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Abstract.  

This paper aims to present an analytical and approximation method to get the solution of the space-time 

fractional diffusion equation. This suggested method is based on a combination of the double and triple 

Laplace transforms with the Adomain decomposition method. The presented methodology is tested on 

illustrative examples and the results show that it is a simple, efficient, and reliable method. 

Keywords. Double Laplace transform, Triple Laplace transform, Adomain decomposition method, 

fractional diffusion equation, Mittag-Leffler function. 

1 Introduction 

Fractional calculus is a useful mathematical tool to handle applications in the area of science and 

engineering. The inception of the fractional calculus extends to the time integer calculus was known. It 

has become omnipresent in various fields such as bioengineering [1, 2], agriculture [3], viscoelasticity [4], 

filters [5, 6, 7], control theory [8], electronics [9], and circuits [10]. In the latter decades, Fractional Order 

Models FOM attracted the researchers’ attention, because of being accurate and compact compared to 

their equivalent integer-order models [11]. Moreover, the historical dependency is one of the most 

important advantages of FOM which means that the next output of the model depends not only on its 

current state but also on all its previous states. 

Recently, there has been a great interest to apply innovative methods to solve the fractional 

diffusion equations, due to its great importance in modeling turbulent flow, chaotic dynamics of 

the classical fusty system, groundwater contaminant transfer and other applications in physics, 

biology, chemistry and many engineering applications [12]. These methods include but not 

limited to: The variational iteration method (VIM) [13], the Adomian decomposition method 

(ADM) [14-15], Perturbation-iteration algorithm (PIA) [16] and Residual power series method 

(RPSM) [17]. 
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The Laplace transform (LT) is used to solve differential equations. The cardinal idea of the LT is 

that it converts a differential equation into an algebraic equation, which can be solved more 

easily. The double and triple LT are considered as an extensive form of the original version. The 

double Laplace decomposition [18] and triple Laplace Adomain decomposition methods [19] 

have been applied on singular and coupled Burgers’ equations in one and two dimensional 

respectively.  

The organization of this paper is summarized in the following: in section 2, the basic Definitions 

of the fractional derivative operator and the double and triple Laplace transforms. In section 3, 

we solve the fractional diffusion equation in one dimension by double Laplace Adomian 

decomposition method using Caputo's fractional derivative with illustrative examples. The 

solution of the two-dimensional fractional diffusion equation has been obtained using the triple 

Laplace Adomian decomposition method in section 4. Finally, the conclusion is given in section 

5. 

 

2 Mathematical Definitions 
 

2. 1 Definition   The Caputo time-fractional derivative operator of order 𝛼 >  0 is defined by 

[20, 21] 

𝐷𝑡
𝛼𝑣(𝑟, 𝑡) =

{
 

 
𝜕𝑚𝑣(𝑟, 𝑡)

𝜕𝑡𝑚
,                                                                𝑓𝑜𝑟 𝑚 = 𝛼 ∈ 𝑁;

1

Γ(𝑚 − 𝛼)
∫ (𝑡 − 𝜏)𝑚−𝛼−1

𝜕𝑚𝑣(𝑟, 𝜏)

𝜕𝜏𝑚

𝑡

0

𝑑𝜏,          𝑚 − 1 < 𝛼 < 𝑚.  

 

2. 2 Definition  The double and triple Laplace transform are defined as [18, 22] 

𝐿𝑥𝐿𝑡[𝑣(𝑥, 𝑡)] = ∬ 𝑒−𝑝𝑥−𝑠𝑡𝑣(𝑥, 𝑡)
∞

0
𝑑𝑡𝑑𝑥,    

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣 (𝑥, 𝑦, 𝑡)]  = ∭ 𝑒−𝑝𝑥−𝑞𝑦−𝑠𝑡𝑣(𝑥, 𝑦, 𝑡)𝑑𝑡𝑑𝑦𝑑𝑥
∞

0
, 

where 𝑥, 𝑦, 𝑡 >  0, and the variables 𝑝, 𝑞  and  𝑠 are Laplace variables. 

The double and triple Laplace transform for the first and second order partial derivatives are 

given by 

𝐿𝑥𝐿𝑡[
𝜕𝑣(𝑥,𝑡)

𝜕𝑥
] = 𝑝𝑉(𝑝, 𝑠) − 𝑉(0, 𝑠), 

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣𝑥  (𝑥, 𝑦, 𝑡)] = 𝑝𝑉(𝑝, 𝑞, 𝑠) − 𝑉(0, 𝑞, 𝑠), 

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣𝑡  (𝑥, 𝑦, 𝑡)] = 𝑠𝑉(𝑝, 𝑞, 𝑠) − 𝑉(𝑝, 𝑞, 0), 
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𝐿𝑥𝐿𝑡[
𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2
] = 𝑝2𝑉(𝑝, 𝑠) − 𝑝 𝑉(0, 𝑠) −

𝜕𝑉(0,𝑠)

𝜕𝑥
, 

𝐿𝑥𝐿𝑡[
𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2
] = 𝑠2𝑉(𝑝, 𝑠) − 𝑠 𝑉(𝑝, 0) −

𝜕𝑉(𝑝,0)

𝜕𝑡
, 

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣𝑥𝑥  (𝑥, 𝑦, 𝑡)] = 𝑝
2𝑉(𝑝, 𝑞, 𝑠) − 𝑝 𝑉(0, 𝑞, , 𝑠) −

𝜕𝑉(0,𝑞,𝑠)

𝜕𝑥
, 

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣𝑦𝑦  (𝑥, 𝑦, 𝑡)] = 𝑞
2𝑉(𝑝, 𝑞, 𝑠) − 𝑞 𝑉(𝑝, 0, , 𝑠) −

𝜕𝑉(𝑝,0,𝑠)

𝜕𝑦
, 

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣𝑡𝑡  (𝑥, 𝑦, 𝑡)] = 𝑠2𝑉(𝑝, 𝑞, 𝑠) − 𝑠 𝑉(𝑝, 𝑞, ,0) −
𝜕𝑉(𝑝,𝑞,0)

𝜕𝑡
. 

The inverse double and triple Laplace transform are defined in [23, 24] as follows 

𝐿𝑝
−1𝐿𝑠

−1[𝑣(𝑝, 𝑠)] = 𝑣(𝑥, 𝑡) =
1

2𝜋𝑖
∫ 𝑒𝑝𝑥𝑑𝑝

1

2𝜋𝑖
∫ 𝑒𝑠𝑡𝑑𝑠
𝑑+𝑖∞

𝑑−𝑖∞

𝑐+𝑖∞

𝑐−𝑖∞
, 

𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1[𝑣(𝑝, 𝑠)] = 𝑣(𝑥, 𝑡) =

1

2𝜋𝑖
∫ 𝑒𝑝𝑥𝑑𝑝

𝑒+𝑖∞

𝑒−𝑖∞

1

2𝜋𝑖
∫ 𝑒𝑞𝑦𝑑𝑞

1

2𝜋𝑖
∫ 𝑒𝑠𝑡𝑑𝑠

𝑑+𝑖∞

𝑑−𝑖∞

𝑐+𝑖∞

𝑐−𝑖∞

. 

 

2. 1 Theorem ([25]): Let  𝛼, 𝛽, 𝛾 >  0,   𝑛 –  1 <  𝛼 ≤  𝑛,𝑚 –  1 <  𝛽 ≤  𝑚,   𝑟 –  1 <  𝛾 ≤

 𝑟, and 𝑛,𝑚, 𝑝 ∈  𝑁, so that  𝑓 ∈  𝐶1(𝑅+  × 𝑅+  × 𝑅+), 𝑙 =  𝑚𝑎𝑥{𝑛,𝑚, 𝑝}, 𝑓(1)  ∈

𝐿1[(0, 𝑎) × (0, 𝑏) × (0, 𝑐)]   for any  𝑎, 𝑏, 𝑐 >  0,   |𝑣 (𝑥, 𝑦, 𝑡)| ≤  𝑤𝑒𝑥𝜏1+𝑦𝜏2+𝑡𝜏3 ,   𝑥 >  𝑎 >

 0, 𝑦 >  𝑏 >  0,  and 𝑡 >  𝑐 >  0. 

 

Then the double (𝐷𝑡
𝛼[𝑣(𝑥, 𝑡)] and 𝐷𝑥

𝜁[𝑣(𝑥, 𝑡)] ) and the triple ( 𝐷𝑡
𝛼[𝑣(𝑥, 𝑦, 𝑡)],  𝐷𝑦

𝛽[𝑣(𝑥, 𝑦, 𝑡)] 

and 𝐷𝑥
𝜁[𝑣(𝑥, 𝑦, 𝑡)] ) Laplace transform of Caputo’s fractional derivatives are given by 

𝐿𝑥𝐿𝑡𝐷𝑡
𝛼[𝑣(𝑥, 𝑡)] = 𝑠𝛼𝑉(𝑝, 𝑠)− ∑ 𝑠𝛼−1−𝑖𝐿𝑥

𝑛−1
𝑖=0 𝐷𝑡

𝑖 [𝑣(𝑥,0)],            𝑛 − 1 < 𝛼 < 𝑛                 (1)  

𝐿𝑥𝐿𝑡𝐷𝑥
𝜁[𝑣(𝑥, 𝑡)] = 𝑝𝜁𝑉(𝑝, 𝑠)−∑𝑝𝜁−1−𝑟𝐿𝑡

𝑟−1

𝑘=0

𝐷𝑥
𝜁[𝑣(0, 𝑡)],                 𝑟 − 1 < 𝜁 < 𝑟                  (2) 

𝐿𝑥𝐿𝑦𝐿𝑡𝐷𝑡
𝛼[𝑣(𝑥,𝑦, 𝑡)] = 𝑠𝛼𝑉(𝑝, 𝑞, 𝑠)− ∑ 𝑠𝛼−1−𝑖𝐿𝑥𝐿𝑦

𝑛−1
𝑖=0 𝐷𝑡

𝑖 [𝑣(𝑥, 𝑦, 0)], 𝑛 − 1 < 𝛼 < 𝑛         (3)  

𝐿𝑥𝐿𝑦𝐿𝑡𝐷𝑦
𝛽[𝑣(𝑥,𝑦, 𝑡)] = 𝑞𝛽𝑉(𝑝, 𝑞, 𝑠)− ∑ 𝑞𝛽−1−𝑗𝐿𝑥𝐿𝑡

𝑚−1

𝑗=0

𝐷𝑦
𝑗 [𝑣(𝑥, 0, 𝑡)],𝑚 − 1 < 𝛽 < 𝑚        (4) 

𝐿𝑥𝐿𝑦𝐿𝑡𝐷𝑥
𝜁[𝑣(𝑥, 𝑦, 𝑡)] = 𝑝𝜁𝑉(𝑝, 𝑞, 𝑠)−∑𝑝𝜁−1−𝑟𝐿𝑦𝐿𝑡

𝑟−1

𝑘=0

𝐷𝑥
𝑘[𝑣(0, 𝑦, 𝑡)],     𝑟 − 1 < 𝜁 < 𝑟          (5) 

 

2. 3 Definition The definition of Mittag-Leffler function is 

𝐸∝(𝑘) = ∑
𝑘𝑖

Г(𝛼𝑖+1)
,           𝑘 ∈ 𝐶, 𝑅𝑒(𝛼) > 0∞

𝑖=0 , 



  
 
 

49 
 

 

3 One dimensional fractional diffusion equation 

In this section, double Laplace decomposition method has been used to obtain an approximated 

analytical solution of one dimensional fractional diffusion equation of order 𝛼 with appropriate 

initial conditions.  

 

3. 1 The proposed scheme  

Consider the fractional diffusion equation in one dimension as 

𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
=
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝐹(𝑥)𝑣(𝑥, 𝑡)),    0 < 𝛼 ≤ 1,    𝑡 > 0,      𝑥 > 0                     (6) 

With the initial condition  

𝑣(𝑥, 0) = 𝑓(𝑥)                                                                                                                                 (7) 

where  
∂α

∂tα
(. )   is the Caputo derivative of order  𝛼 , 𝑣(𝑥, 𝑡)  represents the probability density 

function of finding a particle at 𝑥 in the time 𝑡. 

In order to obtain the solution of Eq. (6), the modified double Laplace decomposition method is 

used as follows: 

The double Laplace transform for Eq. (6) is 

𝑠𝛼𝐿𝑥𝐿𝑡[𝑣(𝑥, 𝑡)]− 𝑠𝛼−1𝑉(𝑝, 0) = 𝐿𝑥𝐿𝑡 (
𝜕2𝑣

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝐹(𝑥)𝑣(𝑥, 𝑡))                                            (8) 

Applying the differentiation property of the Laplace transform, we get 

𝐿𝑥𝐿𝑡[𝑣(𝑥, 𝑡)] =
𝑓(𝑥)

𝑠
+
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝐹(𝑥)𝑣(𝑥, 𝑡))                                               (9) 

By implementing of double inverse Laplace transformation to Eq. (9) we obtain  

𝑣(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1
(
𝑓(𝑥)

𝑠
)+ 𝐿𝑝

−1𝐿𝑠
−1
(
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝐹(𝑥)𝑣(𝑥, 𝑡)))                       (10) 

The infinite series solution of Laplace Adomian decomposition function 𝑣(𝑥, 𝑡) is  

𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡)                                                                                                                  (11)

∞

𝑛=0

 

Substituting by Eq. (11) into Eq. (10), we get 



  
 
 

50 
 

∑𝑣𝑛(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1 (
𝑓(𝑥)

𝑠
) + 𝐿𝑝

−1𝐿𝑠
−1 (

1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣𝑛
𝜕𝑥2

+
𝜕

𝜕𝑥
(𝐹(𝑥)𝑣𝑛(𝑥, 𝑡)))       (12)

∞

𝑛=0

 

Using Laplace Adomian decomposition method, we get: 

𝑣0(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1 (
𝑓(𝑥)

𝑠
)                                                                                                          (13) 

and the rest of components  𝑣𝑛+1, for 𝑛 ≥  0, are given by 

𝑣𝑛+1(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1 (
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣𝑛(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝐹(𝑥)𝑣𝑛(𝑥, 𝑡)))  ,         𝑛 ≥  0         (14) 

3. 2 Illustrative examples 

In this section, three examples are given to illustrate the applicability of the presented method 

and all of them are performed on the computer by using the Mathematica 9 program. 

  

Example 1. Taking 𝐹(𝑥) = 𝑥 in Eq. (6) and Substituting with  𝑓(𝑥) = 1 in Eq. (7) we get 

         
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
=
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑥𝑣(𝑥, 𝑡)),    0 < 𝛼 ≤ 1,    𝑡 > 0,     𝑥 > 0,                              (15) 

           𝑣0(𝑥, 0) = 1.                                                                                                                                    (16) 

As reported by the above steps in section 3.1, we have 

          𝑣𝑛+1(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1(
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣𝑛(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑥𝑣𝑛(𝑥, 𝑡)))                                          (17) 

The zeroth component 𝑣0 should contain initial condition and the source term, so we choose  

𝑣0 = 1 and the other components 𝑣𝑛+1, 𝑛 ≥ 0 is given by the relation (17), by setting 𝑛 = 0 in 

Eq. (17), we have 

𝑣1(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1 (
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣0(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑥𝑣0(𝑥, 𝑡))),                                            (18) 

𝑣1(𝑥, 𝑡) =
𝑡𝛼

Г[1 + 𝛼]
,                                                                                                                    (19) 

Similarly, when 𝑛 = 1, we get 

𝑣2(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1(
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣1(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑥𝑣1(𝑥, 𝑡))),                                            (20) 
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𝑣2(𝑥, 𝑡) =
𝑡2𝛼

Г[1+2𝛼]
,                                                                                                                        (21)  

Hence, the solution of Eq. (15) is given by 

𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡) = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3+⋯                                                                    (22)

∞

𝑛=0

 

𝑣(𝑥, 𝑡) = ∑
(𝑡𝛼)𝑘

Г[1 + 𝛼 𝑘]
= 𝐸𝛼(𝑡

𝛼)                                                                                        (23)

∞

𝑘=0

 

where 𝐸𝛼(t) = ∑
𝑡𝑘

Г[1+𝛼 𝑘]
,   𝛼 > 0∞

𝑘=0  is the Mittag-Leffler function in one parameter. 

We get the same results as in [26].  In the above example, Eq. (23) has been used to draw the 

three dimensional figure for the approximate solution 𝑣(𝑥, 𝑡) with respect to 𝑥 and 𝑡 for 𝛼 =  1, 

0.9, 0.8 and 0.7 as shown in figure 1. Figure 2 evinces the comparison of the absolute error 

between the exact and approximate solution for example 1 for 𝛼 =  1 at 𝑡 =  0.5. it is clear that 

the approximate solution has good agreement with the given exact solution. 

 

Fig.1. Plot of the field variable 𝑣(𝑥, 𝑡) versus x and t for different values of 𝛼. 
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Fig.2. Absolute error graph for numerical and exact solutions versus 𝑡 for 𝛼 = 1 and 𝑡 =  0.5. 

Example 2. Taking 𝐹(𝑥) = 𝑥 in Eq. (6) and Substituting with  𝑓(𝑥) = 𝑥 in Eq. (7) we get 

𝜕𝛼𝑣

𝜕𝑡𝛼
=
𝜕2𝑣

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑥𝑣(𝑥, 𝑡)),    0 < 𝛼 ≤ 1,    𝑡 > 0,      𝑥 > 0,                                        (24) 

𝑣0(𝑥, 0) = 𝑥.                                                                                                                              (25) 

As stated by the above steps in section 3.1, we have 

𝑣𝑛+1(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1 (
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣𝑛
𝜕𝑥2

+
𝜕

𝜕𝑥
(𝑥𝑣𝑛(𝑥, 𝑡)))                                            (26) 

We set  𝑣0 = 𝑥  which contains the initial condition and the other components 𝑣𝑛+1, 𝑛 ≥ 0 are 

given by the relation (15), setting 𝑛 = 0 in Eq. (15), we get 

𝑣1(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1(
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣0
𝜕𝑥2

+
𝜕

𝜕𝑥
(𝑥𝑣0(𝑥, 𝑡))) ,                                                (27) 

𝑣1(𝑥, 𝑡) =
2 𝑥𝑡𝛼

Г[1 + 𝛼]
.                                                                                                                 (28) 

Similarly, when 𝑛 = 1, we obtain 

𝑣2(𝑥, 𝑡) = 𝐿𝑝
−1𝐿𝑠

−1(
1

𝑠𝛼
𝐿𝑥𝐿𝑡 (

𝜕2𝑣1
𝜕𝑥2

+
𝜕

𝜕𝑥
(𝑥𝑣1(𝑥, 𝑡))),                                                 (29) 

 𝑣2(𝑥, 𝑡) =
4 𝑥 𝑡2𝛼

Г[1+2𝛼]
.                                                                                                                     (30)  
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Hence, the solution of Eq. (24) is given by 

𝑣(𝑥, 𝑡) = ∑𝑣𝑛(𝑥, 𝑡) = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3+⋯                                                                 (31)

∞

𝑛=0

 

𝑣(𝑥, 𝑡) = ∑
(2𝑡𝛼)𝑘

Г[1 + 𝛼 𝑘]
= 𝑥 𝐸𝛼(𝑡

𝛼)                                                                                   (32)

∞

𝑘=0

 

The same solution has been obtained by Cetinkaya [26]. Also this solution is in complete 

agreement with [13, 14] for 𝛼 =  1/2. Figure 3 shows that the approximate solution of example 

2 for 𝛼 =  1, 0.9, 0.8 and 0.7.  To show the accuracy of the proposed method solution, the 

absolute error for 𝛼 =  1 at 𝑡 =  0.5 is given in figure 4. 

 

 

Fig.3. Plot of the field variable 𝑣(𝑥, 𝑡) versus x and t for different values of 𝛼. 

 

 

 

Fig.4. Absolute error graph for numerical and exact solutions versus 𝑡 for 𝛼 = 1 and 𝑡 =  0.5. 
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Example 3. Taking 𝐹(𝑥) = 𝑒−𝑥 in Eq. (6) and Substituting with 𝑓(𝑥) = 𝑒𝑥 in Eq. (7) we get 

              
𝜕𝛼𝑣(𝑥, 𝑡)

𝜕𝑡𝛼
=
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
+
𝜕

𝜕𝑥
(𝑒−𝑥𝑣(𝑥, 𝑡)),    0 < 𝛼 ≤ 1,    𝑡 > 0,      𝑥 > 0,                   (33) 

      𝑣0(𝑥, 0) = 𝑒𝑥. 

In the same manner, we obtain that 

            𝑣(𝑥, 𝑡) = 𝑒𝑥𝐸𝛼(𝑡
𝛼)                                                                                                                      (34) 

Our results are the same obtained in [26]. The approximate solution of the above example for 

various values of 𝛼  and the absolute error when  𝛼 =  1 at 𝑡 =  0.5  are shown in figs.5 and 6, 

receptively.  

 

 

Fig.5. Plots of the field variable 𝑣(𝑥, 𝑡) versus x and t for different values of 𝛼. 

 

 

 

Fig.6. Absolute error graph for numerical and exact solutions versus 𝑡 for 𝛼 = 1 and 𝑡 =  0.5. 
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4 Two dimensional fractional diffusion equation 

In this section, the triple Laplace Adomain decomposition method is applied to fractional two-

dimensional space-time diffusion equation equation.  

 

4. 1 The proposed scheme  

Consider a time-fractional two-dimensional PDE as 

𝜕𝛼𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑡𝛼
+
𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑦3
= 0,          0 < 𝛼 ≤ 1,   𝑦 ≥ 0,    𝑥 ≤ 1        (35) 

With the given initial condition 

𝑣(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦)                                                                                                                  (36) 

The exact solution for this fractional PDE is 𝑣(𝑥, 𝑦, 𝑡)  =  𝑐𝑜𝑠(𝑦 +  2𝑡 +  𝑥) for 𝛼 =  1. Hence; 

at  𝑡 =  0 , the initial condition can be written by  𝑣0(𝑥, 𝑦)  =  𝑐𝑜𝑠(𝑦 +  𝑥) . This equation 

represents two-dimensional diffusion in porous media. To find the solution of Eq. (35), we apply 

triple Laplace Adomian decomposition method on Eq. (35) as follows: 

 

Taking the triple Laplace transform for Eq. (35), we obtain 

𝑠𝛼𝐿𝑥𝐿𝑦𝐿𝑡[𝑣(𝑥, 𝑦, 𝑡)]− 𝑠𝛼−1𝑉(𝑥, 𝑦, 0) = −𝐿𝑥𝐿𝑦𝐿𝑡 (
𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑦3
)                      (37) 

 Applying the differentiation property of the Laplace transform, we have 

𝐿𝑥𝐿𝑦𝐿𝑡[𝑣(𝑥, 𝑦, 𝑡)] =
𝑣0(𝑥, 𝑦)

𝑠
−
1

𝑠𝛼
𝐿𝑥𝐿𝑦𝐿𝑡 (

𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑦3
)                                 (38) 

The triple inverse Laplace transform is implemented on Eq. (38) to obtain 

            𝑣(𝑥, 𝑦, 𝑡) = 𝐿𝑝
−1𝐿𝑞

−1𝐿
𝑠

−1
(
𝑣0(𝑥, 𝑦)

𝑠
)

+ 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1
(
1

𝑠𝛼
𝐿𝑥𝐿𝑦𝐿𝑡 (

𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣(𝑥, 𝑦, 𝑡)

𝜕𝑦3
))                                           (39) 

The infinite series solution of Laplace Adomian decomposition function 𝑣(𝑥, 𝑡) is  

𝑣(𝑥, 𝑦, 𝑡) = ∑𝑣𝑛(𝑥, 𝑦, 𝑡),                                                                                                         (40)

∞

𝑛=0

 

By substituting Eq. (40) into Eq. (39), we get 
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∑𝑣𝑛(𝑥, 𝑦, 𝑡) = 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1 (

𝑣0(𝑥, 𝑦)

𝑠
)

∞

𝑛=0

= + 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1 (

1

𝑠𝛼
𝐿𝑥𝐿𝑦𝐿𝑡 (

𝜕3𝑣𝑛(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣𝑛(𝑥, 𝑦, 𝑡)

𝜕𝑦3
))                (41)  

Using Laplace Adomian decomposition method, we get: 

𝑣0(𝑥, 𝑦, 𝑡) = 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1 (

𝐹1(𝑝, 𝑞)

𝑠
),                                                                                       (42) 

and the rest of components  𝑣𝑛+1, for 𝑛 ≥  0, are given by 

𝑣𝑛+1(𝑥, 𝑦, 𝑡) = 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1 (

1

𝑠𝛼
𝐿𝑥𝐿𝑦𝐿𝑡 (

𝜕3𝑣𝑛(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣𝑛(𝑥, 𝑦, 𝑡)

𝜕𝑦3
))                        (43) 

4. 2 Illustrative example 

Example 4. Taking 𝑣0(𝑥, 𝑦, 0) = 𝑐𝑜𝑠(𝑦 +  𝑥) which contains initial condition and the source 

term.  

By applying the above steps, we obtain when 𝑛 = 0 in Eq. (43),   

       𝑣1(𝑥, 𝑦, 𝑡) = 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1 (

1

𝑠𝛼
𝐿𝑥𝐿𝑥𝐿𝑡 (

𝜕3𝑣0(𝑥,𝑦,𝑡)

𝜕𝑥3
+
𝜕3𝑣0(𝑥,𝑦,𝑡)

𝜕𝑦3
)),                                       (44) 

             𝑣1(𝑥, 𝑦, 𝑡) = −
ⅇ−ⅈ𝑦𝑡𝛼(ⅈCos[𝑥] − ⅈⅇ2ⅈ𝑦Cos[𝑥] + Sⅈn[𝑥] + ⅇ2ⅈ𝑦Sⅈn[𝑥])

Γ[1 + 𝛼]
.                         (45) 

Similarly, when 𝑛 = 1, we can determine 

𝑣2(𝑥, 𝑦, 𝑡) = 𝐿𝑝
−1𝐿𝑞

−1𝐿𝑠
−1 (

1

𝑠𝛼
𝐿𝑥𝐿𝑥𝐿𝑡 (

𝜕3𝑣1(𝑥, 𝑦, 𝑡)

𝜕𝑥3
+
𝜕3𝑣1(𝑥, 𝑦, 𝑡)

𝜕𝑦3
)) ,                             (46) 

𝑣2(𝑥, 𝑦, 𝑡) = −
2𝑒−𝑖𝑥−𝑖𝑦(1+𝑒2𝑖𝑥+2𝑖𝑦)𝑡2𝛼

Γ[1+2𝛼]
.                                                                                     (47)  

Hence, the solution of Eq. (35) is given by 

𝑣(𝑥, 𝑦, 𝑡) = ∑𝑣𝑛(𝑥, 𝑦, 𝑡) = 𝑣0 + 𝑣1 + 𝑣2 + 𝑣3+⋯                                                             (48)

∞

𝑛=0

 

Hence, we get the solution in series form as 

𝑣(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠(𝑦 +  𝑥)+ 
−2𝑒−𝑖𝑥−𝑖𝑦(1+𝑒2𝑖𝑥+2𝑖𝑦)𝑡2𝛼

Γ[1+2𝛼]
+
−4𝑖𝑒−𝑖𝑥−𝑖𝑦(−1+𝑒2𝑖𝑥+2𝑖𝑦)𝑡3𝛼

Γ[1+3𝛼]
+⋯     (49) 

The approximate series solution in Eq. (49) converges rapidly to exact solution after few 

approximate terms. For 𝛼 =  1, above series solution can be written in closed form as 

           𝑣(𝑥, 𝑦, 𝑡) =  𝑐𝑜𝑠(2𝑡)𝑐𝑜𝑠(𝑦 +  𝑥) −  𝑠𝑖𝑛(2𝑡)𝑠𝑖𝑛(𝑦 +  𝑥) =  𝑐𝑜𝑠(𝑦 +  𝑥 +  2𝑡)        (50) 
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Our results are the same obtained in [16].  According to the above equations, in figure 7 the 

approximated solution has been plotted for 𝛼 =  1, 0.9, 0.8 and 0.7. Figures 8 and 9 show the 

absolute error for  𝛼 =  1 at 𝑡 =  0.5  in three dimensional and two dimensional when = 0.5 , 

respectively. 

 

Fig.7. Plots of the field variable 𝑣(𝑥, 𝑦, 𝑡) versus 𝑦 and 𝑡 at 𝑥 =  0.5 for different values of 𝛼. 

 

Fig.8. Absolute error graph for numerical and exact solutions versus x and y for 𝛼 =1 and t = 0.5. 
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Fig.9. Absolute error graph for numerical and exact solutions versus t for 𝛼 =1 and x, y = 0.5. 

 

Conclusion 

In this paper, we exhibit the applicability of double and triple Transform with the Adomain 

decomposition method to solve one and two-dimensional fractional diffusion equations 

respectively with different initial conditions using Caputo's fractional derivative. The procedure 

of calculation shows that the presented method converges rapidly to the exact solution and can 

be counted as the competitive method. The illustrative examples demonstrate the reliability and 

efficiency of the present technique. This method can be applied to other fractional order partial 

differential equations.  
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