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I Introduction

In this section, we shall present definitions, notation, and basic facts
used throughout. - :

¥
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1.1 Preliminaries

Let T be the waiting time to the occurrence of an event qf interest:
death, birth, pregnancy, etc.). T is usually called the survival time. .
The distribution of T can be characterized by the following three &

equivalent functions. A

1-Survivorship Function (or Simply, Survival Function). This
function, denoted by S(t), is defined as the probability that an
individual survives longer than t:

S(t) =P (anindividual survives longer thant)
=P(T>t) =1-F(t) L) _

- In practice, the survivorship function is estimated as the proportion of =

patients surviving longer than t:

&

»

§(t) _ Number of patients surviving longer than t (12)
Total number of patients ;

Where the symbol “~” denotes an estimate of the function.

The function S(t) is also known as the cumulative survival rate. To depict
the course of survival, Berkson (1942) recommended a graphic
presentation of S(t). The graph of S(t) is called the survival curve.

2- Probability Density function (or simply, density function ). Like
any other confinuous random variable, the survival time T has a
probability density function defined as the limit of the probability that
an individual fails in the short interval t to t + At per unit width At, or
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simply the probability of an event in a small interval per unit time. It

can be expressed as:

_ ‘ent dving | ; :
f(’)=ml_","o P{a patient dying mAtthe mterval(t,t+At)} (1.3)

In practice, the probability density function f{t) is estimated as the
proportion of events in an interval per unit width: :

Number of patients dying in the interval begining at time t (1.4)
(Total number of patients ) (Interval width ) '

f ()=

3. The hazard function h(t) of survival time T gives the conditional
failure rate. This is defined as the probability of failure during a very
small time interval, assuming that the individual has survived to the

beginning of the interval,i. e,
h(t)= ]imiP(f <T<r+x| T>1).
X

x—0

The hazard function can also be defined in terms of the cumulative

distribution function F(t) and the probability density function f(t) as:
h(t) =f(t)/ {1 - F(t) } (1.5) :

In practice, the hazard function is estimated as the proportion of

patients dying in an interval per unit time, given that they have

survived to the beginning of the interval:
i )= Number of patients dying in the interval begining at time t

(Number of patients surviving at t XInterval width)

Number of patients dying per unit time in the interval k3
= : L (1.6)
Number of patients surviving at t

The hazard function is also known as the instantaneous failure rate,
force of mortality and conditional mortality rate. The hazard function
thus gives the risk of failure per unit time during the aging process. It
plays an important role in survival data analysis. The hazard function
may increase, decrease, remain constant or indicate a more complicated

process.
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The statistical analysis of lifetime or response time data ha; bepomea
topic of considerable, interest to statisticians an@ workers:1n dlfferegt
areas such as engineering, medicine, biological and demographic

sciences.

In recent years, the use of statistical procedures has thrown substantial
research which uses event history models, survival analysis, an(_i hazard
rate models to examine sociological phenomena such as retlrelngnt,
unemployment, and teenage pregnancy, birth interval, marriage duration,
mortality, migration and reproductive health studies. -

Thus, failure time analysis and hazard models have become
popular in demographic studies. It can be viewed as a part of
regression analysis with limited dependent variables as well as a
special case of event history analysis and multistage demography. The
idea of hazard function and failure time analysis, however, have not
been properly introduced nor commonly discussed by demographers. "
until the celebrated Cox (1972) was published.

Sy
=

Y

1.2. The Proportional Hazard Regression Model (Cox, 1972)

Studies of association between a random variables X and, the survival
time T, may only be partially observable due to censoring has been
the focus of many investigations starting with the historical
breakthrough by Cox (1972). The so-called Cox regression model or
proportional hazards model (PHM) expresses a log-linear relation
between X and the hazard function of T: ;

L PRET R+ O T2EX = %)
h(l‘,X—‘:x):Igp 5

fx
= (1) e
Q

In this model, ho(t) is an unspecified baseline hazard, i.e., hazard
at x=0, and g i1s an unknown regression coefficient. Cox (1972,

1975) mentioned the following important point regarding PHM. hq(t)
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‘might be identically zero in some time intervals in which no events

1 : 4

([*xﬁurcs) occur. Thus, in some cases, one has to argue conditionally
‘ ) . -~ . .

on the set of instances at which failures occur.

The Proportional Hazard model, introduced by Cox (1972),is a
general non-parametric model appropriate for the analysis - of survival
data with and without censoring. In the following we first introduce
Cox’s original model and then discuss some of its extensions to bring the
reader up to date. .

Suppose that on each of the n individuals involved in the study, in
addition to the survival time t;, one or more measurements are available,
on variables x;, xa,... Xp (Cox calls these explanatory variables). For the
ith individual let values of the p variables be x,i, Xai,..., Xpi . The x’s may
be specific patient characteristics, such as age and white cell count, or
functions of time. The problem is to assess the relation between the
distribution of survival time t and the x’s. Cox suggests that the hazard
function be used. Let h; (t) be the hazard function of the ith patient.
When survival times are continuously distributed ties can be ignored, and
the hazard functionis

* hy(t) = ho(t) exp (ﬁ ﬁ,X,-,-] g Gled)

Where hg(t) is the hazard function of the underlying survival distribution
(arbitrary) when all the x variables are ignored, i.e., all x’s equal zero,

P
and the [’s are regression coefficients. In fact, > g,X, can be replaced
J=l

by any known function of x’s and B‘s. It is clear that Cox’s model
assumes that the hazard of the study group is proportional to that of the
underlying survival distribution hy(t).

Equation (1.7) has many uses. Some of which are summarized below.

1- Two-Sample Problems. Suppose thatp =1, i.e., there is only one X
variable, X, which is an indicator variable,
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Xy =0 if the ith individual is from sample 1
= 1 if the ith individual is from sample 2

Then according to Equation (1.7) the hazard function of sam ples 1 and 2
d function of sample

are, respectively, ho(t) and ho(t) exp (B1). The hazard 1ul |
2 is equal to the hazard function of sample 1 multiplied by a constant

- exp(B1) or the two hazard functions are proportional. In terms of the
survivorship function:
S2(t) =c.[Si®) ],
Where the constant ¢ = exp (B;) (Nadas, 1970).

. 2-Two-Sample Problems with covariates. The x variables in Equation

(1.7) can either be indicator variables such asx, in the two - sample
problem above or concomitant variables ‘(patient characteristics).
Having one or more x variables representing concomitant variables in
Equation (1.7) enables us to examine the relation between two

samples adjusting for the presence of concomitant variables.

3- Two-Sample Problems with Time — Dependent Covariate. In
Equation (1.7) one — or more x variables can be functions of time. For
example, suppose that, in addition to x; above, time dependent
variable, x, = tx;, is introduced. According to Equation (1.7), the

hazard in samplé 2'1S :

hi(t) = ho(t) exp (B1 + Bat)
= chy (t) exp (B2t)

and that in sample 1 remains chy (t).

4- Regression Problems . Dividing both sides of Equation (1.7) by ho(t)
and taking logarithm, we obtain ~

(t P :
log, %—8= Bixqi + Baxpi + - Bpxpi =X Bixji (1.8)
0 t J=l .

The left- hand side of Equation (1 .8)_ is a function of the hazard for the ith
patient, and the right-hand side is a linear combination of the concomitant
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variables Xy, ..., Xpi with coefficients fy, ... , By respectively. tl"he X’s
can be indicator variables, covariates, and time- dependent covariates. If
‘we let Y; = loge [hi(t) / ho(t) ] Equation (1.8) is simply

Yi=Pi xui +Basait ... + By xpi (1.9)

which i a standard multiple regression equation with the concomitant

variab'es as independent variables and a function of the hazard as the
dependent variable.

In addition to identifying important prognostic factors, Cox’s
regression model can also define a prognostic index or hazard ratio,
namely log. [l (t) / ho(t) ], for each patient. This index or ratio can be
‘used to compare two treatment groups as well as prognoses between
patients. As mentioned earlier, ho(t) is the hazard function when all of
the independent variables are ignored. If the independent variables are -

standardized about the mean, the following model is used.

h; t = o
log, hoit))z Bi(xq; —x, ) +...+ Bp(xp —Xp) (1.10)

where X the average of the ith independent variable for all patients, then
ho(t) is the hazard function when all variables are at their average values.

5-Estimation of the parameters. Now the question is how to estimate
the coefficients, Bi,...,Bp. Cox suggests a maximum likelihood procedure
where the likelihood function is based on a conditional probability of
failure. Suppose that ty < to)<...tx)are the k exact failure times . Let
R(tq)) be the risk ‘set at time tg). (R(t;;;) consists of all individuals whose
survival times are at least t;;y ), then the log of the likelihood function is:

p
i=l =l

Ll(ﬂ)=i 2 ﬂjx,-i—; 108[12 exp(iﬂ,—’",,ﬂ (1.11).

ER(NI;) 3=l
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Suppose that among the survival times t; ..., tn there are k distinct

times. Let tq) < ... < tg be the k distinct - failure times (uncensored .

observations). Let m, be the multiplicity of t;), mg;)>1 if there 1s more
than one observation with tg, mg =1 if there is only one observation
with value t; . Let R(t;) denote the set of individual at risk at time t -
Let r;;y be the number of such individuals.

The conditional log-likefihood function is then

LL(JB):LZ (Bizy "'---"'ﬂpzpi)"‘zk: logl: }(: exP(ﬁlzn "‘---"‘ﬂpzpz):} (112)

i=1
where zj; is the sum of x;’s over the my; individuals failing at t), zi is
the sum of x;’s over the mg;, individuals failing at t;;. -

1.3 General Historical Developments

Cox’s arguments, particularly the conditional likelihood function
(Equation (1.11) ) and the logistic model for discrete case, are more
intuitive than formal. They have been formalized when no covariates
depend on time in terms of arank- like procedure by Kalbfleisch and
Prentice (1973) and in- terms of an approximate likelihood by Breslow
(1974) . The rank-like procedure is not applicable in the case of time-

dependent covariate, but an adaptation of Breslow’s procedure is -

possible (Crowley and Hu, 1977). Three particular cases can be
identified:

(a) Uncensored Data without Ties. Suppose that tll, ty, ..., ty are the
survival times of n individuals and x,, ..., x, the corresponding covariate
values. Let t)<t@) <t be the n survival times rearranged in ascending
order of magnitude. The ) te)... tw are called ordered survival times .
The ranks corresponding to these order statistics i.e., (1), (2), ... , (n) are
rank statistics . On the basis of rank statistics, Kalbfleisch and Prentice
derive the following marginal likelihood of B from the original
distribution of the marginal distribution of the rank

w
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n

(ﬁi ]/ [1 h)pw)J (1.13)

i=) i=l

(b) Censored Data without Ties. When there are censored.

observations in the sample, the rank statistics are not completely
available.  Suppose, for example, that there are four survival times 1,
2+, 3, 4. We may order the uncensored times as 1 <3 < 4, however 2+
may be equal to or greater than 3, or may be equal to or greater than 4.
Thus, we have only partial information on the fanks. The structure of
the model becomes more complicated.
Suppose that k individuals are observed to failure and the ordered
survival times are ty <t <" ... <ty with corresponding covariates
X1, X2, ..., Xg.Suppose further that q; individuals with covariates x;;,
> Xiqi are censored between t(;) and t;+1), where tigy = 0 and ty+)y, = oo.
The marginal likelihood function in this case is.

L, (B)=exp (,B'z;: x,)/ l;[ L%Jexpwx}):l« ; gRamr

Where R(tg) consists of individuals whose survival times,
censored and uncensored, are at least t; . That is, R(ts;) includes the
t’s whose subscripts are (i), iy, ... iy, (i+1), ... , (k), Ki;..25 K. The
logarithm of the marginal likelihood function in equation (1.13)is
exactly the same as Cox’s is Equation (1.11)

(c) Data With Ties. When data include tied observations, Cox’s’
likelihood is derived by consideration of logistic model for discrete
survival time. The likelihood appears to be a statement of inference
about regression coefficients in the logistic model rather than in model
(1.7). Kalbfleisch and Prentice (1980b) derive a different likelihood
to cover this case. . :

Breslow (1974) suggests another approach to the estimation of B
and ho(t). It differs from both Kalbfleisch and Prentices arguments and
those of Cox in that simultaneous estimation of B and hy(t) is made
through a joint likelihood function. The underlying survival distribution
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= exp (a;) between each

1S assumed continuous having constant hazard h; =
d observations that

pair (ti)) , (tieny) of distinct failure times. All censore :
occur in the interval (t;)) , (t;+1y) are assumed to have occurred at (1))

Log — likelihood function is ‘ ‘
Ly ()= [ﬁzi ~m; log % exp(x;) (1.15)
R (i) :

i=l

Where k is the number of distinct failure times. When there are no
ties (m; = 1 for i = 1,... , k), Equation (1.15) is equivalent to the
likelihood set forth by Cox and kalbfleisch and Prentice. Otherwise,
Equation (1.15) is an approximation of Cox’s. '!
Kalbfeisch and Prentice (1979) justified the use of partial-likelihood
functions under the assumption of no ties and Breslow (1974 and
1975) tried with the piecewise exponential baseline. Tsiates (1981)

gives a proof of the asymptotic normality of ﬁ (see also Efron, 1977).

On practical level, the piecewise proportional hazards model is
familiar to demographers and suitable for demographic analysis given the
nature of demographic data (Allison 1982). Demographic analysis
typically involves very large data sets, and the information on time is
available only in unit interval, such as months or years . It 1s therefore,
easy to group time into a number of segments and to handle efficiently
‘the computation required by very large data sets using the piecewise

proportional hazards model. :
Moreover, with the piecewise proportional hazard model, it is

easy to separate the effects of covariates on the probability and the timing
of an event as suggested by Yamaguchi (1995).

We point out that, in a review paper, Kumar and Klefsjo (1994)
surveyed the existing literature on the proportional hazard model
(PHM). At first, the characteristics of the method are explained and
its importance in reliability analysis is presented. Subsequently,
methods for estimating parameters, along with the small and large
sample properties of the estimators, are briefly discussed. They also

10
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described some possible extensions of the model considereq so far
and available computer programs and pagkages for‘ estlmatmg‘the
parameters of these models. However, the article did not cover the

developments and applications associated with this model to
DEMOGRAPHY.

Teachman and Hayward (1993) in this regard published an
excellent article. In this article, basic hazard rate models are surveyed,
and survival functions and their relationship to hazard rates are
‘described.  Ways in which survival functions can be used to expand the
“information provided by hazard rates (from relatively simple to more
complex hazard rate models) are illustrated. Away from Teachman
(1993) article, the reader might be interested in going back in time
looking for specific results (both on the theoretical and applied levels).
Therefore, the objective of the present paper is to survey the most recent
developments and applications contributed thus far to demographic
‘sciences and data analysis. '

The historical developments presented above have paved the way -
towards the following sections.

11
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II. Theoretical Developments

In this section, we present most recent theoretical results, which-
followed Cox’s (1972) model, starting 1982.

1. Andersen and Gill (1982) discussed how the Cox's model can be
extended to a model where covariate processes have a proportional ‘
effect on the intensity process of a multivariate counting process. They

considered the large sample properties of a counting process model with
intensity given by:

Mtz) = haft) exp (Boz(t) ), t 2 0, ' “
where By is a p - vector of unknown regression coefficients.

2. Ciampi and Etezadi (1985) presented a method for testing the -
proportional hazard (PH) and accelerated failure times (AFT) hypothesesy
against a general model for the hazard function. They presented the
Cox's model as

At z) = g(Pe) A, (1),

where g is apositive function with g(0) =1, most often the exponential
function. -

3. Doksum (1987) considered a transformation model when the
response variable follows a linear model. The PHM with time-
independent covariates of Cox (1975) is a special case of such
transformation model, and since partial likelihood methods have proved
to be so useful. Therefore the author investigates proportion of partial
likelihood method in the transformation model and introduces a
likelihood sampling method to compute partial likelihood and then
maximum partial likelihood estimates. Linear hazard models have been

12 =

- .t\.
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considered legally as alternates to the well = known Cox PHM fOi the
repression analysis of censored survival data. He examines how
individual observation influences cumulative hazard estimates.

4. Etezadi and Ciampi (1987) developed extended hazard regression
(EHR) for censored data.' They defined the extended hazard regression
model as: ’ :

Mtz) = g1 (0.2) Ao (22 B-2) 1),

where Ag(t) is the baseline hazard function.

5. Dorota and Kjell (1987) presented some estimates and confidence
Qi\}lterrvals for median and mean life in the proportional hazard model.
N

6. Ghorai (1987) studied the nonparametic estimation of the mean
residual life with censored data under the PHM and obtained some

convergence properties and an asymptotic confidence interval for the
mean residual life. '

7. Maller (1987) derived necessary and sufficient conditions for the
existence of the maximum-partial likelihood estimation of the
regression model associated with Cox PHM.

8. Efron (1988) used partial logistic regression techniques to fit
parametric survival curves to censored data. These constructions were
used to compare two treatments for the cancer study in terms of their
estimated hazard rates in an effort to show how some familiar theoretical
ideas (logistic regression, hazard rate analysis, and partial likelihood)
can be combined to give a simple, insightful analysis of censored data_

9. Bagai (1989) proposed a distribution-free test for testing the equality
of two failure rates in the competing risk setup. He uses the only
information about the course of failure.

13
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10. Pena (1989) gave an estimate of the survival for a gencral_ized PHM
with random censorship.

11. Han (1989) developed an approximate formula for the asymptotic
relative efficiency of the partial likelihood estimation in the propo‘rtl(.)llill
hazard model of Cox (1972). His work extends the results of kalbfeisch
(1974) and Kay (1977) to multiple covariates and censoring.

12. Yashin (1991) explained how to choose the parametric for_m of a
hazard rate in the existence of partially observed covariates. To this e_nd,
he discusses the problem of parameterization of the conditional survival
function and the respective hazard. The case of partially observed
randomly changing covariates is considered.

13. Lin (1992) designed a computer program, namely, COFCOX to

examine the adequacy of the Cox proportional hazard model. The .,

underlying methodology is based on the comparison of the maximum
partial likelihood estimator and a weighted parameter estimator. '

14. Barnhart (1994) related a number of multinomial models currently
in use for ordinal response data in a unified manner, through the use of
generalized logit models, PHM under different parameterization and
computed mle for these models.

15. Cheng and Ying (1995) considered a class of semiparametric
transformation models, under which an unknown transformation of the
survival time i1s linearly, related to the covariates with various
completely specified error distributions. This class of regression models
includes the proportional hazard models. These transformation
models, coupled with the new simple inference procedures, provide
many useful alternatives to the Cox regression model in survival
analysis. Also they showed that Cox model (1972) can be written as:

Log [Hlog{S; 0} ] =An+Z'B

4.

i
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Where- A(t) is a completely unspecified strictly increasing function, and
Bisapx 1 vector of unknown parameters.

16. Li, Klein and Moeschberger. (1996) Presented the results of.a
Monte Carlo study of the size and power of parametric and semi-
parametric approaches to influence the covariate effects in gurvwal
- (time-to-events) models' in the presence of model misspecification and
an independent censoring mechanism are reported. . Basic models
employed are a parametric model, where both a baseline distribution and
the dependence structure of covariates on the failure times are fully
specified (exponential, Weibull, logistic, log normal, and normal
regression models are studied), and a semi-parametric approach( due to
Cox) in which the baseline distribution is unspecified. ~Appropriate
parametric models have the potential of improving the size and power of
the tests, although overall they are not appreciably better than the Cox
model. ;

It may be helpful now to take demographers a little bit away from
theoretical modeling to applications.

15
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I11. Applications of Hazard Models in Demography

n the literature. The
h as birth intervals,
lysis, migration

A wealth of applications of hazard models appear 1
applications cover many vital-demographic areas suc
age at marriage, marriage duration, mortality, risk ana
issues, reproductive health, among many other areas.

Most of these applications are sequentially (between 1983 and 1998)

listed in the following.

1. Foster et al. (1983) inan unpublished paper, applied the hazard
~model, to the study of female reproductive development. It is
demonstrated that use of this method permits more detailed and
penetrating findings to be extracted from the kinds of retrospective have
only recently become available.

2. Rodriguez (1984) illustrated the application of proportional hazard
~ models or life tables with regression to the analysis of birth intervals,
using data from the Colombian National Fertility Survey conducted in
1976 as part of the world Fertility survey. The model describes the
family building process as a series of stages where women move
progressively for first birth to second birth, and so on, until they reach
their completed family size. The author then presents the proportional
hazards model, which can be implemented using a software package

for log-linear models.

3. Newman and McCulloch (1984) discussed two approaches that
economists have taken in analyzing the timing of births. This paper
formulates an empirical model appropriate for one of these approaches
and demonstrates its usefulness using household survey data from Costa
Rica. The hazard rate technique employed in this paper is a natural way
of modeling a broad class of problems where the occurrence of an event

is uncertain.

4.Trussel and Menken (1985) in a comparative study of the
determinants of birth-interval length using hazard - model analysis and
worlds Fertility Survey data, showed that use of contraception and

16
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breastfeeding arc important but that length of the previous interval also
has an effect. This variable may capture information on length and
cthicacy ol contraception use that is not available from direct measures.

5. Shoieb (1985) used the Hazard Model to study the influence of
Socio-demographic variables on initial and subsequent childbearing. .

6. Ofosu (1986) studied the application of hazard models to birth
interval data, with the measurement of recent fertility changes as th_e
main objective, The proportional hazards (PH) model (Cox, 1972) 1s
‘considered in the framework of nonparametric models, as well as in_ the
form of a Weibull failure model. A generalization to non-PH situations
is also attempted using the Weibull distribution as baseline. The results
are encouraging for both PH models, but inconclusive for the
generalized model.

7.Dewit, et al. (1987) applied the hazard model to study the Covariates
of birth spacing patterns in Panama. In this study data from the 1975
Panama World Fertility Survey were used to identify sources of
variation in birth spacing in the 2™ birth interval among 3004. women
20-49 years of age. Except for the age group 20-29 years, there was a
clear trend toward longer birth intervals with increasing age at 1st union
for women who married at age 18 years or above.

8. Anderson et al. (1987) estimated a proportional hazard model for the:
timing of age at marriage of women in Malaysia. They hypothesize that
age at marriage responds significantly to differences in male and female
occupations, race, and age. They found considerable empirical support
for the relevance of economic variables in determining age at marriage
well as evidence of strong differences in marriage patterns across races.

9.Matsushita and Inaba (1987) briefly described the concept of hazard
function in comparisons ‘ with life tables, where the force of mortality is
interchangeable with the hazard rate. The basic idea of failure time
analysis 1s summarized for the cases of exponential multiple decrement
life table is also introduced as an example of life time data analysis with
cause-specific hazard rates.
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10.- Gage (1987) presented an interesting set of mathematical hazard
models of mortality. In his study, a five parameter competing hazard
model of the pattern of mortality is described, and methods of fitting it
to survivorship, death rate, and age structure data are developed and
resented. The methods are then applied to published life table and
census data to construct life tables.

11. EI Rouby (1990) presented an interesting review paper on lifetime
survival function froma demographic perspective and demonstrates the
use of hazard models in mortality and pregnancy wastage analysis of the
Egyptian data.

12.Kitts (1991) in a hazard model analysis examined inferential of-
evidence of migration from the port-city of Viana do Castelo, Minho, is
considered in). This study is an attempt to analysis the determinants of
out - migration of the elite from the Portuguese city of Viana do Castelo
[from 1834-1931]. The data used are derived from reconstruction of this
electorate using record linkage methods.

13. Teachman and Schollaert (1991) studied direct and indirect effects
~of religion on birth timing: a decomposition exercise using discrete-time

hazard-rate models. The authors found that being Catholic has a variable

impact upon Ist-birth timing depending upon fhe manner in which the

dependent variable is measured. Where birth timing is measured as age .
- at 1st birth, Catholices' is slower than of non-Catholics.

14. Shoieb  (1991) compared level of fertility in urban and rural Egypt
utilizing a Hazard Model. '

15. Brecht and Michels (1991) outlined nonparametric techniques for
estimating the hazard function and then applied his formulation to the
analysis of return migration among guest - workers in West Germany.

16. Abn and Shariff (1992) considered a hazard model analysis

together with data from the Deémographic and Health Surveys are used to
develop a comparative study of fertility in Togo and Uganda.

18
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* 17. Guo (1993) used the sibling data to estimate family mortalit'y effects
in Guatemala. He pointed out that the parameter estimates yielded by
the multivariate hazard model are very similar (o those yielded by the
standard hazard model.  He defined the concept of the familial genetic
factors in the light of behavioral genetic theory.

18. Swenson and Thang (1993) used hazard model analysis in a study
of the determinants of birth intervals in Vietnam. This study assesses the
impact of selected determinants (birth order, birth intervals in Vietnam).
Retrospective data on 4172 eligible women aged 15-49 years and 13137
children were obtained from the 1988 Vietnam Demographic and Health
Survey. Hazard models were constructed for each birth order for birth
orders of two through five and over six.

" 19. Toulemon (1993) presented a method to calculate adjusted rates
from hazard regression parameters and adjusted probabilities from
logistic regression parameters. Login hazard regression software
produced estimates of instant rates. The odes explain cohabitation and

* marriage rates for childless women who have never lived before within a

« couple using data from the French Fertility Survey conducted from
. January to March 1988. :

20. Rodriguez (1994) introduced-a highly selective review of statistical
issues that arise in the application of hazard models to the analysis of
reproductive histories, focusing largely on the need to make explicit
provision in the model for unobserved sources of heterogeneity.

21. Pinto (1994), in a Doctoral dissertation, submitted to the University
of Wisconsin-Madison, used a hazard model to estimate the effects of
the independent variables on the resumption' of postpartum menses.
Simple life-table analyses confirmed longer anovulatory cycles among
women with a pattern of intense suckling/prolonged nursing (more than
eight times/day), poor nutrition, and a heavy work load. Significant for
postpartum contraception.
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ccess the-impact of

22, Kidd ¢ od i model to a :
o, IOGC L IOB)" <upplisi °@ shazhrd: mo lation captured via a

legislation on the divorce rate with the role of legis
time -varying covariant, '

23. Nair (1996) used Cox's proportional hazard model to est‘imate the
effects of socio-economic, demographic and proximate -variables on
birth intervals in Kerala (India).

24. Kravdal (1997) in studying the sociodemographic differentials' in
the elevated mortality from cancer, used a mixed additive-multiplicative
continuous-time hazard model with categorical covariates is suggested.
This model is a simple and plausible extension of the multiplicative
hazard model demographers are well acquainted witli. .

24, Shoieb (1998) in a study to determine what Socio- demographic
variables affect the onset of childbearing and the pace of subsequent
births used a proportional hazard model.

25, Smith and McClean (1998) described and apply selected
techniques used to analyze paired hazard rates when event times are
right -censored - and the techniques by looking at mortality patterns
husbands and wives. '

20
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VI. Conclusion

This paper has tried to introduce a self-contained article on hazard
models in D&mography. To this end, we have introduced the relevant
- material which we felt would be just enough for the reader to follow the
presentation. An almost complete coverage of published developments,
results, and applications of value to demographers followed this. We
believe that the contents of this paper could serve as a gbod start for any
researcher interested in linking hazard models to a demographic issue. -
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