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ABSTRACT 

 

Due to the importance of the problem of testing the product units under stress higher than normal 

stress conditions, specially used in reliability analysis. In this paper, we discuss the problem of 

estimation with step stress partially accelerated life tests, the lifetime of testing items under use 

condition follows the inverted exponentiated Lomax distribution. The test is running under 

progressive Type-II censoring scheme, and the units drawn from the test were distributed as a 

binomial distribution. The model parameters and acceleration factor are estimated by maximum 

likelihood and Bayesian methods. The corresponding asymptotic confidence intervals as well as 

credible intervals are also constructed. Also, the theoretical results are assessed and compared 

through Monte Carlo simulation study. Two real data set are used to illustrate how the approaches 

will perform in practice. Finally, we reported some comments about numerical computation. 
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1. Introduction  
     The applications in numerous fields as econometrics, biological and engineering sciences, 

medical research, and life testing, need highlight the significance of inverted distributions. In 2009, 

Hassan and Mohamed presented a new three-parameter lifetime model, called the inverted 

exponentiated Lomax (IEL) distribution. The probability density function (pdf) and the survival 

function of IEL distribution are given, respectively by 
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where   and   are two shape parameters, and 𝜆 is a scale parameter. 

Testing units may be removed from reliability and life testing trials in a planned manner or in an 

unanticipated way, such as when an experimental unit breaks accidentally or quits the experiment. 

In order to save time and money, the removal is typically scheduled in advance. Utilizing the 

resources at hand effectively involves progressive censoring. To put it another way, if some of the 

experiment's surviving units are removed early, they can be put to use in other tests (Balakrishnan 

and Aggarwala 2000). 

Lately, a progressively Type-II (PTII) censored sample has become popular enough to analyze 

highly reliable data because its flexibility and efficiency. In such censoring techniques, n 

independent and identical units are put to the test over a period of time, and m failures will be 

noted. The remaining 𝑛−1 surviving units have    units randomly removed from them after the first 

failure occurs. All remaining surviving units    𝑛    ∑   
   
    are all eliminated from the test 

at the conclusion of the mth failure, which causes the test to stop. In this scheme,              are 

all prefixed. However, these numbers might appear at random in some real-world circumstances. In 

some reliability trials, for instance, the researcher may determine it is unsuitable to continue testing 

any of the tested units even though they have not failed. In these situations, the removal pattern for 

each failure is random. Various authors have studied the statistical inference for different lifetime 

distributions under PTII censoring with random removals, such as; Yuen and Tse (1996); Tse et al. 

(2000); Wu et al. (2007); Abd Elghaly et al. (2007); Soliman et al. (2015), Nie and Gui (2019); 

Tashkandy et al.(2022) and Salem et al. (2023). 

    When the information of the failure is difficult to be obtained under standard environment, such 

as when dealing with a unit of high reliability, an accelerated lifetime method can be used to shorter 

the lifetime of the tested unit. As a result, partially accelerated life tests (PALTs) or accelerated life 

tests (ALTs) are frequently utilized in manufacturing industries since they significantly reduce test 

time and expense. This kind of experiments where testing is done under higher than normal stress 

levels are, in literature, known as ALT. However, in PALTs, both accelerated and usage conditions 

are used to test the goods. To assess the failure behavior of the items under typical use situations, 

data is gathered via tests conducted in ALTs or PALTs. The stress loading in ALT are applied in 

various ways and some of the widely used methods are constant-stress PALTs and step-stress 

PALTs (SS-PALTs). Nelson (1990) discussed the advantages and disadvantages of each of such 

methods. In SS-PALTs, a test item is run at normal (use) condition first, then at accelerated 

condition until the test is finished if it doesn't fail within a predetermined amount of time. In 

constant-stress PALTs each item is run at constant high stress until either failure occurs or the test is 

terminated. Specifically, SS-PALTs were studied under progressive censoring schemes by several 

authors; for example, see Ismail and Sarhan (2009); EL-Sagheer and Ahsanullah (2015); Soliman et 

al. (2017); Hassan et al. (2017); Mohie EL-Din et al. (2021); Yousef et al. (2022); Almarashi 

(2023); Alotaibi et al. (2022).    

In this paper, the samples generated under progressive Type II censoring schemes with binomial 

removals and accelerated under SS-PALTs from IEL distribution. Yuen and Tse (1996) indicated 

that the number of patients drop out from a clinical test at each stage is random and cannot be pre-

determined. So, in some reliability experiments, the pattern of removal of the tested units at each 

failure is random. Suppose that any test unit being removed from the life test is independent of the 
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others but with the same removal probability  . Then, we choose the binomial distribution as a 

removal distribution. The point and interval estimation of the model parameters are introduced with 

classical estimation method, maximum likelihood (MLE) and Bayes Method. The layout of the 

paper is as following. The paper is set up as follows. Section 2 provides a detailed description of the 

model and assumptions. To estimate the model parameters, the maximum likelihood method is 

described in Section 3, and approximate confidence interval estimations are obtained. In Section 4. 

The method for Bayesian estimates for the parameters of the IEL distribution under PTII censoring 

based on SS-PALT model is presented. The simulation technique is presented in Section 5 to 

illustrate theoretical results. Also, to illustrate the useful of the approaches in practice, we provided two 

real data sets in Section 6. Finally, some concluding remarks are summarized in Section 7.  

2. Model Description 

  

     The model assumptions for SS-PALT procedure will be described as follows:  

1. Under used condition, n  identical and independent units are put on the test and the lifetime 
of each testing unit has the IEL distribution.  

2. The test is terminated at the mth failure, where m is prefixed, m n [i.e. m is a total 

number of units failed under SS-PALT
1 2( )m m m  ]. 

3. Each of the n units is initially tested under typical operating conditions. It is put under 

accelerated condition (stress) if it does not fail or pass the test by a predetermined time  . 

4. At the k-th failure a random number of the surviving units,   ,               are 

randomly selected and removed from the test. Finally, at the m-th failure the remaining 

surviving units    𝑛    ∑   
   
    are all removed from the test and the test is 

terminated.  

5. Assume that each unit being eliminated from the test has the same removal probability  , 

despite being independent of the others. Following that, a binomial distribution is followed 

by the quantity of units deleted at each failure time. This means that      𝑛  𝑛       for 

             ,      𝑛  𝑛    ∑      
 
    and    𝑛    ∑   

   
   . 

6. The lifetime, say ,X  of a unit under SS-PALT can be rewritten as 

  

 

 

 

 

where, T  is the lifetime of an item at normal condition, τ is the stress change time and   is the 

acceleration factor,    . This model is called the tampered random variable model and proposed 

by DeGroot and Goel (1979). Thus, by the transformation-variable technique using the density in 

(1) and the model (3). Then, the pdf of IEL distribution under use and accelerated conditions in 

SSPALT is as follows    
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3. Parameters Estimation 

 

     This section discusses maximum likelihood estimation (MLE) for the point and interval 

estimation of the model parameters. The observed data follow IEL distribution based on PTII 

censoring reported under SS-PALT model. Theoretical results are described as follows. 

3.1. Maximum likelihood method  

      This section concerns with the MLEs of the unknown parameters  , , 𝜆 and   based on the 

progressively type II censored data with binomial removal.  

Let
1 2( , , , ),k k k kx r u u 1,2,...,k m , denote the observation obtained from a progressively type-II 

censored sample under a step-stress PALT. Here
(1) (2) ( )... mx x x    and 1 2,k ku u  are indicator 

functions: 
1 2( ), ( )

k k k ku I x u I x     .  

The conditional likelihood function of the observations                                 
given the pre-determined number of removals                               takes the 

following form 

     
1 2

1 1 2 1 1 2 2

1

( , , , , , , ) ( ) ( ) ( ) ( ) ,                (5)
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Inserting the probability density functions       and        defined in (3) and their corresponding 

survival functions in (5), then we have 
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According to the following probability mass function, the number of units removed at each failure 

time is expected to follow a binomial distribution 
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Moreover, suppose that 
k

R  is independent of 
k

X  for all k. Hence the likelihood function can be 

expressed as follows  

         𝜆                𝜆          |                                                        

where 
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The corresponding log-likelihood function, indicated by,     , can be obtained from (6) as follows  
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Since        does not depend on the parameters  , , 𝜆 and  , the maximum likelihood 

estimators  ̂  ̂ 𝜆̂and  ̂ can be produced by directly maximising  𝑛   . Therefore, by solving the 

following non-linear equations, the maximum probability estimates of   ,  , 𝜆 and   may be found. 
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Since it is obvious that there is no closed form solution for the aforementioned non-linear equations, 

the MLEs of the unknown parameters can be determined using an iterative technique. Similarly, the 

MLE of can be obtained immediately by maximizing (6) because           𝜆          |     

does not require the binomial parameter  . Consequently, the following equation must be solved to 

determine the MLE of  : 
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3.2. Asymptotic confidence interval  

The most common method to set confidence bounds for the parameters is to use the asymptotic 

normal distribution of the MLEs. By computationally inverting the asymptotic Fisher-information 

matrix F, it is possible to approximate the asymptotic variances and covariance matrix of the MLE 

of the parameters. It is made up of the negative second and mixed derivatives of the likelihood 

function's natural logarithm as determined by the MLE. It is possible to write the asymptotic Fisher 

information matrix F as follows:  
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The log-likelihood function’s second and mixed partial derivatives with regard to , , 𝜆 and   are 

acquired as shown here 
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Under the normality property of MLEs of the parameters     and  . The           

approximate confidence interval (ACI) for     and   can be, respectively, easily constructed as  

                                     
ˆ ˆ ˆ2 2 2

ˆ ˆˆ , ,z z z    
       

 ,      

where,   

 
 is the            lower percentile of standard normal distribution,   is the specified 

significance level and      is the standard deviation for the maximum likelihood estimates. 

4. Bayesian Estimation 

 

This section explains the method for Bayesian estimates for the parameters  , , 𝜆 and   of the IEL 

distribution under PTII censoring based on SS-PALT model. These estimations are based on the 

square error (SE) loss function, which will be discussed in this section. We suppose the parameter 

prior distributions to be gamma priors. The following is an example of the joint gamma prior 

density of  , , 𝜆 and  : 

                                                                                       (8) 

In order to extract the hyper-parameters of the informative priors, the estimates and their variances 

were equated with the inverse of the Fisher information matrix of alpha and beta to produce the ML 

estimator for  , , 𝜆 and  , which it denoted as elective hyper-parameters and this contributed by 

Dey et al. (2016). Using (6) and (8), the joint posterior of the IEL under PTII censoring based on 

SS-PALT model with parameters , , 𝜆 and   is derived as 

                     |    

                                             ∏{    
     

 

   

    
         [        

     ]            
         }

   
{         

      [                ]      [  [                ]  ]     

 [                ]      }
   

  
           (9) 
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The SE loss function (SELF), which is defined as follows: 

   ̃      ̃         ̃    ( ̃   )
 
    ̃    ( ̃   )

 
and  ( ̃  )  ( ̃   )

 
  which it is 

used to evaluate the Bayesian estimates of   ,  , 𝜆 and  . 

 

In this section, we are used the Markov chain Monte Carlo (MCMC) method to simulate the 

posterior distribution as well as the estimation problem. The MCMC technique can be used to 

obtain the Bayesian estimators. Useful MCMC subclasses include Gibbs sampling and the more 

versatile Metropolis inside Gibbs sampling. The Metropolis-Hastings (MH) algorithm and Gibbs 

sampling are the two most popular MCMC techniques. Using the MH inside Gibbs sampling steps, 

we generate random samples from conditional posterior densities of  , , 𝜆 and  . 

The MH method has the following steps for taking a sample from the posterior density: 

Step 1. Set the initial value of   as      ( ̃  ̃ 𝜆̃  ̃).  

Step 2. For           the following steps are repeated: 

 Set         . 

 Generate a new candidate parameter value  ́ from  (    ), where    is variance of 

vector parameters. 

 Calculate     ( ́| )   ( | )⁄ , where   ( ́| ) is the posterior density. 

 Generate a sample   from the uniform distribution       . 

 Accept or reject the new candidate  ́  

                   

{
                         ́ 

                    ́  
 

Through SELF, the Bayesian estimators are obtained. The method suggested by Chen and Shao 

(1999) is used to provide the 95% two-sided greatest density region credible interval for the 

unknown parameters or any function of them. For more recently papers, see Tolba (2022), Salem et 

al. (2023), and Hamdy et al. (2023).  

   

 

5. Simulation Study 

 

We will use a simulation study to estimate the unknown parameters of the IEL distribution under 

PTII censoring based on the SS-PALT model in order to assess the effectiveness of the proposed 

approach. For different sample combinations, the MLE and Bayesian estimation methods' respective 

MSE and bias, as well as CIs with their width, are determined.  

Sample combinations: 

 The sample size n has been taken as 50, 100, and 200. 

 Censored sample size m has been taken as 35, and 45 when n = 50, m = 60, and 80 when n 

=100, and m = 150, and 180 when n =200.  

 Different values of parameters as actual values have been chosen as: 

 Case I:             𝜆         . 

 Case II:           𝜆         . 

 Case III:             𝜆         . 

 Determine the value of binomial parameter p as 0.4 and 0.7. 
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The simulation procedure for estimation is as follows: 

I. Create an n-piece random sample using the uniform distribution       . 
II. Generate a random number of R from Binomial as follows: 
    is produced randomly using the binomial        ; 

    is produced randomly using the binomial (    ∑   
   
     )          ; 

    is produced as      ∑   
   
    ; 

III.  By algorithm in Balakrishnan and Sandhu (1995), we can generate PTII censoring sample. 
IV. Generate IEL sample based on PTII censoring under SS-PALT. 
V. To obtain the MLEs of the model parameters, the Newton-Raphson method is employed to 

simultaneously solve the nonlinear equations. 

VI. To obtain the Bayesian of the model parameters, the Metropolis-Hastings (M-H) algorithm 

is employed. 

VII. When evaluating the performance of estimators, their bias has been taken into account. Also, 

mean square error (MSE), width of CI (WCI) and coverage probability (CP) are evaluated. 

VIII. We replicate the process 1000 times for each setting to get average estimations. 

Additionally, the approximate confidence intervals (ACIs) and greatest posterior density (HPD) 

intervals, two distinct confidence interval-estimation techniques, are built. The average WCI for 

MLE as approximate WCI can be denoted as (WACI) while for Bayesian as credible WCI can be 

denoted as (WCCI) of the acquired estimators. The MLEs are evaluated numerically using the 

'maxLik' package by Henningsen and Toomet (2011), which implements the Newton-Raphson 

technique, and the Bayes estimation are assessed using the 'CODA' package by Plummer et al. 

(2006), which generates the MCMC variates. 

Results and discussions: From Tables 1-3, some comments can be made as: 

 In terms of bias, MSE, WCI, and CP, the given MLE and Bayes estimation of the unknown 

IEL parameters under PTII censoring based on the SS-PALT model are quite satisfactory. 

 The collected estimates improve considerably more in terms of their bias, MSE, and WCI 

when m as expected, increases. 

 Frequentist estimates are outperformed by Bayesian estimates based on gamma conjugate 

prior functions because they take prior knowledge into account. 

 The value of the removal probability   has an impact on how m affects the precision of the 

MLE of the parameters. For constant n and m, the MSE of the parameter estimations 

occasionally falls as   rises. 

 Bayesian estimation is better than MLE in this model and under the presented scheme. 

     

 



Volume(67)-No. 2 -2023 

 

39 
 

Table 1: Bias, MSE, WCI and CP for parameters of IEL distribution under PTII censoring based on SS-PALT model:             𝜆          

P  0.4 0.7 

       MLE Bayesian MLE Bayesian 

n m   Bias MSE WACI CP Bias MSE WCCI CP Bias MSE WACI CP Bias MSE WCCI CP 

50 

35 

  0.1019 0.0376 0.6466 94.9% 0.0057 0.0012 0.2354 98.5% 0.1015 0.0395 0.6703 96.3% 0.0051 0.0013 0.2345 99.0% 

  0.9286 1.4581 3.0275 97.6% 0.3674 0.2493 1.1086 90.2% 0.9170 1.4483 3.0566 97.0% 0.3662 0.2587 1.1042 90.1% 

𝜆 0.0434 0.3239 2.2255 96.7% -0.0865 0.0552 0.7123 92.2% 0.0141 0.2629 2.0102 95.6% -0.0845 0.0560 0.7224 92.2% 

  0.2490 1.0902 3.9770 95.7% 0.0473 0.0242 0.7332 96.8% 0.1881 1.0235 3.8985 95.7% 0.0379 0.0213 0.7102 96.0% 

45 

  0.0549 0.0172 0.4674 96.3% -0.0214 0.0011 0.1746 99.1% 0.0502 0.0166 0.4645 96.0% -0.0237 0.0013 0.1705 98.9% 

  0.9086 1.3775 2.9140 96.8% 0.1079 0.0314 0.3857 84.3% 0.8877 1.3236 2.8702 96.6% 0.0996 0.0317 0.3814 81.1% 

𝜆 0.0357 0.2520 1.9638 95.5% -0.0856 0.0287 0.3719 79.7% 0.0136 0.2485 1.9810 95.4% -0.0929 0.0302 0.3665 78.0% 

  0.1397 0.7864 3.4346 95.9% 0.0159 0.0148 0.3301 83.6% 0.2095 0.8747 3.5749 95.5% 0.0170 0.0142 0.3306 84.3% 

100 

60 

  0.0892 0.0233 0.4862 95.9% 0.0051 0.0007 0.1755 98.9% 0.0761 0.0198 0.4639 96.3% 0.0025 0.0006 0.1743 98.9% 

  0.8203 1.1718 2.7700 96.9% 0.4128 0.2608 1.0145 91.9% 0.7506 1.0353 2.6942 96.9% 0.4077 0.2501 1.0002 92.1% 

𝜆 -0.0708 0.1881 1.6781 95.7% -0.0881 0.0407 0.6330 92.0% -0.0950 0.1867 1.6532 95.5% -0.0924 0.0357 0.6232 93.5% 

  0.0704 0.5702 2.9487 95.6% 0.0305 0.0079 0.5788 99.2% 0.0884 0.6029 3.0254 95.8% 0.0264 0.0084 0.5852 98.6% 

80 

  0.0417 0.0095 0.3448 96.1% -0.0167 0.0006 0.1367 99.7% 0.0350 0.0080 0.3239 95.5% -0.0181 0.0005 0.1373 99.4% 

  0.8300 1.0815 2.4573 95.5% 0.1487 0.0404 0.3980 86.5% 0.6833 1.0086 2.4566 96.4% 0.1509 0.0405 0.4029 86.4% 

𝜆 0.0200 0.1623 1.6172 94.8% -0.1263 0.0309 0.3566 86.1% 0.0325 0.1625 1.4957 94.3% -0.1301 0.0327 0.3606 85.8% 

  0.1315 0.5216 2.7852 95.6% 0.0192 0.0067 0.3063 98.7% 0.1356 0.5141 2.7613 95.7% 0.0146 0.0079 0.3016 90.4% 

200 

150 

  0.0240 0.0041 0.2328 95.3% -0.0022 0.0001 0.1082 99.8% 0.0282 0.0045 0.2391 95.4% -0.0024 0.0001 0.1096 99.0% 

  0.7269 0.7454 1.8268 96.2% 0.4648 0.2665 0.8703 95.7% 0.7245 0.7639 1.9172 96.6% 0.4641 0.2624 0.8585 95.5% 

𝜆 -0.0458 0.1229 1.3632 97.0% -0.1185 0.0302 0.5309 95.3% -0.0587 0.1283 1.3859 96.0% -0.1154 0.0276 0.5224 96.1% 

  0.1238 0.2692 1.9760 95.8% 0.0180 0.0019 0.4036 99.9% 0.0709 0.2480 1.9333 95.1% 0.0166 0.0017 0.3945 99.9% 

180 

  0.0140 0.0029 0.2055 94.5% -0.0022 0.0001 0.0994 100.0% 0.0156 0.0030 0.2065 95.1% -0.0011 0.0001 0.1001 99.9% 

  0.6756 0.7169 1.7376 96.0% 0.2215 0.0644 0.4207 91.1% 0.7223 0.7174 1.7352 96.6% 0.2208 0.0629 0.4174 90.1% 

𝜆 -0.0207 0.0918 1.1856 97.0% -0.1072 0.0296 0.3403 91.8% -0.0458 0.0934 1.1852 97.2% -0.1074 0.0240 0.3384 92.1% 

  0.0944 0.2361 1.8692 95.8% 0.0121 0.0012 0.2593 96.6% 0.1081 0.2427 1.8851 95.8% 0.0134 0.0014 0.2624 96.1% 
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Table 2: Bias, MSE, WCI and CP for parameters of IEL distribution under PTII censoring based on SS-PALT model:           𝜆          

P  0.4 0.7 

      MLE Bayesian MLE Bayesian 

n m   Bias MSE LACI CP Bias MSE LCCI CP Bias MSE LACI CP Bias MSE LCCI CP 

50 

35 

  0.7430 1.7166 4.2324 97.3% 0.0274 0.1003 1.0489 91.8% 0.7766 1.8164 4.3200 97.5% 0.0207 0.1029 1.0304 90.4% 

  1.5464 4.6409 5.8823 95.2% 0.3884 0.2664 1.1405 91.8% 1.5316 4.2786 5.4525 95.4% 0.3875 0.2776 1.1384 91.7% 

𝜆 0.2158 0.8964 3.6156 94.1% -0.0332 0.0254 0.6357 95.2% 0.1698 0.7393 3.3057 94.2% -0.0399 0.0237 0.6336 95.9% 

  0.2062 1.4947 4.7262 95.1% 0.0675 0.0283 0.6658 95.6% 0.1147 1.2262 4.3196 96.2% 0.0493 0.0160 0.6460 97.2% 

45 

  0.4166 1.0437 3.6585 97.1% -0.0489 0.0246 0.3768 79.4% 0.3762 0.9910 3.6147 96.1% -0.0489 0.0247 0.3659 77.8% 

  1.4286 3.8405 5.2612 95.5% 0.0880 0.0276 0.3765 81.9% 1.4467 3.8070 5.1346 94.9% 0.0994 0.0322 0.3833 80.7% 

𝜆 0.2813 0.8669 3.4811 93.9% -0.1020 0.0227 0.3346 85.7% 0.3183 0.6895 3.4945 93.8% -0.0989 0.0218 0.3306 85.9% 

  0.1299 0.9406 3.7694 95.6% 0.0230 0.0113 0.3189 89.5% 0.1391 0.9770 3.8381 95.0% 0.0248 0.0117 0.3175 87.0% 

100 

60 

  0.6502 1.2778 3.6266 96.2% 0.0393 0.0619 0.9217 94.5% 0.6661 1.3105 3.6513 96.4% 0.0258 0.0523 0.9251 95.6% 

  1.2715 2.8173 4.2973 94.7% 0.4720 0.3190 1.0829 93.6% 1.2286 2.5789 4.0561 94.8% 0.4322 0.2666 1.0351 95.3% 

𝜆 0.0851 0.4073 2.4806 94.0% -0.0303 0.0152 0.5576 97.3% 0.0539 0.3852 2.4249 94.5% -0.0453 0.0138 0.5378 97.3% 

  0.0644 0.6047 3.0392 96.3% 0.0439 0.0080 0.5255 98.5% 0.0584 0.6833 3.2339 96.0% 0.0430 0.0076 0.5207 98.4% 

80 

  0.3572 0.6795 2.9137 95.4% -0.0562 0.0229 0.3607 79.5% 0.3881 0.7420 3.0161 96.6% -0.0485 0.0237 0.3623 78.3% 

  1.2345 2.5641 3.9998 94.8% 0.1433 0.0390 0.3974 86.2% 1.1703 2.3103 3.8042 95.2% 0.1391 0.0369 0.3879 86.2% 

𝜆 0.1321 0.4024 2.4335 94.7% -0.0411 0.0149 0.3014 92.0% 0.1102 0.3891 2.4079 94.8% -0.0411 0.0120 0.3019 90.8% 

  0.0231 0.4978 2.7657 95.6% 0.0251 0.0065 0.2871 92.8% 0.0369 0.5626 2.9382 96.2% 0.0273 0.0070 0.2891 93.9% 

200 

150 

  0.2824 0.3886 2.1796 95.3% -0.0118 0.0153 0.7018 98.7% 0.3064 0.4666 2.3945 95.2% -0.0073 0.0197 0.7037 97.7% 

  0.9863 1.3619 2.4464 95.0% 0.4535 0.2518 0.8410 95.4% 0.9910 1.3941 2.5178 94.8% 0.4630 0.2660 0.8456 94.7% 

𝜆 0.0200 0.1432 1.4821 95.5% -0.0653 0.0092 0.4205 98.6% 0.0276 0.1624 1.5770 94.4% -0.0647 0.0085 0.4166 98.8% 

  -0.0048 0.2398 1.9207 95.6% 0.0234 0.0016 0.3384 99.5% -0.0180 0.2327 1.8906 95.5% 0.0215 0.0014 0.3351 99.9% 

180 

  0.1517 0.2741 1.9652 96.2% -0.0105 0.0146 0.3329 84.6% 0.1547 0.2810 1.9884 95.5% -0.0377 0.0151 0.3300 85.7% 

  0.9558 1.2557 2.2942 96.2% 0.2035 0.0540 0.4012 93.4% 0.9949 1.3557 2.3725 95.1% 0.2100 0.0568 0.4098 92.9% 

𝜆 0.0656 0.1421 1.4557 95.7% -0.0513 0.0082 0.2555 94.6% 0.0756 0.1631 1.5561 95.5% -0.0613 0.0072 0.2528 94.4% 

  0.0550 0.2395 1.9073 95.5% 0.0207 0.0013 0.2393 97.4% 0.0011 0.2155 1.8208 94.8% 0.0126 0.0013 0.2389 97.8% 
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Table 3: Bias, MSE, WCI and CP for parameters of IEL distribution under PTII censoring based on SS-PALT model:             𝜆           

P  0.4 0.7 

      MLE Bayesian MLE Bayesian 

n m   Bias MSE LACI CP Bias MSE LCCI CP Bias MSE LACI CP Bias MSE LCCI CP 

50 

35 

  0.5022 0.7381 2.7339 95.9% 0.0642 0.0448 0.8185 95.1% 0.4728 0.7000 2.7071 96.2% 0.0448 0.0373 0.8134 96.0% 

  0.8419 2.1522 4.7119 96.0% 0.1216 0.2440 1.2759 83.0% 0.7357 2.0198 4.7690 95.7% 0.1391 0.2558 1.3026 81.8% 

𝜆 0.0057 0.1456 1.4963 95.5% -0.0059 0.0161 0.5144 95.3% 0.0071 0.1638 1.5872 95.4% 0.0007 0.0150 0.5190 95.2% 

  0.1715 1.4077 4.6044 95.9% 0.0451 0.0543 0.9546 94.4% 0.2611 1.6538 4.9386 94.5% 0.0367 0.0559 0.9713 94.5% 

45 

  0.2891 0.4291 2.3053 95.0% -0.0159 0.0163 0.3406 82.4% 0.2982 0.4406 2.3256 95.9% -0.0131 0.0161 0.3376 81.8% 

  0.5943 1.2264 3.9947 95.2% 0.0164 0.0292 0.3939 75.6% 0.4899 1.2599 3.2484 95.4% 0.0138 0.0286 0.3874 74.1% 

𝜆 0.0375 0.1287 2.0573 94.3% -0.0295 0.0078 0.2743 91.7% 0.0941 0.1251 1.3177 93.8% -0.0337 0.0080 0.2729 91.9% 

  0.1708 1.3461 4.1650 95.5% 0.0022 0.0210 0.3621 78.5% 0.2589 1.6380 4.9157 94.9% 0.0044 0.0211 0.3638 79.5% 

100 

60 

  0.4350 0.4983 2.1804 96.2% 0.0623 0.0268 0.7002 97.3% 0.4088 0.4569 2.1115 96.1% 0.0612 0.0276 0.7028 96.5% 

  0.5117 1.0853 3.5591 94.6% 0.1819 0.2022 1.2268 86.7% 0.5364 1.1335 3.6069 95.5% 0.1859 0.2230 1.2325 85.0% 

𝜆 -0.0633 0.0902 1.1515 94.9% -0.0187 0.0091 0.4268 97.1% -0.0516 0.0925 1.1753 95.0% -0.0215 0.0078 0.4302 98.2% 

  0.1347 0.8579 3.5941 94.6% 0.0291 0.0260 0.8398 97.9% 0.0996 0.8787 3.6555 94.7% 0.0349 0.0258 0.8294 97.6% 

80 

  0.2454 0.2513 1.7144 95.4% -0.0043 0.0127 0.3182 86.5% 0.2177 0.2307 1.6793 95.2% -0.0107 0.0112 0.3145 86.7% 

  0.4790 0.9818 3.3602 95.1% 0.0277 0.0287 0.3912 76.0% 0.5063 1.1258 3.5096 95.7% 0.0127 0.0286 0.3906 75.3% 

𝜆 -0.0098 0.0896 1.0213 94.7% -0.0412 0.0059 0.2430 94.1% 0.0013 0.0905 1.0212 95.2% -0.0396 0.0060 0.2458 94.1% 

  0.1392 0.7534 3.3602 94.5% 0.0013 0.0164 0.3477 82.6% 0.1388 0.7043 3.2460 94.8% 0.0095 0.0176 0.3535 81.1% 

200 

150 

  0.1784 0.1277 1.2145 95.8% 0.0210 0.0055 0.4829 99.3% 0.1623 0.1230 1.2195 96.0% 0.0119 0.0045 0.4756 99.7% 

  0.4841 0.8568 3.0942 94.8% 0.2281 0.1532 1.0878 90.8% 0.4474 0.7873 3.0051 95.8% 0.2026 0.1415 1.0761 91.3% 

𝜆 -0.0350 0.0522 0.8854 95.4% -0.0321 0.0040 0.3163 99.0% -0.0315 0.0536 0.8992 96.0% -0.0336 0.0042 0.3170 99.0% 

  0.0905 0.3877 2.4160 95.5% 0.0219 0.0063 0.6123 99.5% 0.1555 0.4744 2.6317 95.6% 0.0256 0.0067 0.6226 99.6% 

180 

  0.0912 0.0748 1.0116 96.1% -0.0078 0.0043 0.2781 92.9% 0.0932 0.0830 1.0693 95.5% -0.0104 0.0041 0.2794 91.6% 

  0.5246 0.7404 2.6749 95.3% 0.0476 0.0258 0.3747 76.9% 0.5243 0.6840 2.9482 96.3% 0.0421 0.0252 0.3751 78.7% 

𝜆 0.0014 0.0423 0.8071 95.7% -0.0510 0.0039 0.2009 96.6% 0.0033 0.0473 0.8528 95.6% -0.0315 0.0041 0.2008 95.7% 

  0.1214 0.3892 2.4001 94.4% 0.0039 0.0051 0.3143 88.4% 0.1227 0.3760 2.3564 95.3% 0.0095 0.0060 0.3133 89.1% 
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6. Application  

This section examines two genuine data sets, the first of which was researched and 

presented by Hassan and Mohamed (2019) and the second of which was researched 

and presented by Klakattawi et al. (2022). The IEL better distribution, however (see 

Hassan and Mohamed (2019)), is consistent with the smaller values of the earlier 

measures. 

Data Set 1: The first data set shows how many million rotations a set of 23 ball 

bearings could withstand before failing, according to Lawless (1982). According to 

the findings of Hassan and Mohamed (2019), the IEL model is appropriate for this 

data set based on the chosen criteria. The goodness of fit measurements for the IEL 

model is the smallest. The data can be displayed as follows: 0.1788, 0.2892, 0.33, 

0.4152, 0.4212, 0.4560, 0.4848, 0.5184, 0.5196, 0.5412, 0.5556, 0.6780, 0.6864, 

0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804, 1.7340. 

The Kolmogorov-Smirnov (K-S) statistic (with associated P-value) is obtained to 

demonstrate the reliability of the IEL model. First, MLEs for parameters, respectively, 

are 5.0620(4.4929), 12.1849(11.3937) and 0.5025(0.4896), with their standard errors 

(SEs), and the K-S(P-value) is 0.1079(0.9514). The IEL distribution fits the failure 

data, according to this finding. The p-values, Figure 1, the K-S distances, and the 

model's reasonable agreement with the data are all indicators of this. 

 
Figure 1: Estimated CDF and PDF with data also P-P plot of IEL distribution: data I 

Table 4: MLE and Bayesian by estimates values and SE with different accretion time: Data I  

    MLE Bayesian 

tau   estimates SE estimates SE 

0.5 

  4.9921 5.3041 5.7638 2.6159 

  15.0241 32.6351 15.1050 2.0881 

𝜆 0.5501 1.1639 0.6706 0.4307 

  0.9130 0.6329 0.9849 0.2893 

S 0.6877 0.8935 

H 1.8104 0.7349 

0.7 

  3.6436 1.3995 3.6678 1.1600 

  345.2720 1051.8409 349.3677 68.9581 

𝜆 2.7907 4.4575 3.6948 2.1062 

  0.4295 0.1938 0.4419 0.1678 

S 0.3718 0.6609 

H 1.7706 0.8068 
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For     𝜆 and   in Figures 2 and 3, the parameter distributions from Data Set I were 

trace plotted to correspond to the posterior density of the MCMC outputs at       

and      , respectively. Figures 4 and 5 also shows, for     𝜆 and  , the marginal 

posterior density estimates of the parameters of the IEL  distribution under PTII 

censoring based on the SS-PALT model, together with their histograms based on 

10,000 chain values, where        and      , respectively. Based on the SS-

PALT model for data I, Figures 6 and 7 were obtained to determine whether the 

estimators are maximal or not for parameters of the IEL distribution under PTII 

censoring. 

 
Figure 2: Trace plot and convergence line of parameters of IEL distribution based on SS-

PALT model: Data I and       

 
Figure 3: Trace plot and convergence line of IEL parameters based on SS-PALT model: Data 

I and       

 
Figure 4: Posterior plot of IEL parameters based on SS-PALT model: Data I and       
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Figure 5: Posterior plot of IEL parameters based on SS-PALT model: Data I and       

 
Figure 6: Profile likelihood of IEL parameters based on SS-PALT model: Data I and       

 
Figure 7: Profile likelihood of IEL parameters based on SS-PALT model: Data I and       

The information may be found at (https://covid19.who.int) which shows the 

COVID-19 drought mortality rate for Canada for 36 days, from 10 April to 15 May 2020. The 

information is provided and was taken from Almetwally (2021). The data can be 

displayed as follows: 3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769, 

6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594, 4.0480, 4.1685, 3.6426, 3.2110, 

2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781, 4.2202, 1.5157, 2.6029, 3.3592, 

2.8349, 3.1348, 2.5261, 1.5806, 2.7704, 2.1901, 2.4141, 1.9048. 

The (K-S) statistic (with associated P-value) is obtained to demonstrate the reliability 

of the IEL model. First, MLEs for parameters, respectively, are 43.7007(9.8057), 

39.1437(24.2393) and 0.3079(0.2692), with their SEs, and the K-S(P-value) is 

0.1098(0.7782). The IEL distribution fits the COVID-19 data, according to this 

finding. 
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Table 5: MLE and Bayesian by estimates values and SE with different accretion time: Data II  

    MLE Bayesian 

    estimates SE estimates SE 

2 

alpha 42.6126 342.0720 26.8167 13.1466 

theta 24.8002 23.0712 24.8810 1.4565 

lambda 0.3048 2.6435 0.6416 0.2316 

beta 1.2656 0.8443 1.4805 0.4234 

S 0.9429 0.9858 

H 0.2101 0.0690 

2.5 

alpha 41.4235 459.6048 77.3586 43.4865 

theta 10.4623 10.1949 10.4569 0.6422 

lambda 0.2623 3.1058 0.1995 0.1331 

beta 2.0576 1.1395 1.9539 0.3684 

S 0.8444 0.9728 

H 0.5519 0.1233 

 
Figure 8: Estimated CDF and PDF with data also P-P plot of IEL distribution: Data II 

Based on the SS-PALT model for data I, Figures 9 and 10 were obtained to determine 

whether the estimators are maximal or not for parameters of the IEL distribution under PTII 

censoring. 

 
Figure 9: Profile likelihood of IEL parameters based on SS-PALT model: Data II and     
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Figure 10: Profile likelihood of IEL parameters based on SS-PALT model: Data II and       

As a hole, we drawn the following points as the conclusions: 

1. As a whole, the MSE is getting smaller with the increase of n.  

2. SS-PALT models under PTII censoring, the bias and MSE of the Bayesian estimates 

are smaller than maximum likelihood estimation under given prior information 

Informative. 

3. As n and m are increased, the CP of the parameters is decreased. 

 

7. Conclusions 

     In this paper, we provided SS-PALT models under PTII censoring with random removals 

when the observed data come from IEL distribution. We determined the MLEs of the obscure 

parameters. We inferred Bayes estimators of the parameters and the acceleration parameter 

using gamma informative priors based on the square error loss function. We did a recreation 

study to think about the execution of every one of these systems. From the simulation study, 

we watch that the Bayes estimates are superior to MLEs as far as MSEs. We introduced 

reenacted case to represent every one of the techniques for derivation examined here and 

additionally to bolster the conclusions drawn.  
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