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Abstract  Chlorophyll-a (Chl-a) is considered an 

important indicator for assessing many environmental 

issues. Monitoring Chl-a accurately through remote 

sensing technology is an efficient approach to observing 

water quality and providing early warnings of water 

eutrophication which overcomes the limitations in field 

campaigns as well as cost constraints. The Sentinel-2 

Multi-Spectral Imager (S2-MSI) was used to analyse 

El-Burullus Lake, which is considered the second-largest 

natural lake in Egypt. The Case-2 Regional/Coast Colour 

(C2RCC) atmospheric correction processor was applied to 

retrieve different optically active water constituents such 

as Chl-a, the total suspended matter and coloured 

dissolved organic matter, as well as vegetation indicators. 

The spatial distribution marked the eutrophicated areas 

about 87.2 % of El-Burullus Lake area which result from 

the inflow from a large number of polluted agricultural 

drains. The results of the validation between the captured 

S2-MSI Chl-a and in situ measurements confirmed a clear 

underestimation in the level of the retrieved C2RCC 

parameters as on average of 65.1 % for the Chl-a values. 

The low R2 values (below 0.1481) mean the bio-optical 

model better fits the variations in the in situ Chl-a content, 

as the F-test showed a significant level for all the 

parameters. All the results, which included low values for 

the mean bias error (MBE), root mean square error and 

normalized root mean square error; below 15.13, 28.05, 

and 1.005 values, respectively, demonstrated that the 

empirical model exhibits a good performance with the bio-  
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-optical model, and the positive MBE results indicated the 

underestimation in the in situ Chl-a data. Accordingly, the 

S2-MSI imageries proved their applicability for the 

efficient mapping, water quality assessment and 

sustainable protection of the lake ecosystem.  
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1 Introduction

 

Lakes and wetlands have ecological importance due to 

their role in biodiversity conservation, as they provide 

valuable socioeconomic services for fisheries and birds. 

Multiple human activities such as land reclamation, 

untreated wastewater discharge, and aquaculture have an 

adverse influence on their conservation potential globally 

[1] [2] [3]. Chlorophyll-a (Chl-a), the photosynthetic 

pigment in phytoplankton, is considered the main 

indicator for estimating many environmental issues such 

as water quality, algae biomass, and eutrophication [4]. 

The algae abundance and its correlated Chl-a 

concentrations fluctuate spatially and temporally in lakes, 

which makes monitoring in situ periodic Chl-a levels 

difficult due to the limited financial resources and spatial 

constraints, in addition to the significant time required [5]. 

In this context, remote sensing (RS) technology has an 

efficient ability for monitoring environmental changes in 

large-scale areas, as well as water pollution and vegetation 

activity, that overcomes the spatiotemporal limitations [6]. 

Thus, the retrieval of Chl-a concentrations and the 

accurate estimation of its controlling parameters, in terms  
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of the total suspended matter (TSM) and the coloured 

dissolved organic matter (CDOM), by RS has significant 

spatiotemporal advantages for effective water quality 

assessment [7]. The recent generation of high-resolution 

multispectral sensors, the Sentinel-2 Multi-Spectral 

Imager (S2-MSI), can significantly enhance the spatial 

resolution by 10 m, 20 m and 60 m in 13 spectral bands 

(every five days), distributed along the 

visible/near-infrared (VNIR) and short-wave infrared 

(SWIR) spectral bands for more accuracy [8] [9]. 

Therefore, Sentinel-2 is considered the best solution as it 

demonstrates good spectral resolution in capturing Chl-a 

levels, which is suitable for Chl-a estimation [10]. 

Numerous algorithms have been proposed for 

estimating optical constituents in water (Case-2 water), 

including empirical (statistical regression or end member 

selection), analytical (involving the mechanism of the 

radiative transfer equation in water), and semi-analytical 

(a combination between empirical and analytical) 

approaches [11]. Other ones, such as the bio-optical model, 

were initially developed to detect the optical properties of 

the water including phytoplankton and its breakdown 

substances based on the spectral measurements obtained 

from satellite images [12]. In Case-2 water (inland and 

coastal water bodies), the retrieval of Chl-a is more 

complex and less accurate because of the interaction 

between Chl-a, TSM, and CDOM [13]. Additionally, for 

Chl-a retrieval, it is necessary to enhance the atmospheric 

correction, as it is influenced by cloud cover [14]. 

The Case-2 Regional/Coast Colour (C2RCC) 

atmospheric correction processor has proved its capability 

in relation to Sentinel-2 data using a set of neural 

networks which determines the water-leaving radiance 

from the top-of-atmosphere (TOA) radiances, as well as 

the retrieval of the inherent optical properties (IOPs) of the 

water body [15]. Thus, remotely sensed water constituents 

(Chl-a, TSM, and CDOM) for analysing and monitoring 

are necessary to obtain an accurate estimation of the 

spatiotemporal water quality distribution, which results in 

a better understanding and sustainable protection of 

aquatic ecosystems. 

With the development of multispectral and 

hyperspectral RS technology, vegetation indices have been 

proposed to estimate the quantitative and qualitative 

assessment of vegetation cover, growth, water content and 

pigment composition, based on the electro-magnetic 

spectrum from canopies [16]. Three different vegetation 

indices were applied to derive the Chl-a content as an 

important bio-indicator from RS data, including the green 

normalized difference vegetation index (GNDVI), 

maximum chlorophyll index (MCI), and pigment-specific 

simple ratio (PSSRa). 

Therefore, the main objective of this research was to 

assess the water quality status based on Sentinel-2 images 

through the retrieval of Chl-a, TSM, and CDOM 

concentrations.  

For this purpose, empirical and bio-optical models were 

developed and validated with in situ Chl-a measurements, 

during which a statistical analysis was performed to 

examine the quantitative relationships between the water 

constituents and vegetation indices. 

2 Material and Methods 

2.1 Study Area 

These El-Burullus Lake, a shallow brackish lake 

considered the second-largest natural one in Egypt, 

displays typical lagoon characteristics, which extend along 

the Mediterranean Nile Delta of Egypt. Therefore, 

periodic monitoring of the ecosystem’s water quality is 

essential for protecting it from deterioration. El-Burullus 

Lake lies between the two main Nile River branches (the 

Rosetta and Damietta), extending between longitudes 30° 

30’ E and 31° 10’ E and latitudes 31° 21’ N and 31° 35’ N 

(Fig. 1a). It covers an area of approximately 455 km2, with 

a length of approximately 54 m parallel to the 

Mediterranean coast, a width varying between 3 and 12 

km, and water depths ranging from 0.4 to 2.5 m. 

The lake water body is discharged through eight 

agricultural drains, as well as being connected to fresh 

water from the Nile through the Brimbal Canal on the 

western side [17]. El-Burullus Lake receives 

approximately 3904 million m3/year of agricultural, 

industrial, domestic, and fish farm wastewater [18]. 

Numerous studies over the last four decades have 

indicated that the lake is suffering from a dramatic 

deterioration and aquatic surface area reduction, due to as 

the increasing irregulated urbanization and intensive 

anthropogenic activities, as well as more recently the 

impact of climate change, which have enhanced the 

eutrophication and vegetation growth [19] [20] [21] [22]. 

Moreover, RS technique was applied for mapping water 

quality parameters combined with field measurements to 

investigate its ablicability of assessment spatial and 

temporal changes along El-Burullus Lake [23] [24] [25]. 

For instance, Mohsen in 2021 applied field observations 

from (August 2010 to August 2013), in 2022, Hossen 

utilized data of 2015, and in situ measurements on 

September 2020 were carried out by Masoud in 2021. 
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Therefore, the recent one was selected to assess the water 

quality status based on Sentinel-2 images. 

Figure 1b illustrates the Sentinel-2 MSI False- colour 

Infrared (RBG) of El-Burullus Lake on 18 September 

2020, showing denser vegetation (B8) in red and water 

(B3) in blue.  

 

 

Fig. 1 Map of El-Burullus Lake (a) location of the study area 
including connections to agricultural drains and the Nile River, 
and In-situ stations, (b) Sentinel-2 MSI False-colour Infrared 

image on 18 September 2020 

 

2.2 Sentinel-2 Data and Image Processing 

The Sentinel-2 mission provides global coverage of the 

Earth’s surface every five days with a spatial resolution of 

10 to 60 m, and this short repetition cycle results in 

high-resolution optical imagery that can be used for 

mapping the surface water changes and capturing Chl-a 

variations. For the present study, freely available 

Sentinel-2 images were downloaded from the US 

Geological Survey (USGS) website Earth Explorer 

(https://earthexplorer.usgs.gov/). Sentinel-2 (Sentinel-2A, 

S2A/MSI) cloud-free imagery covering El-Burullus Lake 

was utilized for the analysis on 18 September 2020, as the 

only available cloud-free imagery that is nearly 

simultaneous with the in situ measurements which carried 

out during the period 22 to 25 September 2020.  With the 

Sentinel Application Platform (SNAP) software, which is 

offered without charge and has been developed to 

facilitate its utilization, the images were resampled to a 10 

m (B2 band) and subset to the mapped lake, displaying 

and processing the remotely sensed data [26]. Then, the 

atmospheric correction processor (C2RCC) was applied to 

produce the corrected normalized water-leaving radiances 

at bands 1 to 6 (rhown λ), which allows for the retrieval of 

different optically active water constituents such as Chl-a, 

TSM, and CDOM [27]. A flow-chart diagram of the 

research process and methodology is shown in Fig. 2.  

  

 

 

 

 

 

 

Fig. 2 Flow-chart diagram of the research methodology 

2.3 Vegetation Indices 

Vegetation and pigment indicators, including the green 

normalized difference vegetation index (GNDVI), 

maximum chlorophyll index (MCI), and pigment-specific 

simple ratio (PSSRa), were applied as remote sensing 

indices to identify the different concentration rates of 

chlorophyll. 

2.3.1 Green Normalized Difference Vegetation Index 

(GNDVI)   

The GNDVI was initially proposed by Gitelson et al. 

[28], who verified that GNDVI was resistant to 

atmospheric effects and more sensitive to chlorophyll                                          

 

content in a wide range of chlorophyll variations.  

It has been widely applied as the most common index 

for determining nitrogen uptake in plant canopy and 

pigment concentration studies [29].  

The GNDVI represents the vegetation’s chlorophyll 

concentration, which is derived from the difference 

between near-infrared radiation (NIR) (terrestrial 

(b) 

(a) 
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vegetation) and the green spectral (GREEN) reflectance of 

the electromagnetic spectrum [30] [31], with a range of - 1 

to 1, as shown in Equation 1:                                             

            

3.2 Maximum Chlorophyll Index (MCI) 

The MCI algorithm exploits the height of a 

measurement in a certain spectral band (B5, 705 nm) over 

a specific baseline, which passes through two other 

spectral bands (B4, 665 nm and B6, 740 nm) in Sentinel-2 

MSI data [32]. The MCI algorithm implemented in the S2 

MCI processor for floating vegetation and inland water 

bodies utilizes the TOA conditions as follows:  

 

     

 

 

Where L 1 and 3 indicate the spectral baseline 

wavelengths (B4, B6), L 2 the peak spectral band (B5), 

and λi centred at wavelength, while the k factor corrects 

the effect of thin clouds [33]. 

2.3.3 Pigment-Specific Simple Ratio (PSSRa) 

The PSSRa algorithm was developed by Blackburn [34] 

to investigate the potential of a range of spectral 

approaches for quantifying pigments at the scale of the 

whole plant canopy.  

The PSSRa represents the strongest and most linear 

relationships with the canopy concentration per unit of 

area of chlorophyll-a (Chl-a), chlorophyll-b (Chl-b) and 

the carotenoids (Cars) by applying a narrow-band pigment. 

It is derived from the simple ratio between the red edge 

(RED-EDGE) (central wavelength) B7 (783 nm) and red 

spectral radiation (RED) bandwidth B4 (665 nm) in 

Sentinel-2 data [35]. 

 

2.4 Validation Assessment 

Regression analyses with the coefficient of 

determination (R2) and the Pearson correlation coefficient 

(r)were applied to evaluate the models’ performance, using  

 

 

Minitab software. Moreover, the mean bias error (MBE), 

root mean square error (RMSE), and normalized root 

mean square error (NRMSE), as basic statistical indicators, 

were employed to quantify the forecasting differences and 

the dispersion between the estimated and in situ data. In 

Equations 3-5, low values indicate better model 

performance. 

 

        
 

where, N = number of observations, E = estimated value, 

and O = observed value. 

3 Results and Discussion 

3.1 Water Constituent Retrievals 

The distributions of the retrieved water parameters of 

Chl-a, TSM, and CDOM along El-Burullus Lake were 

extracted as optically active constituents by the 

atmospheric correction processor (C2RCC) in the SNAP 

program for processing the S2-MSI images on 18 

September 2020. The mosaic of processed images was 

extracted to the lake using geographic information system 

(GIS) software. Figure 3 shows high levels of Chl-a, TSM, 

and CDOM towards El-Boughaz and the centre of the lake 

parallel to the coastline. In addition to the abovementioned 

locations, more local highs were observed in front of 

Drain 7 for Chl-a content (Fig. 3a), in the eastern region 

next to the El-Burullus and El-Gharbia drains for TSM 

values (Fig. 3b), and additional increases in CDOM along 

the western area (Fig. 3c). The averages of the retrieved 

water constituents were 21.91 mg/m3, 19.13 g/m3, and 

0.463 m-1, for Chl-a, TSM, and CDOM, respectively. The 

content ranged from 0.0037 to 38.15 mg/m3 of Chl-a, 

0.0095 to 41.83 g/m3 of TSM, and 0.0002 to 0.8576 m-1 

of CDOM. These bloom areas of Chl-a, TSM, and CDOM 

are intensified by the discharge of large numbers of 

polluted agricultural drains into the lake. 
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Fig. 3 Sentinel-2 MSI retrieval images of water constituents (a) 

Chl-a, (b) TSM, and (c) CDOM along El-Burullus Lake on 18 

September 2020 

3.2 Vegetation and Pigment Indicators 

Spectral vegetation and pigment indicators including 

GNDVI, MCI, and PSSRa were calculated for biomass 

valuations. Figure 4a shows the spatial distribution of 

GNDVI with a good resolution in Sentinel-2 MSI images 

along El-Burullus Lake. The GNDVI ranges from -1 to 1, 

where the positive values represent the vegetation canopy 

areas, and the negative ones indicate the absence of 

vegetation. It is resistant to atmospheric corrections, since 

it is five times more sensitive to MSI Chl-a content, with a 

good correlation (r = - 0.882), and a linear regression (R2 

= 0.777). The high levels of GNDVI were observed 

towards the northern and the southern borders of the lake, 

especially next to the Tira, 7, 8, 9, and Hoksa drains. 

Figure 4b illustrates high values of MCI near El-Boughaz, 

the El-Burullus Drain and the centre of the lake parallel to 

the coastline, which corresponded to the distribution of 

Chl-a in Fig. 3a (r = 0.699), with a linear regression (R
2
 = 

0.646). The PSSRa was applied not only to estimate the 

vegetation biomass but also for monitoring its health 

across the lake through the interpretation of the active 

Chl-a content variations (Fig. 4c). The PSSRa distribution 

has a good correlation with the Chl-a content and GNDVI 

(r = -0.843 and 0.956) as well as a linear regression (R2 = 

0.711 and 0.914). The negative MSI Chl-a correlation with 

GNDVI and PSSRa could be due to the difference in the 

dependent variables in the behaviour of Chl-a and the 

vegetation indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Sentinel-2 MSI images showing vegetation indices (a) 

GNDVI, (b) MCI, and (c) PSSRa along El-Burullus Lake on 18 

September 2020 

3.3 Validation of the Bio-Optical Model 

The bio-optical model was validated by deriving the 

Chl-a content from a dataset of 55 in situ measurements 

distributed along El-Burullus Lake during 20 to 25 

September 2020, as shown in Fig. 1a. The 

physicochemical and biological analyses for the lake were 

performed in a recent study by Masoud et al. [25], who 

reported that the water status of El-Burullus Lake is 

hypertrophic, with wide variations in Chl-a content, 

(a) 

(c) 

(b) (a) 

(c) 

(b) 
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ranging from 53.76 to 129.03 mg/m3. Chl-a content was 

analysed spectrophotometrically according to Mackinney 

[36], at the laboratories of the National Institute of 

Oceanography and Fisheries (NIOF), Alexandria (Egypt). 

A statistical summary of the in situ Chl-a concentrations 

is illustrated in Table 1. The results indicated the bloom 

areas of Chl-a, which intensified in front of the eastern 

drains, as well as Drain 7 and Brimbal Canal in the west. 

A regression analysis of the in situ Chl-a data was 

performed against the derived Sentinel-2 MSI Chl-a, 

CDOM, TSM, and the vegetation indices GNDVI, MCI, 

and PSSRa. Due to the large difference between the 

observed Chl-a values (average = 83.43 mg/m3) and the 

derived Sentinel-2 MSI Chl-a concentrations (average = 

21.91 mg/m3), weak to fair correlation coefficients are 

presented in Table 2.  

Moreover, the determination coefficient (R2) scored low 

values near to zero, which clarified that the bio-optical 

model is not reliable for predicting the in situ Chl-a 

outcomes (Fig. 5). However, high values of R2 do not 

always relate to the strength of the regression analysis, 

because the quality of R2 depends on various factors, such 

as the small number of in situ data samples which were 

utilized and the fact that the samples were not taken at the 

same time as the images. Chl-a values are very sensitive to 

variations in time and space.  

Therefore, the F-test (hypothesis test) was applied to 

determine whether the relationship between the model and 

the in situ data was statistically significant. The results of 

the overall significance F-test demonstrated a significant 

level (P-value ˂ 0.05) for all parameters. Thus, the 

bio-optical model better fits the variations of in situ Chl-a 

content. 

 

 

Table 1 Statistics summary of the in situ Chl-a (mg/m3) content 

along El-Burullus Lake 

Min Max Mean Std. error Stand. dev Group … 

53.76 129.03 83.43 2.57 19.09 Channel … 

25 Prcntil 75 Prcntil Skewness Kurtosis 

66.05 97.03 0.39 -0.61 

 

Table 2 Channels arrangement 

 
MSI 

Chl-a 
CDOM TSM GNDVI MCI PSSRa 

In Situ Chl-a 0.013 0.014 -0.342 0.242 -0.343 0.299 
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Fig. 5 Regression analysis of the in situ data Chl-a content 

against the derived Sentinel-2 MSI Chl-a, CDOM, TSM, GNDVI, 

MCI, and PSSRa 

 

An empirical algorithm has been proposed for 

estimating and validating the empirical relationship 

between the in situ Chl-a values and the water-leaving 

radiances in sensor bands, including the band ratio and 

line height algorithms. The band ratio algorithm was 

applied to retrieve the Chl-a concentration, utilizing the 

NIR-red ratio, which is typically employed in turbid and 

CDOM enriched water bodies [37].  

The NIR-red ratio uses the near-infrared band between 

the 700 and 720 wavelengths, as well as the red band 

which is located in the range of maximum absorption for 

Chl-a between the 660 and 690 wavelengths, as displayed 

in Equation 6, developed by [38]. 

                

 

The line height algorithm, as the maximum 

chlorophyll index (MCI), was derived from the detection 

of surface blooming vegetation in wetlands, coastal areas 

and oceans [39], as in Equation 7: 

 

Where the value 0.53 is an index representing the ratio 

of wavelengths for the applied bands. 

 

Figure 6 illustrates the regression model of the in situ 

Chl-a values against the empirical algorithms, the band 

ratio (R705/R665), and the calculated MCI. The R2 scored 

low values, 0.032 and 0.126, and a negative Pearson’s 

correlation coefficient (r = 0.286 and 0.428) for the band 

ratio and calculated MCI, respectively. However, a high            

R2 was noted between the bio-optical model and the  

 

empirical model of the Chl-a estimation model, as shown 

in Fig. 7. The R2 values of the MSI Chl-a content against 

the band ratio and calculated MCI were 0.2164 and 0.4776, 

with high positive correlations (r= 0.462 and 0.690), 

respectively. 

To validate the performance of the in situ Chl-a values 

and the bio-optical model with the empirical model of the 

Chl-a estimation, the MBE, RMSE, and NRMSE were 

calculated. In Table 3, the MBE values were 130.59 and 

14.08, with RMSE values of 82.41 and 27.06, and 

NRMSE ones of 0.993 and 0.970, for the in situ Chl-a and 

the bio-optical model with the band ratio, respectively. 

However, for the in situ Chl-a and the bio-optical model 

with the line height algorithm, the values of MBE were 

133.75 and 15.13, the RMSE ones were 83.40 and 28.05, 

and the NRMSE ones were 1.004 and 1.005, respectively. 

All the outcomes with low values of MBE, RMSE, 

and NRMSE demonstrate that the empirical model has a 

good performance with the bio-optical model, and the 

positive MBE results indicate the underestimation in the in 

situ Chl-a data.  

Based on the outcomes in this study, the S2-MSI 

imageries proved their applicability for mapping and 

monitoring the bloom vegetation areas through retrieved 

water constituents. The spatial distribution of Chl-a, TSM, 

CDOM and the vegetation indices marked the 

eutrophicated areas along El-Burullus Lake which result 

from the inflow from large numbers of polluted 

agricultural drains into the lake. These bloom areas are 

consistent with the findings of previous works which 

indicated the areas of deterioration due to the intensive 

inflow from polluted drains along the lake [40] [7].  

Thus, S2-MSI data can be applied for efficient 

mapping and water quality monitoring for the assessment, 

better understanding and sustainable protection of the lake 

ecosystem, overcoming the limitations in field campaigns 

as well as cost constraints. 

However, the C2RCC algorithm failed to present 

accurate water constituents, underestimating the Chl-a 

content in a shallow and hypertrophic lake (˂ 2m depth). 

This could be attributed to turbidity and high values of 

TSM and CDOM, where CDOM absorbs at an increasing 

rate in the blue bands and masks the Chl-a absorption in 

the blue regions. The C2RCC presents the active optical 

properties in the visible and near-infrared wavelengths, 

indicated the abundance of algae, which consistent with 

the bloom areas of previous studies. These results confirm 

those of [15] [41] and [42], who reported the validity of 

the C2RCC algorithm for spatiotemporal Chl-a changes in 

inland waters. 



86            Walaa Assar   

 

 

 

 

 

Fig. 6 Regression analysis of the in situ data Chl-a content 
against the empirical algorithms, the band ratio (R705/R665), 
and the calculated MCI 

 

 

Fig. 7 Regression analysis of the derived MSI Chl-a 

concentration from the optical model against the empirical 
algorithms, the band ratio (R705/R665), and the calculated MCI 

 

 

 

 

Table 3 Statistical indicators of the in situ Chl-a and the derived 

MSI Chl-a (mg/m3) with the empirical algorithms, the band ratio 

(R705/R665), and the calculated MCI. 

In Situ Chl-a R
2
 r MBE RMSE NRMSE 

Band Ratio 0.032 -0.286 130.59 82.41 0.993 

Calculated MCI 0.126 -0.428 133.75 83.40 1.004 

MSI Chl-a      

Band Ratio 0.2164 0.462 14.08 27.06 0.970 

Calculated MCI 0.4776 0.690 15.13 28.05 1.005 

. 

4 Conclusion 

This study used high-resolution optical imagery from 

Sentinel-2 (S2A/MSI) for mapping and monitoring Chl-a 

variations along El-Burullus Lake, which is considered the 

second-largest natural lake in Egypt, on 18 September 

2020. C2RCC was applied as an atmospheric correction 

processor to retrieve different optically active water 

constituents such as Chl-a, TSM, and CDOM utilizing the 

SNAP program. The mosaic of processed images was 

extracted to the lake with GIS software. The results of the 

distribution of Chl-a, TSM, and CDOM illustrated high 

levels towards El-Boughaz and the centre of the lake 

parallel to the coastline. Moreover, the bloom areas are 

intensified by the discharge of large amounts of polluted 

agricultural drains into the lake. 

The average values were 21.91 mg/m3, 19.13 g/m3, and 

0.463 m-1, for Chl-a, TSM, and CDOM, respectively, and 

ranged from 0.0037 to 38.15 mg/m3 of Chl-a, 0.0095 to 

41.83 g/m3 of TSM, and 0.0002 to 0.8576 m-1 of CDOM. 

Additionally, the vegetation indicators (GNDVI, MCI and 

PSSRa) were utilized as remote sensing indices to identify 

different concentration rates of chlorophyll. The GNDVI 

is resistant to atmospheric corrections, as it is five times 

more sensitive to MSI Chl-a content, with a good 

correlation (r = - 0.882), and a linear regression (R2 = 

0.777). The high levels of GNDVI were noted towards the 

northern and the southern borders of the lake, especially 

next to the Tira, 7, 8, 9, and Hoksa drains. High values of 

MCI were observed near El-Boughaz, the El-Burullus 

Drain and the centre of the lake parallel to the coastline, 

which correspond to the distribution of Chl-a (r = 0.699), 

with a linear regression (R2 = 0.646).  
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Moreover, the PSSRa distribution has a good 

correlation with the Chl-a content and GNDVI (r = -0.843 

and 0.956) and a linear regression (R2 = 0.711 and 0.914). 

The negative MSI Chl-a correlation with GNDVI and 

PSSRa could be due to the difference between the 

dependent variables in the behaviour of Chl-a and the 

vegetation indices.  

For the bio-optical model validation, the Chl-a content 

was measured from 55 in situ data measurements recorded 

along El-Burullus Lake during 20 to 25 September 2020. 

The results of the validation between the retrieved 

Sentinel-2 MSI Chl-a and in situ concentrations confirmed 

a clear underestimation in the level of the retrieved 

C2RCC parameters as on average of 65.1 % for the Chl-a 

values. Despite the low values of R2, the bio-optical model 

better fits the variations of in situ Chl-a content, and the 

F-test showed a significant level (P-value ˂ 0.05) for all 

parameters. Secondly, the proposed empirical algorithms, 

including the band ratio and line height ones, were 

employed to calculate the Chl-a concentrations as well as 

the MCI. Three performance statistics (MBE, RMSE, and 

NRMSE), were applied to the in situ Chl-a values and the 

bio-optical model with the empirical model for Chl-a 

estimation. All the results, with low values for MBE, 

RMSE, and NRMSE, demonstrated that the empirical 

model exhibits a good performance with the bio-optical 

model, and the positive MBE results indicate the 

underestimation in the in situ Chl-a data.  

Accordingly, the S2-MSI imageries proved the 

instrument’s applicability for mapping and monitoring the 

bloom vegetation areas through the retrieved water 

constituents. The spatial distribution of Chl-a, TSM and 

CDOM as well as the vegetation indices marked the 

eutrophicated areas along El-Burullus Lake which result 

from the large amounts of inflow from polluted 

agricultural drains into the lake. Thus, S2-MSI data can be 

applied for efficient mapping and water quality monitoring 

for the assessment, better understanding and sustainable 

protection of the lake ecosystem, overcoming the 

limitations in field campaigns as well as cost constraints. 

However, the C2RCC algorithm failed to present accurate 

water constituents, underestimating the Chl-a content in a 

shallow and hypertrophic lake (˂ 2m depth).  
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