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The present paper considers the case of Constant-Stress Fully Accelerated Life
Testing (CSFALT) when three stress levels are involved under mixture distributions
with type-II censoring. The lifetimes of test are assumed to follow the Generalized
Burr lifetime distribution. Maximum Likelihood (ML) method is used to estimate
the parameters of CSFALT model. Confidence intervals for the model parameters
are constructed. Optimum CSFALT plans, that determine the best choice of the
proportion of test units allocated to each stress, are developed. Such optimum test
plans minimize the Generalized Asymptotic Variance (GAV) of the ML estimators
of the model parameters. For illustration, numerical examples are presented.

1-Introduction:

In many problems of life testing , the lifetime of a product or material
with high reliability requires an unacceptably long period of time to
acquire the test data at the specified use condition. So, life testing at
normal conditions makes the test impracticable. For. this reason,
Accelerated Life Test (ALT) is the suitable and reasonable procedure
to be applied. ALT is used to get quick information on the reliability
of product components and materials.
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In ALT the units are tested under conditions that are more severe than the
normal ones to induce failures of very high reliability systems sooner. The
main reason for accelerated tests is to estimate quickly information
about a device under accelerated conditions and the information obtained
from these tests is extrapolated, through a physically reasonable statistical
model, to obtain information at normal conditions. This model is usually
derived from an analysis of the physical mechanisms of failure of the
device under test. It is assumed that changing the stress from one level
to another affects the value of the parameters only and not the functional
form of the lifetime distribution, this is a major assumption of ALT.

Several models are available in the literature concerning the
relationship between certain parameters of the life time distribution and
the stress levels at which the experiment is conducted. The power rule
model is the most widely used model as an acceleration function.

The current approach to the problem of ALT involves building a
model that consists of:

o A life distribution f(¢,#) that represents the time to failure of an item
at risk where @is a victor of unknown parameters.

e A functional relationship ,f= g(g,g),where ais a vector of -
unknowns and s denotes the vector of stresses. It is assumed that
changing s affects the value of & only and not the functional form of
19).

There are different models showing how the stress s is affecting the

failure distribution. Among these models, the most famous ones are the
inverse power law, the Arrhenius, the Erying relationships and the log
linear relationship.

The Inverse Power Law:

This model is mostly used for flash lamps and simple fatigue
due to mechanical loading. This relation is given by :

9=V/Sp,
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where & is a parameter of life distribution, s is the applied stress,
v is the constant of proportionality and p isthe power of the applied
stress, where vand p are the parameters to be estimated.

Accelerated life testing results are used in the reliability-design
process to assess or demonstrate component and subsystem reliability and
detect failure models. The causes of failure of a product are accelerated by
increasing the applied stress above its usual value, There are two different
methods of accelerating a reliability test: Increasing the use-rate of the
product or increasing the aging-rate of the product (overstress testing).

As Nelson (1990) ) indicates, the stress can be applied in various
ways, commonly used methods are constant stress, step stress and
progressive stress level. These kinds of stresses would induce early
failures of the tested units.

In a constant stress accelerated test, each unit in the experiment is‘?i
run under a prespecified constant stress level, A sample size of # units is*.
divided into & groups, » i j=1,2,.......,k, where p j units are all run under

k
a constant stress ¢; and n=3 p j- It is assumed that
Jj=1

The acceleration model which is a relationship between stress and -
onte or more parameters of the lifetime distribution must be chosen®

Life testing is the case where items taken from a population are put .
to test and their times to failure are noted. The case which implies
observing the lifetime of all the items is called uncensored data, but such
situation rarely happens in reliability testing, Then for the limited time or
budget, the test must be terminated before the failure of all items. In life
testing, the experiment is terminated by two common types of data
censoring .
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The observations of the censored sample occur in an ordered
manner. The most common life test experiments are : Testing is
terminated after a prespecified number of failure » have occurred from all
items of test n, where »<n, in this case the number of failures r is a fixed
constant and time ¢ is the random variable (type II censoring), or testing is
terminated when all the items have failed or at a predetermined time t,
whichever is sooner, in this case the number of failure # is the random
variable and the time ¢ is a fixed constant (type I censoring).

One method of constructing a new distribution is to use the known
parametric form of a distribution and allow one (or more) of the
parameters to vary according to a special probability law. The new
distribution is called a Mixture of distribution. This theory has useful
applications in industrial reliability and medical survivorship analysis.

If f (t\é?)is a probability density function depending on a m

dimensional parameter vector fand if G(@) is called a m-dimensional
cumulative distribution function, then :

f (r) = [f£(46 )g(8) is called a mixture density, and g(§ )
a

is called the mixing distribution @,

Dubey (1968) G) obtained a (generalized burr) distribution by
mixing the Weibull distribution in the form

' 1 —o
fldp.0)= 80771 70" >0, $,8>0,
over the Gamma distribution in the form :
ﬁa a-1_-p6
Ola, B) =———- , 0>0,a B>0
8(6ler, B) I(a) 8% e B

The resulting probability density function (pdf) has the following
form:
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@4 g-1
) = ﬂt—{ﬁ—l, t>0, da,B>0,
(B+#)""

which is a generalized Burr distribution with three parameters (e, 5,4 ).

"

The distribution function is:

Flla,8.9) =I-(]+%)Ta , 1>0.

The reliability function has the following form:

R, 8.9) =(J+%J , 1>0

and the hazard rate function is

a¢t¢'1
g+ ?

h(t)= t>Q.

It was stated by Lewis (1981)(4) that many standard theoretical
distributions, such as exponential, weibull, logistic, normal , and pareto -
are special cases or limiting cases of the Burr system of dlstnbutlons
This can be investigated as follows:

a ¢-1
1- f (t[a, B. ¢) _ - Generalized Burr distribution (a, 8,4).

CB_H " )a+1

If g=1
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which is Pareto distribution (&, 8).

Then f{fe, 8)=

gt g |
2- 2 M =
f(e.5.9) ﬁ+t¢[ﬁ+t¢]

_ap AT
B+t? | B

let 9=£,
p

a
=;ét¢'1 L (1+ 9!¢J9’¢
¢

1 ¢ 4
_.+_.
g a

t
if ¢, — o, itisknownthat e= Jjip (I+l] .

=0
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Then [im f{fe. ﬁ,¢)=-¢9z¢"e"9'¢, which is Weibull distribution
a—w

(¢.6)
I-let g=1

Then f{]6)=6¢%"  is Exponential distribution (8).

The hazard function is considered in the choice of the distribution
for survival or reliability data. The shape of the hazard function reflects
type of risk to which the population under study is exposed as a function
of time.

As Abd EL Wahab (2001)® indicated, the Burr type XII

part!

distribution {Burr (b,1)} where h(t)= = for finite A andif 0 <b
. 1+¢

< 1 the hazard function decreases with increasing t and ultimately
approaches zeéro. For b >1 the hazard function, /ifz), has an inverse u-

shape. The hazard rate initially

. . . * 1
increases , attains a maximum at / =(b—l)A and then decreases to
_ Zero asx —> 0,

" The outline of the paper is as follows. Beside this introductory
section, the paper incloude five section. Section 2 deals with the
derivation of the
maximum likelihood estimators of the Generalized Burr distribution. The
confidence limits of the parameters are presented in section 3. Section 4
studies the optimum constant-stress test plans of the fully accelerated life
testing (FALT). For illustration, simulation studies are given in section 5.
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2-Maximum Likelihood Method :

Maximum Likelihood method has been widely considered as one of the
most reliable ways to estimate the parameters of distribution. The ML
method is commonly used for most kinds of censored data and the
analysis of accelerated life tests.

The methodology is to perform % independent life tests at k
values of stresses c. After observing the failure times at each stress level;
the likelihood of the model parameters is formulated in terms of the data
from all the & trials.

Once the MLE of the model parameters are obtained, the value of
the scale parameter of generalized Burr distribution under usual condition
is observed. The reliability function is estimated at a normal stress level

Cu-

The ML methods are mostly used for most theoretical models and
different types of censored data. MLE have suitable statistical
characteristics. Although the exact sampling distribution of MLE are
sometimes not determined, it is known that under appropriate regularity
conditions, MLE are consistent and asymptotically normally distributed.
Also, MLE have the invariance property. This property is helpful for
estimating model’s parameters and measurements. As an example of such
measurements is the reliability function at a certain mission time.

Unfortunately, the MLE do not always exist in closed form and
therefore, numerical techniques are used to compute estimates. The
Newton —Raphson procedure is regarded as one of the most efficient
numerical techniques so it is widely used.

There is a large amount of literature applying ML on estimation
under Accelerated Life Testing for its massive applications in different

fields. In the case of constant stress, Singpurwalla (1971) ) has obtained
a ML estimator of the mean life time of exponential distribution
considering the inverse power law model.
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A numerical scheme for solving ML equations was given by
McCool (1980} ) assuming that the Weibull scale parameter varies

inversely witha stress variable.

Abdel-Ghaly (1981)(8) has generalized the work of Singpurwalla

(1971)(9) for the case of the Weibull distribution with known shape
parameter.

The MLE of aWeibull regression model under type-I censoring '

were derived by Bugaighis (1990)?). Moreover Bias and mean square
error of the parameters are reported.

In accelerated testing, experiments are usually terminated before
all units fails. Censored data reduce test time and expense. Failure-
censored data (type-II) are usually used in the theoretical literature but
Time-censored data (type-I) are common in practice.

2.1 Maximum Likelihood Estimation with Type-II Censoring:

Let the life time experiment is assumed under k levels of high stresses
Cjirj =12 ,kand assume that o, is the normal use condition such

that ¢, < ¢1<gy<nen <¢y» and there are p junits are put on test at
each o jj=1,2....,k. When a type-II censoring is applied at each stress

level, the experiment terminates once the number of failures ; out of

units jare reached. The lifetime at stress ¢ BRI i=L2,....p It
j=12,...... .k, is considered to have Generalized Burr distribution with the
density function:
#j-1
f(tjjla’ﬂs¢j)_ ¢ a+l’
[ B+t )
y
ty->0,ﬂ,a,¢>0,j=1,2,..,kandi=1, ..... F 2.0



It assumed that the stress ¢ ; affects only on the scale parameter of
the Generalized Burr distribution ¢; through a certain  acceleration

model. The accelerated model is the model relating one parameter to the
stress levels applied to the items being tested. Selection of this model is
the most serious difficulty. This model should be physically reasonable
for the particular item or product being tested and the kind of stress being
applied to accelerated failures.

The inverse power law model suggested by Singpurwall (197 1)(1 1)

will be considered. This model is widely wused for electrical
insulation in voltage-endurance tests, flash lamps and  simple
metal fatigue due to mechanical loading. It assumes the following
relation:

¢ =vs§-J =12,k (2.2)
Where v is the constant of proportionality, p is the power of
applied stress, are the parameters of this model, and

» k .
* . i
s;=& ¢ =1cY pj=p »>0.p>0.
j _ ; J J k
¢ J=1 er
=

" The likelihood function in case of type-II censoring can be written as:

=" ﬁf [l‘ (j)][R(f (r))] o=r)

(n=r)! ;]

Then the likelihood function of the experiment takes the fbllowing
form: ‘
10
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n;!
where u; = z -
nj—rj {

- The MLE of v, p,8,a are obtained by maximizing the logarithm of
the above likelihood function as follows:

k k k k
lnL(v,p,a,/S’]g)z 2hnujtina}ry+mvyr;+p3irins;
=1 =l j=1 j=1
k kTj vsP
+. l(vsf—l)z:lnt ~-(1+a) ZZ [ﬁﬂyf ]
J: = =
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k vst

k k
+a’ln,8|:ZrJ Z(nj )] Z(nj—rj)ln /3+t j . (2.4)
j=l J=1

k
We notice that er Ins; =0,
j=1
k *
where Y rilnc =nilnep+rincy + .. +rplne; .

Jj=1
Then

k ok k
lnL(v,p,a,ﬁ[g)= Zlnuj +!’na2rj‘+lnv2rj
j=1 ]=1 J:l
k ry
+ Z(vsf —I)Zln t
j=1 i=1
vs‘l., k k
In| B+1? +alnﬂ1:2 Z( J)}

j=t Jj=l

7

—(1+a)

.

li=1

J
k v_\'l.’ ’
— . — s J
a%}(n T )ln Yii +trjj. . (2.5)
Then the derivatives of the iogarithm of the likelihood function
with respect to v, p, § and a are given by:

dinlL
ov

<IH
pa
+
™)
™M=

k kol
Z + st St -(1+a)
j=1" j=17 =l :
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—a), (nj —r; )——-—Jr " . (2.6)
j=1 Vs
8InlL k rj k7j vl‘j‘is“;J Int;s? ns
E” =vj§llnsjsfl_1lnt,-j—(I+a)z_: ) ¥ y ; J
= J=li=1 vsj
ﬁ-l-tij
p
2
k \vtr -J’ lnt,.jjsf Ins;
—aZ(nj—rj, . (27)
J=1 v.s'f
,B+trjj
oL 1k ki vs¥ k k
e =Eer— Z In ,B+t1.jf +[Z (njurj)+ Z rilinp
J=1 J=li=1 Jj=l1 Jj=1
k VS;.’ ‘
- - J
jgl (n jTF j)ln[ﬂ'i'trjj] . (2.8)
dinL k 1 al| & k koln;—r;) -
aﬁ =—(1 )ZZ » +E er+Z(nj—rj) —az (J _]p) )
J=li=1 ﬁ-i—tﬁsj J=1 J=1 j=1 tvsj
g B+ rij
2.9
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k k s — s
—% Z(nj—rj)—i-az-(nj—ljz- . (2.11)
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Therefore the MLE may be found by setting (2.6), (2.7), (2.8) and
(2.9) equal to zero. As shown they are nonlinear equations, their solutions
are numerically obtained by using Newton-Raphson method as will be seen
later. They are solved numerically to obtain v, p, 5, .

~ The asymptotic variance-covariance matrix of the estimators
v, p, B, are obtained depending on the inverse fisher information matrix

using the second derivatives of the logarithm of likelihood function where:
8 inL

ov? .
2
v ( )2( )z vs? vs?
J p g F Py d s
L ¢ [ﬁwﬁ S5 lnty ty St Int;
=_-_2'Z’j_(l+a)22 2
v =1 J=li=l w?
,8+ry
2
p 2 P p
v§e, vsls vse,
. ﬂ+r’_jj. (55') )z[lnt,.j j) t,_jj. - sj-’t’_jj. lnt,.j j
-a Z(uj -r;) ' >
J=l vs?
B+t 7
JJJ'
(2.10)
2 ki k k7
0°InL 1 a 1
) =ZZ 2——221‘1'*‘“22 2
op j=li=1 st B° j=1 j=li=1 vsf
B+t ‘ B+t
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7 Vb sy P
) ﬂ”w vlnt,,jj ns; S_ftrjj sjvlnt,.ﬂ+l
—a X 2
j=l st
J
P 2]
V5.
Ins.sPt J
{vhz t"jJ In stj.trjj :l
- =t 1) 2.13)
VS.';-,
ﬂ+tw.
>
".
J ry
L _j=10 KL 1 k ] 1
= - Y+ Z(n--—r-) -
B+yy ﬂ”rjj
(2.14)
w? o]
lenL irzjzsfty_l lnt,-j f:(nj—rj)sj trjj lnt,.J
dadv j=li=1 vsf Jj=1 vsf
B+ ﬁ+rrjj
(2.15)
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s P

8% inL k1T vt o lntysflns f(’h —FJ)VI‘ J Int,, i Jphzs
ﬁ‘*‘trj ﬂ+trjj
(2.16)
VSB VSJR
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= +
opov =1i=l 2 a% 2
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By g+t |
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The asymptotic Fisher-Information matrix can be written as follows:

(2mL 2L 2L &L
a2  ovep ovoa  ovdp

?mL 82inL L L

pdv  gp>  Opda  Opop
1= P : (2.20)
L *mL il L

dadv  Oadp 9o’  Oadp

2l il Ll 3’ L
| opov  opop  0Pa  pp?

The MLE ¥, p,a and [i have an asymptotic variance-covariance
matrix defined by inverting the above information matrix.

Practically, it is difficult to use results obtained at accelerated
conditions to make prediction about the product performance over time
at the use or design conditions. When making prediction from an ALT,
one must make strong assumptions about the adequacy of the ALT
process to describe the use process. Selection of the accelerated model is
the most important difficulty. This model relates one or more
parameter(s) to the stress levels that are to be applied to the testing
items, it should be physically suitable for the item or product
being tested and the type of stress being applied to accelerate

failures ('Z).

The inverse power law model, which is the most commonly used in
practice, is considered.

To predict the value of the scale parameter ¢, , under stress C,, ,
the invariance property of MLE is used. The MLE of the scale
parameter of Generalized Burr distribution, ¢, can be derived by using

19
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the following equation:

#, =VsP, Q. 21)
where
Sy =c*/cu .

Furthermore, the MLE of the reliability function under usual
conditions at a mission times (to)’

NG

¢
R,(t)= 1+% . : (2.22)

In the section 5, the scale parameter and the reliability function at
different mission times (to) are predicted under design stress v, =0.5.

3-The Confidence Limits of MLEs:

The maximum likelihood method provides a single point estimate for a
population value. A confidence interval indicates the uncertainty in an
estimate calculated from sample data, it encloses the population value
with a specified hlgh probability. Confidence intervals indicates how
pre01se or imprecise estimates are where they reflect the random scatter
in the data. The length of such an interval indicates if that corresponding
estimates is accurate enough for practical purposes. Confidence intervals
are generally wider than inexperienced data analysts expect; so
confidence intervals help one avoid thinking that estlmates are closer

to the true value than they really are (13),

20
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To define a confidence interval for a population value @

SUPPOSE (1 = a;*(yl, ............ ,yn) and (.= a;**(yl, ............ ,yn) are
functions of the sample data y proeseeenen Yo such that:

pw(d)*s @< w**)=7 s

where the interval la)*,a)**J ts called a two sided /00y % confidence
interval for @ , where g,and g« are the random lower and upper
confidence limits that enclose @ with probability 7 .

For large sample size, the maximum likelihood estimates under
appropriate regularity conditions, are consistent and asymptotically
normally distributed. Therefore, the two-sided approximate 100y %
confidence limits for the maximum likelihood estimate & of a
population value @ can be obtained by :

A+

e

Szilgy, . (3.1)

100(1-y)

|: ]th
where z is the 2 standard normal percentile. Therefore,

the two-sided approximate /{00y % confidence limits for v,p,, ﬂ
" will be respectively, as follows:

L,=9-z0(%) . U,=P+z0(P)
Ly=b-z0(8) ., U,=pb+z0(p) (3.2)
La=0"z—zc>'(") , Ua=o“:+zo*(")
Lﬂ=3—za(n) , Uﬂ—ﬂ+zo(A)
2]
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4-Optimum Constant-stress Test Plans:

Most of the test plans are equally-spaced test stresses i.e. the same
numbers of test units are allocated to each level of stress. Such type of
test plans are usually inefficient for estimating the mean life at design
stress. ' :

The optimum test plan for products having a Generalized Burr
lifetime distribution is derived in which the choice of the aliocation to
each stress will be investigated such that the GAV of the MLE of the
model parameters at use stress is minimized.

Generalized Asymptotic Variance of the Model Parameters: (an
optimality criterion)

The GAV of the MLE of the model parameters is the reciprocal of the
determinant of the Fisher information matrix I (Bai, et al,

1593) (4), That is:

cav (s, p,a,B)=|i" @)

Thus, minimization of the GAV is equivalent to maximization of
the determinant of /. The Newton-Raphson method is applied to
determine numerically the best choice of the sub sample-proportion
allocated to each level of stress which minimizes the GAV as defined
previously. Accordingly, the corresponding optimal numbers of items
allocated to each level of stress can be obtained.

From equation (2.20)

—ay -apy -ap3 -dyy
—ajz -4z -4z3 -Gy
—ap3 -~dz3 -a33 -4y
—Qyq -G34 -434-A44

I= 4.2)
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then

2 2
U |_= (411022033%4 T Q1822034 —A1123044 T @]1023034024
2 ( 2 2 2

TQy024023a34 — A1 A24a33 ) —\A12033044 — Q12034
—ay2023013044 + Q12023034014 T A2024A 3034 — 012a24a33014)

3 .
+ (0130120236144 —a3012Q34004 —Af3022a44 T Q13022034014
rat.a? (

(]3024 — Q13024023014 [—\A14Q 2023034 — A4Q12033024

. N 2 2
— 014022013034 + 14072033014 +A14073013024 —014023)- (4.3)
5-Numerical Results of Simulation Studies:

The main aim of this section is to make a numerical investigation to
illustrate the theoretical results of both estimation and optimal design
problems. Several data sets are generated from Generalized Burr
distribution for a combination of the true parameter values of
v, p& and fand for sample sizes 70,100,200,300,400 and 500 using

500 replications for each sample size. It is assumed that £=3 i.e. there
are only three different levels of stress ¢; =1,¢y =1.5,¢3 =2 ,which

are higher than the stress at use condition; ¢, =0.5. Numbers of test
units are allocated to each level of stress (n;, j=1,2,3) follow the sub

sample-proportions L jJ = 123, whereg,;=0.5, =03,
w3=(1- (7;1 + 72-2)), rj= 80%(;11-),1' =1,2,3 ; (Type Il censoring).

The true parameter values of v, p,&, 8 used in this simulation study
are (0.7,0.8,0.8,15) to generate:
i =Ly, j=1.23a0d 1= Loy ).
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Computer programs are used depending on Mathematica 5.0 using the
iterative technique of Newton-Raphson — method to solve the
derived nonlinear logarithmic likelihood equations in (2.6),(2.7),(2.8)
and (2.9) simultancously.

Once the estimate values of v, p, B and «are obtained, these

. . n " 5 *
estimators are used to predicated, . as ¢, =vs; where s, =c /c,,,
letting that the design stress, ¢, =0.5. Also, the reliability function is

predicted for different values of mission times under usual conditions
depending on (2.22).

Moreover, the precision and variation of MLEs are studied through
some convenient measures such as the mean relative absolute bias
MRA Bias (the mean of absolute difference between the estimated
parameter and its true value divided by its true value) and the
relative absolute bias RA Bias (the absolute difference between the
estimated parameter and its true value divided by its true value). Also
the mean square error MSE (the mean of the square difference between
the estimated parameter and its true value) and the relative error RE of
the estimator (the square root of the MSE of the estimator divided by its
true value) are computed for each parameter.

Table (1) shows the results of solving the ML equations
of v,p, B anda in type Il censoring for different sample sizes . The
numerical results indicate that the ML close to the true values of the
parameters as the sample size increases. Also, as shown in the numerical
results the MRA Bias, the MSE and the RE are reducing when the
sample size is getting to be large.

Table (2) summarizes the asymptotic variance-covariance matrix
for the same different sample sizes. It shows that the asymptotic
variances of the estimators are decreasing when the sample sizes are
increasing.

24
\Yo



Table (3) presents the predicted values of the scale parameter
and the reliability function. In general it is obvious that the reliability

decreases when the mission time (#; ) increases. The results show that

reliability reduces when the mission time increases from 3.6 to 4 .
Therefore, the results get better in the sense that the aim of an ALT
experiments is to get large number of failures (reduce the reliability) of
the device of high reliability. Also the same table shows that the
relative absolute bias RA Bias (the absolute difference between the
predicted reliability function and its true value divided by its true
value) is reducing when the sample size is getting to be large.

The equations in (3.2) are used to construct the approximate
confidence limits for the four parameters v,p, § ,& with the results

shown in table (4) . This table presents 2-sided approximate confidence
bounds based on 95% confidence degree for the parameters. As shown
from the results, the intervals of the parameters appear to be narrow as
the sample size increases. '

Optimum test plans are developed numerically, it can be
observed from the numerical results presented in table (5), that the
optimum test plans do not allocate the same number of the test units to
each stress. Also table (5) includes the expected number of items that

must be allocated to each level of stress represented by n: , IZ; and n;

which minimize the GAV. As indicated from the results, the optimal
GAYV of the MLE of the model parameters is decreased as the sample
size n is increasing.
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Table(1):The Estimates ,MRA Bias, RA Bias, MSE and RE of the

Parameters v =0.7, p=0.8, a=0.8 and g =0.8 for

Different Sample Size .
n Parameter | Estimates hﬁ‘: RA Bias MSE RE
70 v 0.71865 | 0.17692 | 0.026649 | 0.028498 | 0.23490
P 0.79335 | 0.242507 | 0.008309 | 0.059193 | 0.30667
a 1.79218 | 1.48324 | 1.24023 | 153434 | 2.18564 |
B 31.2191 127279 | 1.08127 | 2662.63 | 1.65286
100 v 0.71220 | 0.155054 | 0.0174316 | 0.0203723 | 0.20041
p 0.78942 | 0.200142 | 0.0132284 | 0.0403564 | 0.25448
a 1.23312 | 0.773604 | 0541401 | 1.3987 | 0.95908
yis 233147 | 0.726757 | 0.55431% | 405.11 | 0.86329
200 v 0.70712 | 0.109301 | 0.010169 | 0.0096512 | 0.13893
P 0.80727 | 0.148945 | 0.0090823 | 0.0228035 | 0.18706
o 0.98411 | 0.425236 | 0.230141 | 0.345059 | 0.5969
B 18.3889 | 0.375881 | 0.225924 | 82.0754 | 0.49662
300 v 0.70858 | 0.0891845 | 0.0122511 | 0.006413 | 0.11302
P 0.80029 | 0.114541 | 0.0003578 | 0.012652 | 0.14055
[0 0.904673 | 0.306169 | 0.130841 | 0.159639 | 0.44165
B 17.1593 | 0.274569 | 0.143955 | 38.5223 | 0.36171
400 4 0.700612 | 0.0757122 | 0.0008738 | 0.004488 | 0.09562
P 0.796465 | 0.0983048 | 0.0044185 | 0.010047 | 0.12585
o 0.896855 | 0.264143 | 0.121069 | 0.101168 | 0.35465
B 16.8445 | 0.240048 | 0.122967 | 25.9686 | 0.30253
560 v 0.705998 | 0.0661571 | 0.0085683 | 50.00347 | 0.08351
r 0.796629 | 0.0871416 | 0.0042142 | 0.007761 | 0.11059
o 0.842241 | 0.206056 | 0.0528016 | 0.052024 | 0.27081
B 159512 | 0.183198 | 0.0634167 | 14.0474 | 0.23497
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Table(2): Asymptotic Variances and Covariances of Estimates for
Different Samples Size of the Parameters
v=0.7, p=0.8, a=0.8 and F=15

Variance-Covariance Matrix Variance-Covariance Matrix
n n '
v p a B v p o B
70 300
0.00258 -0.00114 -0.00210 0.07800 0.00165 -0.00085 -0.00267 0.02220
-0.00114 0.04524 0.00139 -0.02109 -0.00085 0.01265 0.00138 -0.01153
-0.00210 0.0013% 0.01858 0.38631 -0.00267 0.00138 0.01323  0.22217
0.07800 -0.02109 038631 25.7359 0.02220 -0.01153 022217 10.5217
100 400
0.00249 -0.00168 -0.00247 0.07591 0.00144 -0.00074 -0.00271 0.01143
-0.00168 0.03571 0.00158 -0.05542 -0.00074  0.00955 0.00141 -0.00996
-0.00247 0.00158 0.01853 0.36677 -0.00271 0.00141 0.01318 0.20735
0.07591 -0.05542 0.36677 22.9625 0.01143 -0.00996 0.20735 8.65793
200 ' 500 .
0.00197 -0.00126 -0.00270 0.04135 0.00143  -0.00072 -0.00286 0.00363
0.00126¢ 0.01913 0.00164 -0.02995 -0.00072 0.00788  0.00144 -0.00136
-0.00270 0.00164 0.01546 0.27646 -0.00286  0.00144  0.01209 0.17711
0.04135 -0.02995 027646 14.4812 0.00363 -0.00136 0.17711 691146
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Table(3):The Estimated Scale Parameter and Reliability Function
Under Usual Condition at Different Samples Size When v=0.7,
p=0.8, «=0.8 and #=15

n ¢u tO R‘u (to ) Relative Bias
70 1.53917 3.6 0.689987 0.0657742
3.8 0.670363 0.0729352
4 0.651067 0.0803602
100 1.50744 3.6 0.726503 0.0201947
38 0.709506 0.0230439
4 0.692785 0.0260533
200 1.52227 3.6 0.727217 0.019232
3.8 0.710631 0.0214958
4 0.694359 - 0.0238408
300 1.51969 3.6 0.733666 0.00916725
38 - 0717569 0.0104383
4 0.701782 0.0117643
400 1.49715 36 0.737609 0.00384185
38 0.72192 0.00443862
4 0.706531 0.00507658
500 1.50889 3.6 0.738538 0.00258651
3.8 0.722928 0.00304798
4 0.707626 0.00353422
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Table(4):Confidence Bounds of the Estimates at Confidence Level
95% When v=0.7, p=0.8, =0.8, f=15

. Standard Lower Upper
n Para t . .

meter | Estimates Devision Bound Bound
70 v 0.71865¢ | 0.0508378 | 0.619012 | 0.818296
p 0.793353 0.212703 0.376455 1.21025

a 1.79218 0.136306 1.52502 2.05934

B 31.2191 5.07306 21.2759 41,1623
100 v 0.712202 0.0498754 0.614446 | 0.809958
P 0.789417 0.188958 0.4190359 1.15978

o 1.23312 0.136137 0.966291 1.49995

J;, 23.3147 4.79192 13.9225 32.7068
200 v 0.707118 0.0443389 0.620214 0.794022
p 0.807266° | 0.138295 0.536207 | 1.07832

(v 4 0.984113 0.124356 0.740375 1.22785

B 18.3889 3.80542 10.9303 25.8475
300 v 0.708576 0.0406611 0.62888 0.788272
P 0.800286 0.112473 0.579839 1.02073

a 0.904673 0.115007 0.679259 1.13009

17.1593 3.24371 10.8017 23.517

Ji) .

400 v 0.700612 0.0378885 0.62635 0.774873
D 0.796465 0.0977083 0.604957 | 0.987973

a 0.896855 0.114815 0.671818 1.12189

i 16.8445 2.94244 11.0773 22.6117

500 v 0.705998 0.0378484 0.631815 | 0.780181
D 0.796629 0.0887906 0.622599 | 0.970658

a 0.842241 0.105567 0.626707 1.05778

J; 15.9512 2.62897 10.7985 21.104
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Table(5):The Results of Optimal Design of the Life Test for
Different Samples Size Under Type-II Censoring in. Constant-

Stress FALT
* - - "
n | N1 | A2 | N3 Ty z; nL|R2| K3 GAY

70 35 21 14 0.547564 | 0.020152 38 2 30 0.000021
100 50 30 20 0.472623 | 0.088498 47 9 4 0.000021
200 1 100 60 40 0.518332 | 0.127634 103 26 71 0.000004
300 150 90 60 0.540438 | 0.208988 162 63 75 0.0000006
400 | 200 120 | 80 0.547818 | 0.205922 | 219 82 99 1 0.0000002
500 | 250 | 150 | 100 [ 0.543635 | 0.227754 ) 272 114 114 | 0.0000001
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