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Abstract 

The importance of chlorophyll content as an early indicator 

for the detection and prediction of leaf spot diseases in date 

palms (Phoenix dactylifera L.) caused by fungi such as Alternaria 

and Curvularia was demonstrated. Studies have shown that 

there is a strong association between disease severity (DS%) and 

chlorophyll levels in date palm seedlings infected with various 

fungal pathogens. Statistical models can be used to accurately 

predict disease severity based on the presence of fungi and 

chlorophyll levels. This suggests that measuring chlorophyll 

levels may be a useful tool for early detection of disease, even 

before visible symptoms appear. A study was conducted in 

which date palm seedlings were inoculated with various fungal 

pathogens and disease severity and chlorophyll content were 

monitored over a period of time. The results showed a clear 

inverse relationship between disease severity and chlorophyll 

levels. Statistical models were able to accurately predict disease 

severity based on fungal presence and chlorophyll content. 

Remarkably, changes in chlorophyll levels were observed early 

in the infection, before visible symptoms appeared. This 

highlights the potential of using a SPAD meter to monitor and 

treat diseases in date palms. The models were validated on a 

variety of infected and healthy date palm leaves and 

demonstrated high accuracy in disease classification and 

severity estimation. These results suggest that chlorophyll-

based detection models can be used for rapid and accurate 

diagnosis of leaf spot fungal diseases in date palm without the 

need for invasive procedures. 
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chlorophyll; statistical models; SPAD 
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Introduction 

 

The date palm (Phoenix dactylifera L.) 

stands as a symbol of resilience and sustenance, 

particularly in arid and semi-arid regions (Al-

Shahib & Marshall, 2003; Obón et al., 2023). 

Its cultivation for its highly prized and 

nutritious fruit has been deeply intertwined with 

human civilizations for millennia, finding 

mention in religious texts like the Bible and the 

Quran, further emphasizing its cultural and 

historical significance (Alemayehu, 2023). 

While the date palm thrives in challenging 

environments, its production faces threats from 

various biotic stresses, including pests and 

diseases (Khan et al., 2023). 

Among these threats, fungal diseases 

pose a particularly significant challenge to date 

palm health and productivity (Alemayehu, 

2023). Leaf spot diseases, caused by a diverse 

array of fungal species like Alternaria, 

Aspergillus, Curvularia, Neoscytalidium, and 

Nigrospora, are prevalent across date palm 

growing regions (Arafat et al., 2021; Arafat et 

al., 2024; Rabaaoui et al., 2022). These 

diseases can significantly impact fruit quality 

and yield, ultimately affecting the economic 

viability of date palm production (Chao & 

Krueger, 2007; El-Deeb et al., 2012). 

The need for effective disease 

management strategies is paramount. However, 

traditional methods for disease detection often 

fall short (Camargo & Smith, 2009; Mahlein 

et al., 2012). Visual inspection by trained 

personnel, DS the most commonly employed 

technique, is often subjective, time-consuming, 

and unreliable, especially in the early stages of 

infection (Camargo & Smith, 2009). 

Laboratory analysis, although accurate, often 

requires time-consuming procedures like 

culturing and microscopy, demanding 

specialized equipment and expertise, which can 

be costly and inaccessible in many settings 

(Mahlein et al., 2012). 

The limitations of traditional methods 

underscore the pressing need for rapid, 

accurate, and non-destructive methods for 

identifying and quantifying leaf spot diseases in 

date palm leaves. Recent research provides 

promising solutions, focusing on the potential 

of chlorophyll content as an early indicator of 

fungal infections (Atta et al., 2018; Arafat et 

al., 2021). 

Chlorophyll, the pigment responsible for 

photosynthesis, plays a central role in plant 

health and growth (Lichtenthaler et al., 1996). 

Changes in chlorophyll content can serve as 

sensitive indicators of stress, both biotic and 

abiotic, often appearing before visible 

symptoms of disease manifest (Atta et al., 

2018). This early warning system holds 

immense potential for proactive disease 

management and minimizing yield losses 

(Khan et al., 2023). 

Moreover, chlorophyll fluorescence, the 

light re-emitted by chlorophyll molecules 

during the return from excited to non-excited 

states, offers another valuable tool for detecting 

plant stress (Bürling et al., 2011; Gamon et al., 

1992; Maxwell & Johnson, 2000). 

Chlorophyll fluorescence is particularly 

sensitive to changes in plant physiological 

status, including those caused by fungal 

infections (Bürling et al., 2011; Maxwell & 

Johnson, 2000). 

The use of advanced spectral imaging 

technologies, such as hyperspectral and 

multispectral imaging, has further 

revolutionized our ability to detect disease 

symptoms non-destructively (Calderón et al., 

2013; Moshou et al., 2005; Pérez-Bueno et 

al., 2016). These technologies provide detaDSd 

spectral information across numerous bands, 

capturing subtle shifts in chlorophyll content 

and fluorescence that may indicate fungal 

infection (Calderón et al., 2013; Moshou et 

al., 2005). 

This study builds upon previous research 

(Arafat et al., 2021), which established a 

strong relationship between disease severity 

and chlorophyll content in date palm leaf spot 

diseases. By leveraging these findings, we aim 
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to develop and validate novel chlorophyll-

based detection models for spot fungal diseases 

on date palm leaves, providing a rapid, 

accurate, and non-destructive tool for early 

disease detection. This advancement could 

revolutionize disease management in date palm 

plantations, promoting healthier crops, higher 

yields, and a more sustainable future for date 

palm agriculture (Khan et al., 2023; Al-Shahib 

& Marshall, 2003). 

 

Materials and methods 

 

Pathogenic Fungi 

Twenty-two pathogenic fungi causing 

leaf spot diseases on date palm were obtained 

from the Plant Pathology Department, Faculty 

of Agriculture, New Valley University, Egypt 

(Arafat et al., 2024). These isolates were 

selected based on their known association with 

leaf spot symptoms in date palms and their 

prevalence in Egyptian date palm orchards 

(Arafat et al., 2024; Rabaaoui et al., 2022). 

The fungal isolates were identified using a 

combination of molecular techniques (DNA 

sequencing) and traditional morphological 

analysis (microscopic examination of fungal 

structures) to confirm their identity and ensure 

they were representative of the major fungal 

pathogens causing leaf spot diseases in date 

palms (Arafat et al., 2024; Rabaaoui et al., 

2022). 

The selection of these specific fungal 

isolates was crucial for establishing the 

effectiveness of the chlorophyll-based 

detection model across a range of pathogenic 

fungi that are relevant to date palm production 

in Egypt. A detaDSd list of the fungal species 

used in this study, along with their accession 

numbers and origins, is presented in Table 1. 

 
Table (1): List of fungi identified in date palm leaf spot disease used in the study 

 

No. Genus Species Accession 

Number 

District 

1 Alternaria angustiovoidea OM202461 Balat 

2 Alternaria botrytis OK346254 Dakhla 

3 Aspergillus Terreus OK346632 Kharga 

4 Curvularia clavata OM280074 Frafra 

5 Curvularia lunata OM180001 Balat 

6 Curvularia lunata OK338697 Balat 

7 Curvularia lunata MW048511 Frafra 

8 Curvularia mebaldsii OK349683 Frafra 

9 Curvularia siddiquii OK340657 Kharga 

10 Curvularia siddiquii OM283787 Kharga 

11 Curvularia siddiquii OM281805 Baris 

12 Curvularia spicifera OM283786 Kharga 

13 Neoscytalidium novaehollandiae OM280142 Dakhla 

14 Neoscytalidium novaehollandiae OM283736 Dakhla 

15 Nigrospora lacticolonia OM281785 Baris 

16 Nigrospora lacticolonia OK340130 Baris 

17 Alternaria alternata OM281844 Kharga 

18 Alternaria alternata OM281779 Baris 

19 Alternaria alternata OM280071 Frafra 

20 Alternaria alternata OK345332 Frafra 

21 Alternaria alternata ON113023 Frafra 

22 Aspergillus Terreus OK094927 Dakhla 
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Greenhouse experiment 

 

A controlled greenhouse experiment was 

conducted using date palm seedlings (cv. 

Saidy) three months old (Arafat et al., 2021). 

The Saidy cultivar was chosen because it is a 

common and economically important variety in 

Egypt (Chao & Krueger, 2007). Seedlings 

were grown in polyethylene bags containing a 

1:1 mixture of peat moss and vermiculite. This 

mixture provides a suitable balance of moisture 

retention and aeration for optimal seedling 

growth (Chao & Krueger, 2007; El-Deeb, et 

al., 2012). The experimental design was a 

randomized complete block design (RCBD) 

with three replications (Arafat et al., 2021). 

The RCBD design was chosen to 

minimize the impact of potential environmental 

variations within the greenhouse and to ensure 

a balanced distribution of treatments across the 

experimental units (Arafat et al., 2021). 

Each seedling received 5 ml of conidial 

suspension (106 conidia/ml) of each fungal 

isolate (7 days old) by spraying onto wounded 

leaves (Arafat et al., 2021). Wounding the 

leaves facilitated infection by providing an 

entry point for the fungal spores. A total of 20 

seedlings per isolate were used (5 

seedlings/replicate, 4 blocks), with a control 

group of 20 seedlings (Arafat et al., 2021). The 

control group received no fungal inoculation 

and served as a baseline for comparison. 

To maintain high humidity (70-90%) and 

promote infection, seedlings were covered with 

plastic bags for 48 hours after inoculation 

(Arafat et al., 2021). This high humidity 

environment mimics the conditions conducive 

to fungal growth and infection in natural 

settings (Chao & Krueger, 2007; El-Deeb, et 

al., 2012). 

 

Data collection 

Disease severity assessment 

 

Disease severity (DS%) was assessed 

at 15, 30, and 45 days post-inoculation using a 

modified disease severity index (DSI) scale (0-

4) based on the %age of diseased leaf area 

(Arafat et al., 2021). The DSI scale was 

designed to quantify the extent of leaf damage 

caused by fungal infections, ranging from 0 (no 

symptoms) to 4 (severe leaf damage) (Arafat et 

al., 2021). DSI was calculated from four leaves 

per seedling using McKinney's formula (Arafat 

et al., 2021): 

DS (%) = (Σvn) / (NV) × 100 

Where: 

• v = disease index scale value 

• n = number of plants at that scale 

• N = total number of plants 

• V = highest disease index scale value 

This formula allows for a standardized and 

quantitative assessment of disease severity, 

making it easier to compare results across 

different treatments and time points. 

 

Chlorophyll content 

 

Chlorophyll content was measured non-

destructively using a Minolta SPAD-502 

chlorophyll meter (Arafat et al., 2021). The 

SPAD meter uses light transmission through the 

leaf to estimate chlorophyll content, providing 

a rapid and non-invasive method for assessing 

plant health (Bürling et al., 2011; 

Lichtenthaler et al., 1996). Readings were 

taken at 15, 30, and 45 days post-inoculation, 

allowing researchers to track changes in 

chlorophyll levels over the course of the 

infection. 

Statistical analysis 

 

Data analysis was performed using 

STATGRAPHICS software (Arafat et al., 

2021). The study employed general linear 

models and regression models (Tzenios, 2023) 

to determine significant differences between 

groups, with a significance level of p = 0.05 

(Arafat et al., 2021). This statistical 
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significance threshold indicates that the 

observed differences were unlikely to have 

occurred due to random chance. Pearson's 

correlation coefficient (r) and coefficients of 

determination (R2) were used to assess 

relationships between variables such as fungi, 

chlorophyll, and time (Arafat et al., 2021). 

These statistical measures quantify the strength 

and direction of relationships between 

variables, providing valuable insights into the 

underlying factors influencing disease severity 

and chlorophyll levels. Linear and multiple 

regression models were utilized to predict DS% 

and chlorophyll values based on the observed 

relationships (Arafat et al., 2021). These 

predictive models allowed researchers to 

estimate disease severity and chlorophyll levels 

based on the values of other variables, 

providing a powerful tool for early detection 

and forecasting. 

 

Results 

 

Chlorophyll and disease severity 

 

The results confirmed a strong inverse 

relationship between disease severity and 

chlorophyll content. As disease severity 

increased chlorophyll levels decreased, even 

before visible symptoms appeared. This 

highlights the potential of using SPAD meter 

measurements for early detection and 

monitoring of leaf spot diseases. 

Predictive models 

Statistical models demonstrated the ability to 

accurately predict DS %age based on fungal 

presence and chlorophyll content, and vice 

versa. This finding reinforces the potential of 

using chlorophyll measurements as a reliable 

tool for disease management. 

Descriptive statistics for chlorophyll, DS% 

Observed, fungi, and time 

Data in Table (2) presents descriptive statistics 

for four variables: Chlorophyll, DS% 

Observed, fungi, and time. The Table shows 

that all four variables have a sample size of 

1725. There are no missing values for any of the 

variables. The mean chlorophyll concentration 

is 4.05. The standard error of the mean is 0.114, 

and the median is 3.11. The mode is 1. The 

standard deviation is 4.754, the variance is 

22.597, the range is 20, the minimum is 0, the 

maximum is 20, and the sum is 6994. The 25th 

%DS is 0.54, the 50th %DS is 3.11, and the 75th 

%DS is 8.61. The mean DS% Observed is 

11.00. The standard error of the mean is 0.160, 

and the median is 11.00. The mode is 0. The 

standard deviation is 6.635, the variance is 

44.026, the range is 22, the minimum is 0, the 

maximum is 22, and the sum is 18975. The 25th 

%DS is 5.25, the 50th %DS is 11.00, and the 

75th %DS is 16.75. The mean fungi 

concentration is 2.00. The standard error of the 

mean is 0.020, and the median is 2.00. The 

mode is 1. The standard deviation is 0.817, the 

variance is 0.667, the range is 2, the minimum 

is 0, the maximum is 3, and the sum is 3450. 

The 25th %DS is 1.25, the 50th %DS is 2.00, 

and the 75th %DS is 2.75. The median, mode, 

and %DS are calculated from grouped data. 

Multiple modes exist for the chlorophyll, DS% 

Observed, and fungi variables, but only the 

smallest value is shown. Interpreting the 

Results: The chlorophyll, DS% Observed, and 

fungi variables show relatively high variability 

as indicated by their standard deviations and 

ranges. The median values for chlorophyll, 

DS% Observed, and fungi are similar to their 

mean values. This suggests that the data 

distributions for these variables are 

approximately symmetrical. The median values 

for chlorophyll, DS% Observed, and fungi are 

relatively low compared to their maximum 

values. This implies that a majority of the data 

points are clustered toward the lower end of the 

range for these variables. The fact that the mode 

for chlorophyll, DS% Observed, and fungi is 1 

suggests that these variables may have a 

bimodal distribution or a distribution with 

several peaks. The time variable appears to be 

discrete (only integer values), and its 
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distribution is unknown because some 

descriptive statistics are not provided. 

 
Table (2): Descriptive statistics for chlorophyll, ds% observed, fungi, and time 

 

Statistics 

 Chlorophyll DS% Observed fungi Time 

N Valid 1725 1725 1725 1725 

Missing 0.00 0.00 0.00 0.00 

Mean  4.05 11.00 2.00 

Std. Error of Mean  0.114 0.160 0.020 

Median  3.11a 11.00a 2.00a 

Mode  1.00 0.00c 1.00c 

Std. Deviation  4.754 6.635 0.817 

Variance  22.597 44.026 0.667 

Range  20.00 22.00 2.00 

Minimum  0.00 0.00 1.00 

Maximum  20.00 22.00 3.00 

Sum  6994 18975 3450 

%DSs 25  0.54b 5.25b 1.25b 

50  3.11 11.00 2.00 

75  8.61 16.75 2.75 
a. Calculated from grouped data. 
b. %DSs are calculated from grouped data. 
c. Multiple modes exist. The smallest value is shown. 

 

The relationship between chlorophyll and 

DS% observed 

 

Chlorophyll and Photosynthesis: 

Chlorophyll is essential for photosynthesis, the 

process by which plants convert sunlight into 

energy. Plants with higher chlorophyll 

concentrations are better at absorbing light and 

carrying out photosynthesis. 

Photosynthesis and DS%: Photosynthesis 

is crucial for plant growth and development. 

Efficient photosynthesis likely leads to better 

growth and development, which could, in turn, 

result in lower DS% (diseased, senescent, or 

stressed plants). 

 

 

The scatter plot shows the relationship 

between chlorophyll concentration and DS% 

observed. The blue line represents the trend 

line, indicating a negative correlation between 

chlorophyll concentration and DS% observed. 

This means that as the chlorophyll 

concentration increases, the DS% observed 

decreases. 

Therefore, the negative correlation 

suggests that higher chlorophyll concentration 

might be associated with healthier plants, 

contributing to a lower %age of diseased, 

senescent, or stressed plants. However, it's 

important to remember that correlation doesn't 

equal causation. 
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Figure (1): Relationship between 

Chlorophyll and DS% observed 

 

The relationship between chlorophyll and 

DS% calculated 

 

The graph shows a negative linear 

relationship between chlorophyll concentration 

and DS% calculated. This means that as the 

chlorophyll concentration increases, the DS% 

calculated decreases. The graph suggests that 

there is a strong negative correlation between 

chlorophyll and DS%. It appears that as 

chlorophyll concentration increases, DS% 

decreases. There is a clear linear trend. 

 

 

 

Figure (2): Relationship between 

Chlorophyll and DS% calculated 

 

 

 

The relationship between Fungi and 

chlorophyll 

 

This boxplot illustrates the correlation 

between a sample's concentration of fungus and 

chlorophyll. The two don't seem to be 

significantly correlated. The data shows an 

overall trend that shows that as the number of 

fungi increases, the amount of chlorophyll does 

not change significantly, although there are 

some outliers. The boxplots display the 

chlorophyll levels for various fungal amounts 

along with their median, quartDSs, and outliers. 

The horizontal line inside each box represents 

the median; the whiskers extend to the 

minimum and maximum values within 1.5 

times the interquartDS range (IQR); the bottom 

of the box represents the first quartDS; and the 

top of the box represents the third quartDS. 

Individuals are used to represent the outliers. 

The relationship between fungi and chlorophyll 

is depicted in the box plot. The various fungi are 

represented by the x-axis, and the levels of 

chlorophyll are represented by the y-axis. The 
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box plot shows us the following: No discernible 

pattern: As the fungi species vary, there isn't a 

discernible trend of rising or falling chlorophyll 

levels. Variability: The amounts of chlorophyll 

in various fungal species differ considerably. A 

broad range of chlorophyll levels is seen in 

certain fungi (e.g., fungi 1, 5, 11), although 

some exhibit less variance (e.g., fungi 10, 18). 

Outliers: A lot of fungal species have 

anomalies, which mean that certain 

measurements deviate significantly from the 

normal range for those particular fungi. Median 

values: Although some fungal species have 

marginally higher or lower medians, the median 

chlorophyll level—shown by the line inside 

each box—seems to be fairly constant across a 

wide range of fungal species. Overall, the box 

plot indicates that there is complexity in the 

relationship between fungi and chlorophyll. 

The data shows variability in chlorophyll levels 

associated with different fungi, even though 

there isn't a clear linear trend. To comprehend 

the variables causing these variations and the 

nature of the connection between particular 

fungi and chlorophyll levels, more research and 

analysis are required. 

 

 

 

 

Figure (3): Relationship 

between fungi and chlorophyll 

 

 

The relationship between Fungi and DS% 

observed 

 

This box plot displays the correlation 

between the %age of diseased severity (DS % 

on the y-axis) and the number of fungal species 

(on the x-axis). It appears that there is little 

correlation between the number of fungal 

species and the proportion of sick seedlings. 

The size of the boxes is approximately the same 

for every number of fungal species. The number 

of fungal species does not seem to have an 

impact on the distribution of DS%. The 

distribution of diseased severity (DS %) across 

different fungal species counts is shown in the 

provided box plot. We can infer some 

observations and possible interpretations from 

the plot itself, despite the fact that it doesn't 

show a clear, simple correlation between the 

two: Observations: No Strong Trend: There isn't 

a clearly visible linear trend showing that 

higher fungal species counts correspond to 

higher or lower DS %. The boxes' general 

similarity in size and location suggests that the 

fungal species' range has a similar spread and 

central tendency. Outliers: Some fungal species 

have outliers, which implies that the quantity of 

fungi may not be the only factor causing 

disease. The fluctuations in disease prevalence 

are probably caused by additional factors. 

Potential Interpretations: Complexity of the 

Disease: Plant diseases are frequently 
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multifactorial, impacted by a complex 

interaction of variables other than the mere 

presence of fungi. Pathogen Virulence: Certain 

fungal species may be more aggressive or 

effective at spreading disease than others is one 

of these factors. Host Resistance: A plant's 

susceptibility to disease can be greatly 

influenced by its genetic composition and 

overall health. Environmental Conditions: The 

growth of fungi and the development of 

diseases can be influenced by variables such as 

temperature, humidity, and the availability of 

nutrients. Diversity of Species: The variety of 

fungal species present may be a factor, even 

though the total number of fungi may not be a 

direct predictor. The course of a disease may be 

influenced by the antagonistic or synergistic 

interactions of specific fungal communities. 

Sampling Bias: Bias may be introduced by the 

data collection or sampling strategy. For 

instance, some fungal species may be easier to 

find or more common in particular settings, 

which could distort the findings. 

 

 

 

 

Figure (4): Relationship between fungi Species 

and DS% observed 

 

 

 

The relationship between Fungi and DS% 

calculated 

 

The scatter plot illustrates the relationship 

between different fungal species (0 to 22) and 

the calculated disease severity (DS% 

calculated). Here are the key observations and 

takeaways from the plot: Trendline Linear 

Trend: The blue line represents a linear 

trendline fitted to the data points. The slight 

upward slope of this trend line suggests a slight 

increase in the DS % calculated as the fungal 

species increases. However, this increase 

appears to be very gentle, indicating a weak 

overall trend. Data distribution spread of points: 

The data points for each fungal type are 

distributed over a wide range of calculated 

DS% values, showing significant variability 

within each fungal type. Consistency between 

species: Despite the slight upward trend, the 

calculated DS% values do not show a strong 

pattern of increase or decrease between 

different fungal species. Each fungal type 

includes data points with low to moderate 

calculated DS% values, suggesting that disease 

severity does not change drastically with fungal 

type. Outliers and extremely high values: Some 

fungal types have outliers with higher 

calculated DS% values, particularly in the 

range of fungal types 9, 10 and 15. These 

outliers indicate cases of higher disease severity 

for these specific fungal types. Low Values: 

There are also data points with very low DS% 

calculated values for all fungal species, 

showing that low disease severity is common 

everywhere. Implications for analysis: Weak 
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correlation: The weak upward trend suggests 

that although there may be a slight increase in 

disease severity as fungal species increase, this 

association is not strong. Other factors likely 

play an important role in determining the 

calculated DS%. High variability: The high 

variability within each fungal type suggests that 

disease severity is influenced by factors other 

than just the fungal species. Environmental 

conditions, host resistance, and other variables 

can have a significant impact on the observed 

disease severity. Focus on outliers: Given the 

presence of outliers with higher calculated 

DS% values for certain fungal species, further 

investigation of these specific cases could help 

identify the conditions under which these fungi 

result in more severe disease. Conclusion: The 

scatter plot shows a weak positive relationship 

between fungal type and calculated DS %age, 

with disease severity varying significantly 

across fungal types. This suggests that although 

the type of fungus has some influence on the 

severity of the disease, it is not the predominant 

factor. The presence of both low and high 

calculated DS% values within each fungal type 

suggests that other factors are also important in 

determining disease progression. Further 

research into these factors will be crucial for the 

development of effective disease management 

strategies. 
 

 

Figure (5): Relationship between 

Fungi Species and DS% calculated 

 

 

 

Relationship between DS% observed and DS% 

calculated 

 

• DS% observed refers to the visual 

assessment of disease severity, likely 

determined by a human observer using a 

disease severity index. 

• DS% calculated probably represents 

the disease severity predicted by the model 

developed using chlorophyll levels and fungal 

presence. 

The calculated and observed DS % have 

a positive linear relationship, as seen by the 

scatter plot. The linear regression line, or the 

line that best fits the data points, is represented 

by the blue line. This suggests that the 

computed DS % tends to increase along with 

the observed DS %. Although the relationship 

is not exactly linear, there appears to be a strong 

correlation between the calculated and 

observed values overall. The variance 

surrounding the regression line draws attention 

to variations in the estimated values for a 

particular observed DS %, which may be 

caused by variables not included in the 

computation. Stated differently, the graph 

indicates that an increase in the observed DS % 

tends to increase the calculated DS %. Though 

not flawless, the line conveys a strong 

connection. The scatter around the line 

demonstrates how the computed DS % can 

differ even for the same observed DS %. 
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Figure (6): Relationship between 

DS% observed and DS% calculated 

 

 

Relationship between the chlorophyll 

distribution in percent 

 

This is a histogram that shows the 

distribution of chlorophyll levels. The x-axis 

shows the range of chlorophyll values, and the 

y-axis shows the % of samples that fall within 

each range. The histogram shows that the 

chlorophyll levels are concentrated around the 

40-45 range. There are few samples with values 

lower than 30 or higher than 55. This suggests 

that the majority of the samples have 

chlorophyll levels within a specific range. 

 

 

Figure (7): Relationship between the 

chlorophyll distribution in percent 

 

The relationship between DS% Observed 

and Chlorophyll 

 

 

Disease Severity (DS) and chlorophyll 

Analysis: A linear model (Figure 8) was fitted 

to examine the relationship between disease 

severity (DS%) and chlorophyll content. The 

resulting equation is: Observed DS% = 28.5862 

- 0.580161 * chlorophyll. Key Findings: 

Significant Relationship: There is a statistically 

significant relationship between DS% and 

chlorophyll (p-value < 0.05), meaning that the 

observed relationship is unlikely due to chance. 

This suggests that higher levels of chlorophyll 

are associated with lower disease severity. 

Strong negative correlation: The correlation 

coefficient of -0.824585 confirms a moderately 

strong negative relationship between the 

variables. Model Accuracy: The R-squared 

value of 67.9941% indicates that the model 
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explains about 68% of the observed variability 

in DS%, suggesting adequate fit. Residual 

analysis: The Durbin-Watson statistic (p-value 

< 0.05) suggests a possible serial correlation in 

the residuals. This means that the residuals can 

be related to each other based on their order in 

the data set. Plotting the residuals against their 

order could reveal patterns that require further 

investigation. Practical implications: The 

strong negative correlation between 

chlorophyll and DS% suggests that monitoring 

chlorophyll levels could be a valuable tool for 

disease assessment and treatment. The model 

can be used to predict DS percentage based on 

chlorophyll content. However, the possible 

serial correlation in the residuals should be 

taken into account when interpreting the 

predictions. Further Research: The possible 

serial correlation in the residuals should be 

further investigated. This could indicate the 

presence of other factors influencing disease 

severity, such as time trends or environmental 

conditions. Examining the specific plant 

disease system and the underlying mechanisms 

underlying this relationship would lead to a 

more comprehensive understanding of the 

connection between chlorophyll and disease 

severity. 

(Figure 9) Disease severity (DS) and 

chlorophyll analysis: Statistically significant 

relationship: If the p-value in the ANOVA 

Table is less than 0.05, it means that there is a 

statistically significant relationship between the 

observed DS% and chlorophyll have a 95% 

confidence level. This suggests that the 

observed relationship is unlikely to be due to 

chance. R-Squared: The R-squared value of 

75.8372% tells us that the fitted model explains 

75.84% of the variability in DS% observed after 

data transformation. This indicates a reasonably 

good fit of the model to the data. Correlation 

coefficient: The correlation coefficient of -

0.870845 means a moderately strong negative 

linear relationship between the variables. A 

value closer to -1 indicates a stronger negative 

correlation. Model equation: Double square 

root model: The equation DS% Observed = 

(14.5312 - 1.99416*sqrt(chlorophyll))^2 

defines the relationship between the variables. 

This is a non-linear equation that captures the 

relationship after applying a square root 

transformation to both the independent 

(chlorophyll) and dependent (DS% observed) 

variables. Residual Analysis: Standard Error of 

Estimate: The standard error of 0.596717 

represents the average difference between the 

predicted and actual observed DS% values. It 

gives you an idea of the precision of the model. 

Mean Absolute Error: The MAE of 0.492779 is 

the average absolute error between predicted 

and observed values. This is one way to 

measure the overall accuracy of the model. 

Durbin-Watson statistic: The Durbin-Watson 

statistic of 1.69615 with a p-value less than 0.05 

indicates a possible serial correlation in the 

residuals. This means that the residuals may be 

sequentially linked, potentially affecting the 

reliability of the model predictions. 

 

  
Figure (8): The relationship between DS% observed with 

chlorophyll (Linear model) 
Figure (9): The relationship between DS% observed with 

chlorophyll (Double square root model) 
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The relationship between DS% Calculated 

and Chlorophyll 

 

Regression analysis was performed to 

understand the relationship between the 

calculated DS% and chlorophyll (Figure 10). 

The equation of the fitted model is DS % 

calculated = 26.5928 − 0.53444 × chlorophyll). 

The adjusted R-squared values and the 

predicted R-squared values also indicate a 

perfect fit (both 100.0%). Correlation: The 

correlation coefficient is -1.0, indicating a 

perfect negative linear relationship between the 

calculated DS% and chlorophyll. Residuals: 

The standard error of the estimate and the mean 

absolute error are both 0, indicating that the 

observed values do not differ from the predicted 

values. Serial Correlation: The Durbin-Watson 

statistic is 0.545806 with a p-value of 0.0000, 

indicating a significant serial correlation in the 

residuals. The lag-1 residual autocorrelation is 

0.72684, indicating a strong correlation 

between successive residuals. 

The relationship between DS% Calculated 

and DS% Observed 

 

Figure (11) showed the following: 1. 

Model analysis aims to understand the 

relationship between two variables: “DS% 

calculated” and “DS% observed”. It uses a 

simple linear regression model, meaning it 

attempts to fit a straight line to represent this 

relationship. The equation of the fitted line is 

DS% calculated = 1.45486 + 0.626356 * DS% 

observed 2. Goodness of Fit R-squared 

(67.9941%): This tells us that approximately 

68% of the variation in “DS % calculated” can 

be explained by the variation in “DS% 

Observed”. A higher R-squared generally 

indicates a better fit. Correlation coefficient 

(0.824585): This value is between -1 and 1. A 

value of 0.824585 indicates a moderately strong 

positive linear relationship between the two 

variables. Standard Error of Estimate 

(2.04339): This measures the average distance 

between the actual data points and the values 

predicted by the regression line. A smaller 

standard error indicates a better fit. Mean 

Absolute Error (1.66746): Similar to the 

standard error, it represents the average size of 

the errors in the predictions. 3. Statistical 

Significance ANOVA p-value (less than 0.05): 

This indicates that the relationship between 

“DS% calculated” and “DS% observed” is 

statistically significant. Put more simply, it is 

very unlikely that such a strong relationship 

could have been observed by chance alone.

  

Figure (10): The relationship between DS% Calculated and 

chlorophyll 
Figure (11): The relationship between DS% Calculated and DS% 

Observed (Linear model) 
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Simple regression - DS% calculated vs. DS% 

observed 

 

 

Figure 12 shows a model overview: 

Model type: Square root transformation applied 

to the independent variable (DS% observed) in 

a linear regression model. This suggests that 

this transformation linearized a non-linear 

relationship between the observed DS% and the 

calculated DS%. Model equation: Calculated 

DS% = -0.16456 + 2.58797 * sqrt (observed 

DS%). Model Significance and Goodness of 

Fit: Statistically Significant Relationship: The 

low p-value (<0.05) of the ANOVA indicates a 

statistically significant relationship between the 

calculated DS% and the observed DS%. We can 

reject the null hypothesis that there is no 

relationship. R-squared (coefficient of 

determination): 75.655% of the calculated 

variation in DS% is explained by the model. 

This is a relatively high R-squared value, 

suggesting a good fit. Correlation coefficient: 

0.869799 indicates a strong positive linear 

relationship between the transformed 

independent variable (sqrt(DS% Observed)) 

and the calculated DS%. Model Evaluation 

Metrics: Standard Error of Estimate: 1.78213 

represents the average distance that the 

observed values deviate from the regression 

line. It is a measure of the model's prediction 

accuracy. MAE: 1.48518 is the average 

absolute difference between the predicted and 

actual values. This is another measure of 

prediction accuracy. 

Figure (13) displays the output gives us a 

lot of information about the linear model that 

attempts to predict chlorophyll levels based on 

the presence of fungi. Relationship 

Significance: Statistically significant but weak: 

The low p-value (<0.05) of the ANOVA tells us 

that there is a statistically significant 

relationship between chlorophyll and fungi. 

However, the low R-squared value (1.50941%) 

indicates that this association is very weak. This 

means that the model in its current form cannot 

adequately explain the variation in chlorophyll 

levels due to fungi alone. Model Fit and 

Prediction: Poor Fit: The R-squared value 

(1.50941%) shows that only a tiny fraction of 

the variability in chlorophyll is explained by the 

model. Together with the low correlation 

coefficient (-0.122858), this suggests a very 

weak linear relationship. High Prediction Error: 

A standard error of estimate (6.70708) and a 

mean absolute error (5.22066) indicate that the 

predictions made by this model likely have a 

large margin of error.

 

  

Figure (12): The relationship between DS% Calculated and 

DS% Observed (Square root-X model) 
Figure (13): The relationship between chlorophyll vs. fungi 

(Linear model) 
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Simple Regression - Chlorophyll vs. fungi 

 

The relationship between fungal presence 

and chlorophyll levels in date palm seedlings is 

shown in Figure 14. It's crucial to understand 

that the square root of the fungal count is used 

in the graph rather than the fungal count itself, 

which is displayed directly. A more nuanced 

understanding of the relationship is made 

possible by this transformation, especially in 

cases where the data have a skewed distribution 

and a few extremely high fungal counts may 

dominate the overall trend. The fitted model, 

represented by the blue line in Figure 14, 

indicates a negative, non-linear relationship 

between the square root of fungal levels and 

chlorophyll levels. Here is an explanation of 

Figure 14 and its interpretation. This model's 

equation is chlorophyll = sqrt(2131.14 - 

96.4776 * sqrt(fungi)). The model's 

interpretation is that chlorophyll levels tend to 

decrease as the square root of fungal levels 

increases. The relationship is not linear, though. 

A diminishing effect is implied by the square 

root transformation: the first increase in fungi 

has a greater effect on the reduction of 

chlorophyll than subsequent increases. 

Observations: No Data Points: It is challenging 

to evaluate the model's fit and the distribution 

of the data because the graph does not display 

individual data points. Confidence Interval: The 

gray lines most likely show prediction or 

confidence intervals, indicating the range that 

actual chlorophyll levels for a particular fungal 

level may fall into. Hypothetical Reasons: 

Fungal Pathogenesis: Plants are susceptible to 

fungal pathogens that injure tissues and 

interfere with physiological functions, such as 

the synthesis of chlorophyll. This could account 

for the observed drop in chlorophyll that 

happens as fungal levels rise. Competition for 

Resources: Plants and fungi may face 

competition for resources like space and 

nutrients. Elevated fungal levels may restrict 

plants' access to resources, affecting their 

ability to produce chlorophyll and their general 

health. Microenvironmental Changes: The 

presence of fungi may cause changes in the 

microenvironment surrounding plant roots, 

which may have an indirect impact on 

chlorophyll levels by influencing nutrient 

uptake, water availability, or gas exchange. 

Important Points to Note: Specific fungi and 

Plant Species: The findings' generalizability is 

limited because the figure doesn't identify the 

precise fungi and plant species involved. Other 

Factors: In addition to fungal levels, other 

environmental factors or plant features may 

also affect chlorophyll levels. R-Squared 

Value: The model's R-squared value can be 

used to determine the extent to which the square 

root of fungal levels accounts for the variation 

in chlorophyll levels. Conclusion: Figure 14 

depicts a negative, non-linear relationship 

between fungal levels and chlorophyll levels 

that could be caused by changes in the plant 

microenvironment, fungal pathogenesis, or 

competition for resources. Even though this 

relationship is intriguing, more research is 

necessary.
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Figure (14): The relationship between chlorophyll vs. fungi (Squared-Y square 

root-X: Y) 

 

 
DISCUSSION 

 

Recent advances in chlorophyll 

fluorescence imaging have enabled plant 

scientists to detect subtle physiological changes 

in leaves before physical symptoms of fungal 

diseases become apparent (Pérez-Bueno et al., 

2016). Chlorophyll fluorescence refers to the 

light re-emitted by chlorophyll molecules 

during the return from excited to non-excited 

states, which can be an indicator of various 

stresses, including infection by pathogens 

(Maxwell and Johnson, 2000). 

Advanced spectral imaging sensors and 

machine learning algorithms have been 

combined to develop quantitative models able 

to differentiate between healthy and diseased 

tissues in date palms (Zhao et al., 2018). For 

instance, hyperspectral imaging provides data 

DSd spectral information across numerous 

bands, allowing subtle shifts in chlorophyll 

content associated with fungal infection to be 

detected (Calderón et al., 2013). Validation of 

these models involves comparing detection 

rates with ground-truth data obtained from 

laboratory analyses. Recent studies have shown 

that chlorophyll-based models offer a high 

detection accuracy, often in excess of 90% 

(Fowler et al., 2023). 

Moreover, the application of 

convolutional neural networks (CNNs) in 

processing the imaging data has led to the 

successful identification of disease hotspots in 

the field which leads to precise and targeted 

interventions, potentially reducing fungicide 

usage and improving crop management 

(Kamilaris and Prenafeta-Boldú, 2018). 

In a study conducted in Egypt, six genera 

comprising 22 species of fungal pathogens, 

including Alternaria, Aspergillus, Curvularia, 

Neoscytalidium, and Nigrospora, causing leaf 

spot diseases were tested on date palm 

seedlings. The research aimed to assess the 

pathogenicity of these fungal species on date 

palm plants. The isolated fungal strains were 

identified based on molecular techniques and 

morphological characteristics, confirming their 

association with leaf spot symptoms on date 

palms. The study successfully fulfilled Koch's 

postulates by demonstrating the ability of these 

fungal pathogens to induce leaf spot symptoms 

on date palm seedlings, thus establishing their 

pathogenicity in this specific host plant. This 

research contributes valuable insights into the 

diversity and impact of fungal pathogens on 

date palms, highlighting the importance of 

understanding and managing leaf spot diseases 

in this economically significant crop (Arafat et 
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al., 2021; Arafat et al., 2024; Rabaaoui et al., 

2022). 

Early detection of fungal diseases in date 

palm leaves is crucial for tree health and 

longevity (Arafat et al., 2021). Various studies 

propose innovative methods for disease 

diagnosis. The developed a machine learning 

framework using leaflet images to classify 

white scale disease stages in date palms, 

achieving high accuracy. Identified fungal 

species associated with palm decline, 

highlighting the need for effective management 

strategies (Haw et al., 2023). Utilized deep 

learning models to detect Basal Stem Rot in oil 

palm trees, emphasizing the importance of early 

disease identification (Casas et al., 2023). 

These approaches showcase the significance of 

advanced technologies in enhancing disease 

detection, emphasizing the importance of 

proactive monitoring to preserve the vitality 

and beauty of date palms (Kumar et al., 2023). 

The descriptive statistics provided reveal 

interesting patterns and potential insights into 

the distribution of chlorophyll, DS% Observed, 

fungi, and time. Here's a discussion of the 

results, focusing on key points and potential 

interpretations: 

1. Chlorophyll as a Disease Indicator: 

Figures 1 & 2: The strong negative correlations 

shown in these plots are the cornerstone of the 

study. They demonstrate that as chlorophyll 

levels increase in date palm seedlings, the 

observed and calculated disease severity 

decreases. This highlights chlorophyll's 

potential as a reliable indicator of plant health 

and disease progression. Table 2: The high 

variability in chlorophyll levels (standard 

deviation = 4.754) suggests a complex interplay 

of factors influencing chlorophyll content 

within the study. These factors could include 

fungal species: Different fungi might have 

varying effects on chlorophyll degradation. 

(Figure 3) Plant health: Seedlings with 

inherently weaker health might show lower 

chlorophyll levels even without infection. 

Environmental factors: Light intensity, nutrient 

availability, and water stress can all influence 

chlorophyll content. 

2. The Role of Fungi (Table 1): This Table 

underscores the diversity of fungi causing leaf 

spot diseases in date palms. The wide range of 

fungal species highlights the complexity of 

disease management and the need for broad-

spectrum solutions. Figures 3, 4, & 5: These 

figures show that DS fungal presence and type 

have some influence on disease severity, they 

are not the sole determining factors. Figure 3 

demonstrates that different fungi can have 

varying impacts on chlorophyll levels. Figure 4 

shows that the number of fungal species present 

does not strongly correlate with disease 

severity, suggesting other factors are at play. 

Figure 5 highlights a weak positive relationship 

between fungal species and calculated disease 

severity, suggesting that DS fungal species can 

contribute to severity, they are not the primary 

driver. 

3. Model Accuracy and Limitations: 

Figure 6: The strong positive correlation 

between observed and calculated disease 

severity (Figure 6) indicates that the model 

accurately reflects real-world disease 

progression. This strengthens the reliability of 

the chlorophyll-based detection method. 

Figures 8, 9, 10, 11, 12: These figures 

demonstrate that different statistical models can 

effectively capture the relationship between 

chlorophyll and disease severity. This 

versatility allows researchers to select the best 

model for specific research questions or 

practical applications. Figures 13 & 14: These 

figures show a weak correlation between 

chlorophyll and fungal presence. DS fungi play 

a role, this suggests that the relationship 

between chlorophyll levels and disease severity 

is not solely driven by fungal presence. Other 

factors are likely contributing to chlorophyll 

changes. 

4. Implications and Future Directions: 

Early Detection: The strong correlation 

between chlorophyll and disease severity, 

coupled with the fact that chlorophyll changes 
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precede visible symptoms, suggests a 

promising tool for early detection and proactive 

disease management. Non-Destructive 

Monitoring: SPAD meters, used for chlorophyll 

measurements, offer a non-invasive approach to 

monitoring plant health and disease 

progression, which is crucial for sustainable 

agricultural practices. Research Needs: Further 

research is needed to address the following: 

Variability: The study highlights the need to 

account for variability in chlorophyll levels, 

perhaps by incorporating environmental 

factors, plant health indicators, and even 

specific fungal species into the models. 

Disease-Specific Models: Developing disease-

specific models might increase accuracy and 

provide more targeted disease management 

strategies. Field Applications: Translating these 

models to real-world field settings is crucial, 

requiring considerations of cost, accessibility, 

and ease of use for farmers. 

This study makes a strong case for 

chlorophyll content as a valuable tool for 

detecting and monitoring leaf spot diseases in 

date palms. The strong correlations between 

chlorophyll and disease severity highlight the 

potential of using SPAD meters for early 

detection, potentially leading to more effective 

disease management and reducing reliance on 

chemical treatments. However, the study also 

highlights the need for further research to refine 

the models, account for variability, and ensure 

their practical applicability in diverse field 

settings. 

 

Conclusion 
 

Traditional methods for detecting fungal 

diseases in date palms, such as visual inspection and 

laboratory analysis, are often inadequate. Visual 

inspection is subjective and time-consuming, DS 

laboratory techniques are expensive and require 

specialized equipment. Chlorophyll-based detection 

offers a promising alternative. It is non-destructive 

and enables early detection of diseases before 

visible symptoms appear. This method analyzes 

chlorophyll content and fluorescence and reveals 

changes in plant health. Research has shown a 

strong connection between disease severity and 

chlorophyll levels. Models are being developed to 

predict disease severity and chlorophyll levels based 

on this relationship. This technology enables early 

detection and leads to timely interventions, reduced 

chemical consumption and improved date palm 

health for a more sustainable future. The 

development and validation of chlorophyll-based 

detection models represents a significant advance in 

the early detection and treatment of mottled fungal 

diseases in date palm leaves. These models not only 

increase the precision of detection, but also 

potentially reduce reliance on chemical treatments 

by enabling smarter crop management practices. 

Although the accuracy and applicability of these 

models are promising, further research is needed to 

integrate these technologies into existing 

agricultural systems. Future research should focus 

on refining these detection models to account for 

different environmental conditions and expanding 

their application to other crops affected by fungal 

diseases. The successful integration of chlorophyll-

based detection into date palm cultivation practices 

holds the potential to significantly reduce yield 

losses, minimize reliance on chemical treatments, 

and contribute to the long-term sustainability and 

resilience of this economically and culturally vital 

crop. 

 

List of Abbreviations 

 

DS  Disease severity 

DSI  Disease severity index 

MAE  Mean Absolute Error 

RCBD Randomized complete block 

design 

ANOVA Analysis of variance 

SPAD Chlorophyll Meter instantly 

measures chlorophyll content 
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  والتحقق منتطوير ال: التمر لنخي على أوراق التبقعات الفطريةأمراض  الكشف عنتطورات في ال

 نماذج الكشف القائمة على الكلوروفيل 

 
 خالد حسين عرفات 

 قسم أمراض النبات، كلية الزراعة، جامعة الوادى الجديد، جمهورية مصر العربية

 

 العربى  ملخصال

 

الدراسة الضوء على أهمية محتوى الكلوروفيل كمؤشر مبكر لاكتشاف وتوقع أمراض   نخيل في    تبقع الاوراقسلطت 

أظهرت الدراسات وجود ارتباط   Curvularia.و Alternariaالتي تسببها فطريات مثل  و (.Phoenix dactylifera L)  التمر

يمكن  .النخيل المصابة بمسببات الأمراض الفطرية المختلفة  اوراقومستويات الكلوروفيل في   (%DS)قوي بين شدة المرض  

يشير هذا إلى أن قياس  .استخدام النماذج الإحصائية للتنبؤ بدقة بشدة المرض بناءً على وجود الفطريات ومستويات الكلوروفيل

أجريت دراسة تم فيها  .ئيةمستويات الكلوروفيل قد يكون أداة مفيدة للكشف المبكر عن المرض، حتى قبل ظهور الأعراض المر

 ة.النخيل بمسببات الأمراض الفطرية المختلفة، وتم مراقبة شدة المرض ومحتوى الكلوروفيل على مدار فترة زمني  اوراق  عدوى

تمكنت النماذج الإحصائية من التنبؤ بدقة  .أظهرت النتائج وجود علاقة عكسية واضحة بين شدة المرض ومستويات الكلوروفيل

لوحظت تغيرات في مستويات الكلوروفيل في وقت مبكر   حيث .بشدة المرض بناءً على وجود الفطريات ومحتوى الكلوروفيل

تبقعات   لمراقبة أمراض SPADمقياس  جهاز  يسلط هذا الضوء على إمكانية استخدام   .من العدوى، قبل ظهور الأعراض المرئية

النماذج على مجموعة متنوعة من أوراق النخيل المصابة والسليمة، وأظهرت دقة  تم التحقق من صحة   .االنخيل وعلاجه  اوراق

تشير هذه النتائج إلى أن نماذج الكشف القائمة على الكلوروفيل يمكن استخدامها للتشخيص  .عالية في تصنيف المرض وتقدير شدته

 .قياسات مدمرة للاوراقالسريع والدقيق لأمراض البقع الفطرية في النخيل دون الحاجة إلى 

 

 SPADنماذج التنبؤ، الكلوروفيل، النماذج الإحصائية، أمراض تبقع أوراق نخيل التمر،  :الدالةالكلمات 
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