
peptide nanoparticles remain one versatile tool in drug delivery, providing hrouan multpe paihways

5 5 e a a a a q Recoptor  Inhibitionofdrug o . Genetic, Epigenetic,
preferable physicochemical and biological implications. Notably, protein and — wostrgss ~ ettucma = %05 imeune e
peptide nanocarriers can also exhibit enhanced cellular uptake, the possibility i
of tuned drug release, and hence, better tumor targetability. Here, we present the methods of fabrication, physicochemical

characteristics, biological mplications, and future perspectives, focusing on overcoming cancer drug resistance.

1. INTRODCTION contributors to cancer drug resistance. Eventually, drug

. . . inactivation, drug efflux, resistance to apoptosis through
Cancer drug resistance represents a major hurdle, which may g hop g

compromise the efficacy of administered chemotherapeutic shutting down apoptotic proteins, and_ suppression of immune
: . . . cells are features of resistant tumors (Figure 1) [3, 4].

agents [1]. The mechanisms of resistance to various therapies o o )

are encountered by an interplay between multiple factors [2]. To address these limitations, nanomedicine-based delivery of

Intrinsic factors, e.g., genetic and epigenetic aberrations, as well therapeutics was investigated [5].

as extrinsic factors, such as variation in pH, hypoxia, and

immuno-suppressive tumor microenvironment, are the main
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Figure 1. Mechanisms of cancer drug resistance (a), and implications of using protein nanoparticles in overcoming
cancer drug resistance mechanisms exhibited by different tumor types (b).

The ultimate goal was to bypass theses resistance mechanisms
through enhanced uptake and drug retention, combined drug
delivery, and controlled drug release [6]. Several nanomaterials
were investigated in order to overcome tumor resistance
mechanisms, however, protein-based and peptide-based
nanocarriers remain a safer, more biodegradable, and less
immunogenic materials to be implemented [7]. The application
of protein nanoparticles in the treatment in cancer treatment has
been inspired by the FDA approval of Abraxane®, which is
albumin-bound paclitaxel nanoparticles offering the advantages
of overcoming the side effects of toxic adjuvants [8].
Furthermore, proteins and peptides are easily tuned and
functionalized with other materials, which enhances active
targeting potentials [9].

In this review, we presented the nanofabrication procedures of
protein and peptide-based nanoparticles, with a special focus on
the implications of these nano-systems in overcoming various
pathways imposed by resistant tumors.

2. Albumin

Albumin is favored for the synthesis of nanocarriers, as it
contains multiple drug binding sites, which allows the insertion
of hydrophobic drugs. Furthermore, albumin nanoparticles can
be produced through coacervation, controlled desolvation or
emulsion formation. The two main types of albumin employed
in nanoparticle preparation are human serum albumin (HSA)
and bovine serum albumin (BSA) [10]. HSA is a globular
plasma protein, consists of 585 amino-acids, and has a
molecular weight of 66,500 Daltons (Da). On the other hand,
BSA shows a molecular weight of 69,323 Da. BSA advantages
include its lower cost compared to HSA and higher abundance
together with its easier purification.

However, BSA may show relatively higher immunogenic
reactions compared to HSA [3].
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2.1. Preparation Methods of Albumin Nanoparticles
2.1.1. Emulsification

This technique has been widely implemented for synthesis of
polymeric nanoparticles. There are two methods to stabilize
albumin nanoparticles produced by emulsification method: (1)
chemical or (2) thermal stabilization. Formation of albumin
nanoparticles was conducted by homogenizing the oil phase. For
example, cotton seed oil, which contained the albumin droplets,
was heat stabilized at 175°C to 180° C for 10 minutes [11]. Then
the mixture was cooled and diluted with ethyl ether to reduce the
oil viscosity for easier separation through centrifugation.
Alternatively, chemical method was implemented by dissolving
albumin in an aqueous solution, which was emulsified in
cottonseed oil at 25°C. Then, emulsified albumin was denatured
after resuspension in ether containing 2,3-butadiene or
formaldehyde as cross-linking agents [10].

2.1.2. Desolvation

In this process, albumin nanoparticles were prepared by virtue of
phase separation through using ethanol or acetone. An aqueous
solution of albumin was added in a dropwise manner to ethanol
which allows the precipitation of albumin by phase separation due
to its decreased water solubility. Then, a crosslinking agent, e.g.,
glutaraldehyde is added to ensure the stabilization of albumin
nanoparticles through the interaction of albumin amino acids with
the aldehyde groups of glutaraldehyde [10].

2.1.3. Thermal Induced Gelation

Thermal gelation is a process of using heat to induce aggregation
by means of unfolding of the albumin through heat then protein-
protein interactions occur such as hydrogen bonding, electrostatic,
hydrophobic interactions, and disulfide-sulfhydryl interchange [10,
12]. Doxorubicin inclusion in albumin nanoparticles was obtained
through Bovine Serum Albumin (BSA)-dextran and chitosan
heating, which formed a gel like core of the nanoparticles that
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includes trapped chitosan, chains, because of an electrostatic
attraction force occurring between chitosan and Bovine Serum
albumin (BSA). Finally, doxorubicin was included after
adjustment of the solution pH to 7.4 [13].

2.1.4. Self-assembly

Self-assembly requires the utilization of a hydrophilic part of
albumin such as a primary amine group and conjugation of a
hydrophobic material. This strategy will allow albumin to form
polymeric micelles after increasing its hydrophobicity [14]. Xu
et al prepared self-assembled albumin- drug conjugate where
the inner core of albumin nanoparticles contained doxorubicin
which was conjugated with albumin via disulfide bonds [14].

2.1.5. Nanoparticle Albumin-bound Technology (Nab-
technology)

Nab- technology is based on emulsion evaporation cross-linking
method. Aqueous solution of HSA was pre-saturated with 1%
chloroform. Then, an oily phase was added dropwise on the
aqueous phase which led to the formation of an emulsion, which
was exposed to a low shear forces; mild homogenization. Later,
a homogenizer was used on the crude emulsion at a high speed
and pressure which led to the formation of nanosuspension of
albumin nanoparticles, which was obtained by removal of the
solvent.  Furthermore, ultra-filtration was applied for
purification, and to eliminate any contaminant. To improve the
stability of nab-paclitaxel, lyophilization was employed to
obtain solid powder [15].

2.2. Albumin Nanoparticles Against Cancer Drug Resistance

The following Table 1 summarizes examples of albumin
nanoparticles which were used to overcome cancer drug
resistance through increased drug uptake, using drug
combinations, and overcoming high expression of ATP-binding
cassette (ABC) transporters, namely multidrug resistance
protein 1/P-gp/ABCB1 (MDR1), as well as multidrug resistance
associated  protein 1/ ABCC1 (MRP1), which allow the
expulsion of anticancer drugs and block them from entering the
tumor cells [16].

2.2.1. Breast Cancer

The most predominant cancer among women is breast cancer.
Unfortunately, breast cancer has many ways to limit the effects
of chemotherapeutic drugs through multidrug resistance against
the treatment used for it. One of these major pathways is drug
efflux where the primary mechanism was found to be the
increasing production of the ATP-Binding Cassette (ABC)
transporters which expels the drug from cancer cells. There are
many MDR mechanisms such as P-glycoprotein and the ATP-
Binding Cassette (ABC) transporters which are related to
multidrug resistant cancer cells and their expression hinders the
drug uptake inside tumor cells and lower the anticancer effect of
most of anticancer drugs [17, 18].

Here, doxorubicin, which is a chemotherapeutic drug, is used in
breast cancer treatment. Yang et al. developed a human serum
albumin (HSA) nanoparticle which includes doxorubicin with a
mean diameter of about 174 nm and it showed sustained release
behavior. The uptake of doxorubicin (DOX) was increased
significantly due to the targeted delivery with cetuximab. The
nanoparticles led to decreased mMRNA expression levels of the
multidrug resistance protein 1 (MDR1) and P-glycoprotein
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(P-gp), in a DOX-resistant MCF-7 human breast cancer cell line
(MCF-7/ADR) [17]. Additionally, the co-delivery of doxorubicin
(DOX) with cyclopamine (CYC) in BSA nanoparticles was
achieved with a diameter of about 150 nm. CYC showed a
synergistic effect with doxorubicin by reversing its resistance in
MDA-MB-231 breast cancer cell line, which led to increased
intracellular accumulation of doxorubicin that resulted by down-
regulation of P-glycoprotein (P-gp) expression [19].

2.2.2. Pancreatic Cancer

Recently, gemcitabine (GEM) was combined with albumin
nanoparticles bound to paclitaxel (nab-PTX), which highly
improved the efficacy in patients having metastatic PDAC vs.
gemcitabine monotherapy. Nab-PTX treatment of GEM-resistant
PDAC was enhanced by: (1) the albumin transporter protein,
caveolin-1, can be upregulated by gemcitabine; (2) multistage
nano-vectors (MSV) that increased retention of nab-PTX in the
tumor [20]. Moreover, gemcitabine was included into albumin
nanoparticles with a diameter of about 150 nm. The formulation
was found to be effective in overcoming gemcitabine-resistance
induced by multi drug resistance protein 1 (MDR1) and multidrug
resistance associated protein 1/ ABCC1 (MRP1) overexpression,
possibly due to consumption of the ATP needed by the efflux
pumps by albumin component of the nanoparticles [16].

2.2.3. Colon Cancer

A facile and an easy way to overcome colorectal cancer is through
combination therapy which overcomes multidrug resistance. Zhao
et al. developed a combination of disulfiram / copper complex with
regorafenib in albumin nanoparticles with a diameter of about less
than 145 nm. The combination of drugs was highly efficient to
hinder the proliferation of drug resistant tumor cells. The
implications imposed by the combination therapy by albumin
nanoparticles included: increased levels of reactive oxygen species
(ROS), induction of autophagy and apoptosis, and more
prominently, overcoming  resistance  of  the  tumor
microenvironment through repolarization of the tumor-associated
macrophages (TAMs) from type M2 to M1 [21]. Additionally,
Chen and co-workers developed bovine serum albumin (BSA)
nanoparticles loaded with a combination of doxorubicin and
verapamil through self-assembly with a mean size of 50 nm. The
combination was found out to have an enhanced intracellular
permeation of doxorubicin mediated through the inhibition and
blockade of efflux proteins by verapamil [22].
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3. Lactoferrin

Lactoferrin (Lf) is a large reddish pink whey protein that consists
of two globular lobes called N-lobe and C-lobe. Both lobes are
composed of 700 amino acids, which are stabilized by disulfide
bonds and connected with a flexible alpha helix [32-34].

3.1. Preparation Methods of Lactoferrin as a Carrier for
Drug Delivery

3.1.1. Sol-in oil emulsion

Lactoferrin nanoparticles can be prepared by mixing the required
drug with an aqueous solution of the lactoferrin protein along
with oily phase. The drug becomes adsorbed onto the proteins
forming aggregates, which can be dissociated by sonication.
Finally, the mixture is set to cool in order to precipitate, resulting
in the formation of solid protein-drug nanoparticles. Although
this technique might have many side effects on the integrity of
the protein structure, due to sonication and the harsh process of
removal of the oil from the mixture, it gives us advantageous
characteristics for the nanoparticles. They include small size of
the nanoparticles of around 80 nm, a great drug loading capacity
that reaches up to 50% drug loading, and the nanoparticles show
a good pH-responsive abilities, as it has a higher rate of release at
a pH of around 5.5, which enhances targeting of tumors [35-38].

3.1.2. Lactoferrin-drug Nanoconjugates

Lactoferrin chemical structure allows it to be able to form
conjugates with hydrophobic moieties or molecules. Since
lactoferrin has hydrophilic properties, it is used to enhance the
solubility of hydrophobic drugs. Furthermore, conjugated
molecules are driven by the self-assembly technique to form
nano-conjugates or nano-micelles in aqueous solutions [39]. For
instance, carbodiimide coupling was utilized for chemical
conjugation of a chemotherapeutic drug, pemetrexed, with
lactoferrin. Then, the coupled complex was connected to an
aminated mesoporous silica nanoparticles that was loaded with a
herbal drug, namely, ellagic acid [40].

3.1.3. Desolvation

Desolvation is one of the most favorable techniques for the
preparation of lactoferrin nanoparticles, as it doesn’t affect the
stability and integrity of the protein structure since it does not
require severe preparation conditions such as intense shearing or
heat. Simply, within a specified pH, a miscible organic solvent
with the required drug is added into an aqueous solution of
lactoferrin. This leads to the presence of turbidity in the aqueous
solution, which indicates the formation of nanoparticles. Then,
glutaraldehyde was added as a cross-linking agent which allowed
the nanoparticles to harden [41]. Optimization of the
nanoparticles is mainly mediated through many factors, e.g.,
concentration of the protein, solvent ratio, temperature,
sonication, flow rate, cross-linking agent, and pH. For example,
as the temperature increases, this leads to unfolding of the protein
particles, which exposes sulfhydryl groups, and forms cross-
linking within the molecule itself (intra-crosslinking), and
subsequently produces smaller nanoparticles [42].

3.1.4. Lactoferrin Shell-oily Core Nanocapsules

For the delivery of hydrophobic drugs, the polymeric oily core
nanocapsule was used as it solubilizes these drugs and allows
their controlled drug delivery. Mainly, poorly water-soluble
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polymers were used as Poly Lactic-co-Glycolic Acid (PLGA) and
Polycaprolactone (PCL) for that shell formation in nanocapsules.
In addition to the high cost of polymeric oily core nanocapsules,
there are many concerns about their safety as there are many
issues related to the formation of degradation acidic products and
immune reactions [43]. Therefore, lactoferrin can be used as a
shell-forming protein in the fabrication of oily core nanocarriers,
by the virtue of electrostatic coating [39].

3.1.5. Electrostatic Nanocomplexes

In an aqueous solution, electrostatic interactions with lactoferrin
can occur, as it possesses a positive charge due to its high
isoelectric point (pl= 8.5) compared to most proteins, which have
an isoelectric point of 5. Negatively charged polysaccharides can
form electrostatic nanocomplex at room temperature, which was
followed up by heating up to 92°C and aggregation of protein
molecules was allowed [44].

Lactoferrin  implications can be represented either as
nanoparticles or as a targeting material. Table 2 summarizes some
of the examples of the use of lactoferrin in overcoming the cancer
drug resistance.

3.2. Lactoferrin Used to Overcome Many Types of Cancers
and Their Resistance

3.2.1. Glioma

The major challenge of treatment of gliomas is the presence of
the blood brain barrier which allows a limited number of
molecules to pass through it. Therefore, nanomedicine techniques
can be implemented to overcome this obstacle which allows ease
of drug penetration through the blood brain barrier in order to
treat gliomas [45-49]. Temozolomide-lactoferrin nanoparticles
were used to treat gliomas. The nanoparticles were characterized
by having a small diameter of 70 nm and a polydispersity index
of 0.24. Lactoferrin allowed the increase of the uptake of
temozolomide which led to the killing of cancer cells and
reduction of the tumor size. Thereby, overcoming the resistance
occurred [35]. Xu et al. developed polysaccharide nanoparticles
containing curcuminoid for treatment and targeting of gliomas,
where the nanoparticles were characterized by a diameter
between 210-240 nm. Lactoferrin coating led to enhanced drug
uptake through blood brain barrier and increased drug
accumulation in the brain [50].

3.2.2. Prostate Cancer

Development of bovine lactoferrin nanoparticles, which includes
doxorubicin against resistant prostate cancer, showed significant
apoptosis induction and overcoming of the p-glycoprotein efflux
system. It was postulated that bypassing, as well as suppressing
P-gp are the main effects that led to enhanced cytotoxicity of
DOX by 4-fold. Lf, as carrier, was regarded as the suppressor of
P-gp, as well as improving drug accumulation through enhanced
uptake through receptor-mediated endocytosis (Figure 2) [51].
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3.2.3. Breast Cancer

Lactoferrin-coated—DOX—mesoporous maghemite nanoparticles
with a diameter of 130 nm increased the uptake of doxorubicin
into the tumor cells which led to tumor growth inhibition and
reduction of the size of the tumor.

It was demonstrated that the enhanced uptake posed by Lf was
responsible for overcoming drug resistance by enhanced cellular
uptake. However, in vivo application was still compromised with
off-target accumulation of nanoparticles, e.g., in liver and spleen
[52].

Overcoming cancer resistance via protein and peptide Nanocarriers

4. Zein

Zein is an alcohol-soluble maize protein and is mainly soluble in
70-80% aqueous ethanol. Then, it is dispersed into water in order
to produce zein nanoparticles as a precipitate, which can
encapsulate hydrophobic drugs for drug delivery [53]. Zein has
gained a wide interest in using it as a carrier for drug delivery
because of its: (1) biocompatibility, (2) biodegradability, (3)
enhanced bioavailability and (4) stability [54, 55]. Zein was
implemented as a nanocarrier for drugs in an attempt to overcome
cancer drug resistance as shown in Table 3.

Dox alone route Y ' bLf-Dox route
Receptor modlmd/_\\ @
(N} 8 endocytosis >
g % &
- &
Endosomes /
. | Endosomal| / &
¢ INYV  lescape N\ Facilitated
0 H " Triggers Over- | 1 @ entry of bLf-
o® \ (]| expressionof P- EDox released o 0@ \ ‘ Dox &
® \ & | gpand MRP-1 | 'from conjugates ... \
o LN , 78 bLf
> ' °
Non Facilitated & # i ° y Increases @ decreases P-
entryofDox &, # ® Nuclear Dox® _ o PTEN gp and MRP-
alone ¥ ~Taccumulation g expression \;‘,??'?”h",
% i [ “Decreases |
4 ( Survivin, ¢
: » BCI2 and \ o
Apoptotic|  Triggers | Ki67 |
+ Immunity § 9 . gascade | Cas-37and ‘ expression |/ Reduced Dox
« csch : 1 Bax ' 2\ efflux
+ HGBE /4 E : * Immunity 4
*+ RBCY o /N TN - csc §
e ' v . HeB
L) ! + RBC %
H S
Y bLf - Receptor @ btf + ® Dox @ bLf-Dox SN pgp/MRP

Figure 2. Implications of using DOX-loaded bovine lactoferrin nanoparticles in circumvention of cancer drug resistance
through enhanced internalization, as well as decreased P-gp and MRP-1 expression, which improves the cytotoxicity of
DOX. Moreover, bovine lactoferrin decreases the expression of P-gp, MRP-1, survivin and increases the expression of
PTEN; hence, promoting apoptosis. The overall effect in vivo involves enhancing the anti-tumor immunity. Reprinted

from Ref. [51].
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4.1. Methods of Preparation of Zein Nanoparticles
4.1.1. Antisolvent Nanoprecipitation Technique

This method depends upon the precipitation and formation of
the nanoparticles as a result of the induction of supersaturation.
This is achieved by the addition of solute to the solution leading
to the precipitation of the nanoparticles. Also, this method
depends primarily on the protein solubility, pH of solvent, ionic
strength and electrolytes present in the solution [59].

4.1.2. Liquid-liquid Dispersion Method

Liquid-liquid dispersion method depends on the differential
solubility for zein in ethanol and water. Zein is soluble in
alcohol, hence, after addition of water to alcohol, this leads to
dilution of the alcohol concentration and induces a decrease in
the solubility of zein and its precipitation in the form of
nanoparticles [60].

4.1.3. Electrohydrodynamic Atomization Method

This method is also called electro-spraying, where it depends on
the presence of an electric field to separate the liquid into
charged molecules, where the solution moves through a metallic
capillary or a needle. By adjusting the strength of the electric
field, we can obtain many nanoparticles with multiple and
different properties. This method is advantageous for producing
nanoparticles with an increased drug encapsulation
efficiency[61].

4.2. Examples for the Effect of Zein Nanoparticles on
Different Types of Cancer Drug Resistance

4.2.1. Colorectal cancer

Frequent use of oxaliplatin, which is the main chemotherapy
drug for colorectal cancer patients, is being limited due to the
emerging resistance from cancer cells and harsh side effects
such as peripheral neuropathy, hypersensitivity reactions and
toxicity to bone marrow [62-65]. Liu et al. formulated zein
nanoparticles with a diameter < 350 nm, loaded with a
combination of curcumin and oxaliplatin. Effective synergism
between the two drugs was achieved, where oxaliplatin induced
CD44 expression, which increased the cellular uptake of the
nanoparticles and enhanced the anticancer effects of curcumin.
CD44-induced expression by oxaliplatin in HCT116 and HT29
cells was found to be related to the increased uptake of HZ-CUR
nanoparticles. This mechanism was verified through the assay of
the curcumin intracellular content after the inhibition of the
expression of CD44, where the results showed significant
reduction in the curcumin intracellular content in the HCT116
and HT29 cells. This showed that the endocytosis mechanism is
important for the HZ-CUR nanoparticles uptake [66].

4.2.2. Hepatocellular Carcinoma

Lovastatin (LVS) incorporated into zein nanoparticles with a
diameter of 67.2 + 4.1 nm showed effective drug delivery
towards the hepatocellular carcinoma cells and inhibited the
proliferation of the tumor cells which was confirmed by
morphological changes assessment of the cells. It showed
superiority over lovastatin (LVS) alone in inducing apoptosis
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that was documented through caspase 3 assessment. The main
mechanism of enhanced cytotoxicity was mediated by improved
cellular uptake by zein nanoparticles. [67-70].

4.2.3. Prostate Cancer

Prostate cancer has been regarded as a metastatic and resistant
type of cancer. Therefore, combination therapy was regarded to
overcome hurdles that, compromise therapeutic outcomes in
prostate cancer. In this regard, Histone deacetylase inhibitors
could be implemented to induce apoptosis and autophagic cell
death [71]. Therefore, vorinostat (Vor), a pan- histone
deacetylase inhibitor [71], in combination with bortezomib (Bor)
were coloaded in zein nanoparticles, prepared by phase
separation method. These nanoparticles showed enhanced
uptake, and more importantly, overcoming drug efflux
mechanism through pH-controlled drug release in tumor cells
[72].

5. Gelatin

Gelatin is a naturally occurring protein which can be collected
through the collagen hydrolysis. Because of its biocompatibility,
biodegradability due to presence of multiple functional groups
and its low cost, gelatin became an attractive substance for nano
drug delivery systems. It is composed of repeated triplets of
alanine, proline and glycine amino-acids which are the main
cause of the triple helical structure of gelatin. There are two
types of gelatins (type A or type B) which mainly depends on
the mechanism of hydrolysis of collagen, either through acidic
or alkaline hydrolysis and each has a different mechanism of
drug release for many nanoparticles [73-76].

5.1. Methods of Preparation of Gelatin Nanoparticles
5.1.1. Desolvation

This method depends on using a dehydrating agent such as
alcohol or acetone to the gelatin aqueous solution which
dehydrates the gelatin leading to changes in its conformational
structure. Then, a cross-linking agent is used to harden the
formed particles. Addition of another dehydrating (desolvating)
agent might be needed to obtain uniformed sized and smaller
nanoparticles. Also, another reported method is the one-step
desolation process, where in this case, the pH of the gelatin is
modified to reach the neutral values around 7.0 so that the
gelatin molecules remain neutral and more susceptible to
desolvation. The temperature for the process was set to 37°C, in
order to ensure that the molecular weight of gelatin molecules is
uniform [74, 77-80].

5.1.2. Emulsification-solvent Evaporation

The method depends on the preparation of a water-in-oil
emulsion. The gelatin was mixed with a drug in the water phase
of the emulsion. Then the aqueous phase was mixed with the
oily phase which is composed of polymethylmethacrylate
organic solution or paraffin oil. The process is followed by
usage of a cross-linking agent [86-88].
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5.1.3. Nanoprecipitation

In this method, which is mainly described as a solvent
displacement mechanism because of the solvent’s miscibility,
gelatin aqueous phase is mixed with ethanol which contains the
drug, stabilizing agents, and crosslinking agents, where the
nanoparticles are precipitated which shows how easy the method
is to be performed. The method has many advantages such as
being rapid, feasible to use, and the process is not complicated.
Also, it does not need extensive shearing force, ultrasound
vibrations (sonication) or even high temperature degrees.
Moreover, the process does not have an oily-aqueous interface
[89-92].

5.1.4. Self-assembly

There are two ways to form gelatin nanoparticles by means of
self-assembly: (1) chemical modification; where gelatin is
conjugated with multiple hydrophobic molecules in order to
form a modified amphiphilic gelatin copolymer. This conjugate
is capable of obtaining conformational changes when it
dissolves in water leading to self-assembly as in the form of a
micelle nanosphere, showing the aggregation of the hydrophobic
moieties towards the core of the micelles, leaving the
hydrophilic parts forming the outer layer of the micelles[93].
(2) Mixing; in this case, gelatin and the required drug solution
are mixed directly, allowing the interaction between them via
hydrophobic forces to take place, for instance, hydrogen
bonding [94]. Table 4 demonstrates some of the examples of
drugs formulated into gelatin nanoparticles to overcome cancer
drug resistance.

5.2. Examples for the Use of Gelatin Nanoparticles to
Overcome Various Types of Cancers

5.2.1. Breast Cancer

Amijadi et al. developed a co-drug delivery gelatin nanoparticle
which delivered a combination of betanin (natural biological
compound) and doxorubicin (a cytotoxic drug) towards the
tumor cells. The nanoparticles had a diameter of around 160 nm.
The potency of the nanoparticles was assessed through MTT
assay which showed enhanced potency and cytotoxicity of
doxorubicin as a result of the presence of betanin as a
synergistic effect. Moreover, nanoformulation was superior to
free drugs due to overcoming cancer drug resistance and
elevated levels of cellular uptake and induction of apoptosis on
the tumor cells [72].

5.2.2. Colon Cancer

Carboplatin gelatin-based nanoparticle of a diameter of 16 nm
was found to be twice as effective as the free carboplatin on
HCT 116 colon cancer cells. Also, the nanoparticles showed
enhanced apoptotic activity and did not induce any drug
resistance in colon cancer cells, as demonstrated by measuring
MDR1 expression. The nanoformulation showed to be two-
times more effective at a lower concentration than the free
carboplatin which showed less side effects and massive
therapeutic advantage [95].

6. Peptide- based Nanoparticles for Overcoming
Cancer Drug Resistance
Peptides are a sequence of amino acids, which can be
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implemented as a versatile tool for anti-cancer drug delivery.
They can be used as a monotherapy or functionalized with other
materials. Furthermore, peptides can deliver various therapeutics
either conjugated or loaded into a self-assembled peptide
structure. Generally, there are two directions for designing a
peptide. One method, a top-down technique, is obtaining the
peptide sequence from a natural protein (structure-based design).
Another method, a bottom-up technique, is employed by peptide
library screening. Then, the peptide is constructed based on the
expected interaction with desired target [96].

Synthesis of the peptide can be conducted through: (1) a
biological method, using the recombinant DNA technology, and
subsequently the production of the peptide from a prokaryotic or
a eukaryotic host. (2) a chemical method, where the peptide is
synthesized based on a reaction producing a peptide bond
between amino acids. From all the chemical methods
implemented, the most widely discussed are the ring- opening
polymerization (ROP) of N- carboxyanhydride method, and the
solid phase peptide synthesis (SPPS) [97]. The former method is
usually sought for the synthesis of larger peptide sequences,
however, the SPPS method can be implemented for synthesizing
shorter peptide sequences [97]. The most reported methods of
peptide nanoparticle synthesis are either through self-assembly
of the peptide conjugates or through physical loading of the drug
molecules within the amphiphilic structure of a peptide-
amphiphilic block copolymer [97, 98]. Peptide- based
nanoparticles have several implications in drug delivery as self-
assembled nanocarriers, for imaging, and most importantly, to
overcome cancer drug resistance as targeting or therapeutic
peptides (Table 5).

6.1. Self-assembled Peptide Nanoparticles with Physically
Loaded Cargos

To overcome cancer drug resistance on resistant breast cancer
model, a pegylated self-assembling diblock copolymer
comprised of a hydrophobic backbone as poly(phenylalanine)
and a hydrophilic poly(histidine) was fabricated. This
polypeptide was synthesized implementing the process of
polymerization of the L-phenylalanine-N-carboxyanhydride
(Phe-NCA) and His-N-carboxyanhydride (NCA) in a double
step, where the pegylated histidine was first synthesized
followed by the synthesis of the peptide block copolymer. The
rationale for the polypeptide design followed the conception that
histidine polypeptide is a pH-responsive peptide. This character
would allow the histidine polypeptide to exhibit a protonation-
deprotonation step, and therefore, create a pH- dependent
buffering effect that would allow enhanced endosomal escape
for intracellular drug delivery. This self-assembled triblock
copolymer was loaded with doxorubicin (DOX) and quercetin
(QRC) via dialysis method, where QRC was found to enhance
the apoptotic potential of DOX. Free drugs combination was
found to be less effective against the resistant type of breast
cancer (MDA-MB-231), while the drug-loaded peptide
nanoparticles showed an enhanced effect. Overcoming the
resistant tumor was probably directed by more enhanced uptake
and accumulation, bypassing the drug efflux pathways [103].

On another avenue, peptides can be synthesized in a branched
manner, resembling dendrimers. These dendrimer- like peptides
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can self-assemble and form supramolecular structures with
hydrophobic cavities and generation- tuned hydrophilic
dendrons. Therefore, hydrophobic cargos, e.g.,
chemotherapeutic agents, can be incorporated in the core of the
assembled amphiphilic peptide dendrimer. In this regard,
amphiphilic peptide dendrimers are synthesized comprised of
hydrophobic C18 alkyl chains and hydrophilic polylysine
peptides with different dendron generations. The self-assembled
dendrimer was produced upon addition to an aqueous
environment allowing the encapsulation of DOX, as a
hydrophobic chemotherapeutic agent. The dendrimer showed
enhanced cytotoxicity compared to free drug against DOX-
resistant MCF-7 breast cancer model, due to enhanced cellular
uptake and tumor accumulation [104].

6.2. Self- assembled Peptide-drug Conjugates

Instead of loading drugs physically into amphiphilic peptide
micelles, hydrophobic drugs can be conjugated to the peptide
backbone, imparting amphiphilic characteristics to the peptide.
This method allows the peptide-drug conjugate to self-assemble
into nanoparticles with the drug forming the hydrophobic core.
This peptide could be further functionalized with other
materials. For instance, Shim et al implemented a pro-apoptotic
peptide (second mitochondria-derived activator of caspase;
SMAC) to induce cancer cell death and overcome cancer drug
resistance, which was demonstrated to be mediated by inhibitors
of apoptosis proteins (IAP) [105, 106]. IAPs can induce cancer
drug resistance through shutting down caspases in the cascade of
apoptosis, however, SMAC directly interacts with 1APs and
rectifies their action [106]. On the other hand, utilizing SMAC
could be hindered by unfavorable stability and poor cellular
permeability. To overcome these limitations, The peptide
(SMAC) was conjugated to DOX through a spacer peptide,
which is cleavable in response to the tumor upregulated
cathepsin B. The peptide- drug conjugate (PD- conjugate)
showed an enhanced cytotoxicity compared to free DOX against
DOX- resistant MCF-7 cells, which was explained by: (1)
enhanced uptake and cleavage of cathepsin B peptide, thereby,
releasing both drugs at their site of action; (2) combinatorial
drug delivery strategy, through direct inhibition of IAPs, due to
the presence of SMAC in combination with DOX [107]. In
another example, DOX was conjugated to a poly (aspartic acid)
moiety (Asp8), which was further coupled to a diblock
copolymer composed of a pegylated HIV-derived cell-
penetrating peptide (TAT). The self-assembled structure
included the DOX- Asp8 in the core, while the hydrophilic
pegylated-TAT occupied the outer surface of the nanoparticles.
Nanoparticles showed the ability to overcome cancer drug efflux
mechanisms, which was mediated by P-gp overexpression. Also,
intranuclear retention of DOX was enhanced. This effect was
confirmed by introducing verapamil as an inhibitor of P-gp,
where no difference was found between free DOX in
combination with verapamil and DOX-NPs. On the other hand,
the uptake and retention of DOX was compromised when
administered as free drug [108].

Another example is a nanofiber consisting of a self-assembling
peptide (Nap-GFFpYK) conjugated to etoposide via ester bond.
The nanofiber showed an enhanced cytotoxicity by 20-fold

Alexandria Journal of Science and Technology, 2023, 1(1), 1-21

Overcoming cancer resistance via protein and peptide Nanocarriers

12

compared to free drug, in the MDR1- overexpressing tumor
cells. Additionally, apoptosis induced by nanofibers were 5-fold
higher than free drug. These effects were attributed to
nanofibers, demonstrating the ability of nanofibers to overcome
cancer drug resistance, imposed by the upregulation of efflux
genes. The mechanism of overcoming drug resistance is thought
to be mediated by: (1) enhanced cellular uptake of nanofibers
and (2) carboxylesterase- responsive release of etoposide, which
decreases the rate of drug efflux out of tumor cells [109].

6.3. Hybrid Peptide-based Nanoparticles as Nanocarriers to
Overcome Cancer Drug Resistance

Hybrid peptide-based nanoparticles are considered as another
strategy implemented to overcome cancer drug resistance to
other drugs or nano-systems. To address this concept, a DOX
prodrug was constructed via coupling DOX with d-a-tocopherol
polyethylene glycol 1000 succinate (TPGS). TPGS can act as a
P-gp inhibitor. Therefore, TPGS-DOX (TD) conjugate coated
with DSPE-PEG showed enhanced cellular uptake compared to
free DOX, secondary to P-gp inhibition. However, it was
demonstrated by Bao et al. that in spite of the ability of TDs to
overcome drug resistance, decoration of the micelles with cyclic
targeting peptide (cCRGD), to produce hybrid nanoparticles, can
enhance tumor accumulation of DOX, accounted by improved
tumor penetration, by 2.15-fold more than TD NPs [110].

Tuned drug release may also play a pivotal role in overcoming
drug resistance in tumor models. One way was by the
fabrication of a hybrid polymeric-peptide nanoparticles
encapsulating DOX. The polymer-peptide hybrid was comprised
of monomethoxy (polyethylene glycol)-b-P  (d,I-lactic-co-
glycolic acid)-b-P  (I-glutamic acid) (mPEG-PLGA-PGIu).
Through controlling the length of poly (I-glutamic acid), the pH-
sensitivity is determined depending on the ionization status,
representing an on-off switch. Moreover, the biodegradability of
PLGA and PGlu would enhance the NPs degradation in
response to tumor enzymes. Thereby, this dual responsive
behavior would allow endosomal escape, and inducing cytotoxic
effects 2- to 3-fold higher than free DOX, due to enhanced
uptake and retention imposed by NPs against DOX-resistant
MCEF-7 cells (Figure 3) [111].
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Figure 3. Tuned drug release through the fabrication of hybrid polymer-peptide nanoparticles. pH-sensitive release of
DOX was controlled through manipulating the length of poly (glutamic acid) chain, which imparts an on-off switch
characteristic. The hybrid nanoparticles represent a promising strategy to overcome cancer drug resistance secondary to
enhanced drug accumulation and retention. Reprinted from Ref. [111]

6.4. Cell-penetrating Peptide-based Nanoparticles as
Nanocarriers to Overcome Cancer Drug Resistance

Cell-penetrating peptides (CPP) are regarded as sequences of
amino-acids, comprised of less than 30 amino-acids, which are
either cationic or amphipathic. The charged nature of the CPP
facilitates the internalization of their cargo into the cells without
disrupting the cell membrane [112]. CPP showed several
features that allow their tumor targetability. Specific tumor
selectivity, as well as pH- responsiveness could be significantly
attributed to the ability of CPP to enhance the cellular uptake of
their cargo, overcoming cancer drug resistance. In this regard,
Zhang et al demonstrated that a co-polymer comprised of
polyethylene glycol and polyethyleneimine coupled through a
disulfide bond (PEG-SS-PEI), and modified with CPP, can
enhance the delivery of siRNA. In this work, PEG-SS-PEI NPs
were modified with the pH-sensitive peptide made of repeated
units of glutamic acid-alanine-leucine-alanine “GALA” and the
triple-negative breast cancer (TNBC) selective peptide; cysteine-
arginine-glutamic acid-lysine-alanine (CREKA). These NPs
were complexed with siRNAs against epidermal growth factor
receptor (EGFR) and growth-promoting bromodomain-
containing protein 4 (BRD4). The functionalization procedure
was conducted based on the reaction of a maleimide terminal of
PEG with the mercapto group on the corresponding peptide.
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Following, the different ratios of the modified peptide-polymers
were mixed with the siRNAs to induce the formation of the
nanocomplex. Ultimately, NPs with combined CPPs showed
enhanced cellular uptake (improved transfection efficiency)
compared to either CPP alone, or free siRNA in MDA-MB-231
cell line. These results were translated in enhanced cytotoxicity,
as well as the most effective gene silencing for EGFR and
BDR4, which showed synergistic inhibitory action against
MDA-MB-231 cell line [113]. In another attempt to enhance the

selectivity of CPPs composed of multimers of leucine (L) of
lysine (K) residues, which possess the capability to internalize in
the cell at a much lower concentrations compared to the
conventional CPPs, the addition of histidine residues enhanced —
pH-responsive targeting of TNBC. LH2 showed improved
cellular uptake at acidic conditions compared to LK2 peptide at
very low concentrations reaching 10 nM. More importantly,
simple mixing procedures forming peptide-drug complexes can
induce synergistic antitumor activity in vitro, in addition to
chemical conjugation strategy. These findings were
demonstrated upon the formation of PTX-LH2 nano-rod
complexes, which were effective in MDA-MB-231 mouse
xenograft model at a 10-fold lower PTX dose [114].

Online ISSN: 2974-3273



ers

d peptide Nanocarri

in an

tel

ia pro

tance v

illg cancer resis

Overcom

Review

[60T]

[80T]

[20T1]

[v0T1]

[coT]

$94

"apIsodola
10 A1191X010142 ayy ul
JUBWadURYUS P|0J-0Z
pamoys sajonedoueN

xnjys db-d

Xod
931) 0] pasedwod

sajoiuedoueu Aq
axexdn uaybiy pjos-£'v

XNy Brup pue
aye1dn Bnip Jood

"901W Bulreaq
Jowny /-4J Ul
p104-8°9 Aq A1anijap
XOQ paoueyua
01 p8] SdN ‘'X0d
9a1) 01 pasedwo)

uonual pue
axeidn Jown) Jood

"X0d 92lj 01
pasedwod spioayds
Jowiny jsurebe
Solje|NLLLIOjouURY
ay1 Jo A191X010149
pasueyu3

uolre|NWNIJe
Jown
pue axeidn Jood

'240/X0a
991) YUM paleal)
321W JO ey ueyl

ALINJOA JOWN} J3J[BWS xniye db-d
p|0J-§ pamoys
301 PAJeal}-SAN
W00
aouelsisay

SWoANO Bnaq 190ue)d

JO wisiueyosN

SI192 TLy/OT11
Buissaidxalano

-THAN

S|199
dav/g81LoH
JERI]=R)
uojo3 uewny
ueIsISal-bniQ

$1199 ¥/-40IN
WeIsisal XO4

$1199 ¥2-40N
JUEISISal XOQ

(T€2
-gN-Vain)
J13due) isealg

180ue)d
JoadA ]

uol
1e6nluo)
[edlwsyo

uol
1e6nluo)
[edlwsyo

uol
1e6nluo)
[ealwsyd

poyiaw u
olssadsiq
wiid4

poyaw 9
Bueyox3
1UBAJ0S

poUIBIN

VIN

¢0T'0

v.20

VIN

VIN

1dd

0T

04T

6'ST+8'T¢¢

08 :XOd/PHHAN Adwv
€L XOd/HH ddwv

Z8

(wu) 8z1S 81dnIRd

apisodoig

X0od

X0d

X0od

240
pue X0d

(s)bnuq

T u1a104d 8our1sISad Bnap-ninw :THAIA ‘8sedsed Jo 101eANIR PaALIBP-BIIPUOYI01IW PU0DSS :DVINS ‘sajondedouep :SdN ‘unsaland :0yd ‘unignioxod :X0d

apisodola
-MAd449-deN

8ds\y-93d-1Vv1

X0d-odd4-OVINS

auIsA|Ajod

(93d
-SIHd-8ydd) (100416
auajAuye)Ajod-q
-(sutpnsiy1)Ajod-g-
(suruejejAuayd)Ajod

apndad

3oue)sIsal Bnup Jsoued Bulwoalano ul ssjoiredouru paseq-apndad Jo sajdwexs pa12s|as 'S a|gel

15

Online ISSN: 2974-3273

Alexandria Journal of Science and Technology, 2023, 1(1), 1-21



7. Perspectives and Future Challenges

Proteins are attractive nanocarriers owing to their biocompatible
characteristics. However, immunogenicity may be induced by
some proteins derived from other non-human sources, for
instance, bovine serum albumin [12]. Other expression systems
that can be implemented to synthesize peptides through
expression hosts can be immunogenic as well [115]. Moreover,
employing organic solvents in the synthesis of protein or peptide
nanoparticles may present a challenge in the toxicological
profile of nanoparticles [116]. However, compared to other
materials, proteins and peptides present a better choice for drug
delivery applications. This is provided through the inherent
targeting ability of proteins and peptides. Furthermore, the
ability to functionalize these nanoparticles is considered a major
advantage [10].

The therapeutic potential provided by peptides can offer
advantages as monotherapy. Peptide nanoparticles, in particular,
can overcome cancer resistance to radiotherapy. In this regard, a
transformable peptide was synthesized linking an aggregation-
induced emission moiety (AIE), a PB-sheet-forming peptide
domain, and a HER2 targeting peptide. The sequence was
synthesized so that it can self-assemble in an aqueous solution,
where the AIE and the pB-sheet-forming peptide domain
constitute the hydrophobic core and the HER2 targeting peptide
forms the shell structure of the nanoparticles. Upon IV
administration of the nanoparticles into tumor-bearing mice, the
NPs were found to accumulate in the tumor. More importantly,
the NPs can transform into a fibrillar structure. This structure
can lead to the inhibition of HER2 receptor dimerization, and
hence, its downstream signaling. Interestingly, the expression of

HER?2 in breast cancer confers resistance to radiotherapy [117].
Thereby, the NPs showed an enhanced green fluorescence
around the HER2+ MCF-7/C6 cell line, which displays five-fold
more HER2 expression compared to the parent MCF-7 cells,
conferring resistance to radiotherapy [85].

Genetically engineered peptides were also exploited for drug
delivery and targeting applications. Elastin-like polypeptides in
conjunction with poly (aspartic acid) moieties were produced
secondary to transfection in E.Coli. The fusion protein also
expressed a targeting peptide; iRGD. This fusion protein
possessed the ability to self-assemble into micellar-like
structure, accommodating PTX as a hydrophobic drug. Notably,
integrins are overexpressed on resistant tumors and promote
cancer progression[118]. The enhanced uptake exhibited by
these nanoparticles can pave the way for such nanomedicine-
based strategies to overcome cancer drug resistance by
specifically targeting overexpressed moieties, e.g., integrins
[119].
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