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Abstract: Among the various challenges in underwater 

exploration, the identification and classification of objects, 

especially metallic items, hold significant importance in diverse 

contexts. This paper introduces a comprehensive algorithmic 

framework leveraging ROVs and computer vision to detect and 

classify metallic objects in aquatic environments. The 

Experimental Design section outlines the multi-step process 

employed for underwater object detection using ROVs. The 

algorithm undergoes image enhancement, YOLOv3-based object 

detection, and CNN-based object classification. The dataset used 

for training and testing comprises a diverse set of underwater 

scenes with varying illumination, object sizes, and background 

complexities. The Results and Analysis section presents the 

performance evaluation of the integrated algorithm. Standard 

metrics for object detection, including Intersection over Union 

(IoU), precision, recall, and F1 score, are utilized. The algorithm 

demonstrates high accuracy in detecting various metallic objects  .

The comparative analysis of precision, recall, and F1 score across 

different classes further validates the algorithm's effectiveness in 

identifying and classifying specific objects underwater. 
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1. Introduction 

 

The exploration and expertise of underwater environments have end up vital factors of   

environmental monitoring [1], [2], and industrial applications. Remotely operated vehicles 

(ROVs) equipped with superior sensing technologies play a pivotal position in this 

exploration, enabling the commentary and documentation of submerged ecosystems[3], [4], 
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[5]. One essential aspect of underwater exploration involves the identification and category 

of items within those environments, with a specific emphasis on steel items because of their 

significance in various contexts [4]. The integration of computer vision techniques with ROV 

era has emerged as an effective technique to decorate the detection and classification of 

underwater gadgets[8-11]. This paper offers a comprehensive algorithmic framework 

designed to leverage the talents of ROVs and computer imaginative and prescient for the 

unique mission of detecting and classifying steel objects submerged in aquatic environments. 

Our methodology combines photo enhancement, item detection using YOLOv3, and the next 

type through a Convolutional Neural Network (CNN) to obtain correct and efficient 

consequences. The motivation at the back of this research stems from the growing demand 

for unique and automatic underwater object identification, particularly in scenarios in which 

metal objects preserve paramount significance. Applications variety from archaeological 

explorations to infrastructure inspections, in which the ability to discern the nature of 

submerged gadgets appreciably contributes to the fulfillment and safety of underwater 

missions [4]. 

Several works contribute to the understanding of methodologies, challenges, and innovations 

in underwater object detection. Fayaz, Parah, and Qureshi (2022) [12] conducted a 

comprehensive review of architectures and algorithms for underwater object detection, 

emphasizing the pivotal role of this process in various applications. Zhao et al. (2022) [13] 

presented an improved YOLOv4-tiny-based algorithm for real-time underwater object 

detection, addressing challenges in environments with limited computational resources. Han 

et al. (2020) [14] focused on intelligent computer vision for underwater autonomous 

operation, incorporating max-RGB and shades of grey methods for image enhancement. Yang 

et al. (2021) [15] tackled challenges in underwater object recognition, particularly 

seacucumber, scallop, and sea urchin images, demonstrating the effectiveness of YOLOv3. 

The aim of the study is to develop a robust framework for the detection, classification, and 

enhancement of metal objects, particularly focusing on underwater environments. This 

involves leveraging state-of-the-art techniques such as YOLOv3 for object detection and 

Convolutional Neural Networks (CNN) for object classification. Additionally, the study aims 

to enhance the accuracy and reliability of object detection through image enhancement 

techniques. By integrating these components into a unified pipeline, the goal is to achieve 

precise and efficient detection and classification of various metal objects, including cans, 

chains, anchors, and other relevant items. The ultimate objective is to provide a 

comprehensive solution for underwater metal object detection and classification, with 

potential applications in marine exploration, environmental monitoring, and underwater 

robotics. 

 

2. Setup Description  
 

2.1 Process Overview 

The methodology involves a multi-step procedure designed for ROVs engaged in underwater 

object detection, comprising Image Enhancement, Object Detection using YOLOv3, and 
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Object Classification using a CNN. These stages synergistically work to detect and classify 

underwater objects, with a specific emphasis on metallic objects. As shown in Figure 1 

 

 
Fig.1: Diagrammatic representation of the integrated algorithm for ROVs using computer 

vision for underwater object detection and classification. 

 

2.2 Image Enhancement Process 

The first stage focuses on enhancing underwater images to improve visibility and highlight 

potential objects of interest. This step is crucial for preparing input images for subsequent 

object detection. A combination of max-RGB and shades of grey techniques is employed to 

enhance weakly illuminated underwater images. 

Mathematical operations adjust pixel values to improve visual quality, with max-RGB 

method emphasizing the maximum values among the red, green, and blue channels. The shade 

of grey method converts the image to grayscale using appropriate weightings. 

The image enhancement process involves mathematical operations to modify pixel values and 

improve visual quality. Let 𝐼 represent the original underwater image. The max-RGB method 

is applied using the formula: 

 

𝐼max−RGB(𝑥, 𝑦) = max(𝐼R(𝑥, 𝑦), 𝐼G(𝑥, 𝑦), 𝐼B(𝑥, 𝑦))                                                                                   (1) 

 

where 𝐼R, 𝐼G, and 𝐼B are the red, green, and blue channels of the image, respectively. 

The shades of gray method involves converting the image to grayscale using appropriate 

weightings. 

 

𝐼gray (𝑥, 𝑦) = 0.299 ⋅ 𝐼R(𝑥, 𝑦) + 0.587 ⋅ 𝐼G(𝑥, 𝑦) + 0.114 ⋅ 𝐼B(𝑥, 𝑦)                                                 (2) 

 

2.3 Dataset Preparation 

The dataset includes annotated images with bounding boxes and class labels for objects of 

interest, categorized by domain experts. The dataset is split into training and testing sets to 

ensure balanced representation for algorithm generalization. 

 

Object detection  Classification  
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2.4 Training Procedure 

The integrated algorithm undergoes a two-step training process. Firstly, the YOLOv3 

component is trained on the annotated dataset, optimizing for accurate localization and 

bounding box predictions. Subsequently, the CNN-based object class module is trained on 

the same dataset, emphasizing the distinction between various object classes. For more 

accurate object classification, a pre-trained deep learning model, such as a CNN, is integrated. 

This model is trained on a diverse dataset to recognize various underwater objects. 

 

2.5 Object Detection with YOLOv3 

The second stage employs the YOLOv3 algorithm for robust object detection. YOLOv3 

efficiently identifies objects within images, providing bounding box coordinates and 

confidence ratings. The algorithm operates on enhanced underwater images, utilizing a 

trained model for efficient and accurate detection. YOLOv3 contributes significantly to 

overcoming challenges posed by the underwater environment, such as light scattering and 

absorption. The algorithm divides an image into a grid and predicts bounding boxes and class 

probabilities for each grid cell. The process involves multiple algorithmic steps for object 

detection. 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥                         (3) 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦                     (4) 

𝑏𝑤 =  𝑝𝑤𝑒𝑡𝑤                                      (5) 

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ                          (6) 

Pr ( Object ) ∗ IoU (𝑏, Object ) = 𝜎(𝑡𝑜)                 (7)  

 

Here, 𝑏𝑥, 𝑏𝑦 represent the center of the bounding box, 𝑏𝑤 , 𝑏ℎ represent its width and height, 

𝑝𝑤 , 𝑝ℎ are predefined anchors, 𝜎 denotes the sigmoid function, 𝑡𝑥 , 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ are outputs of the 

network, and 𝑐𝑥 , 𝑐𝑦 are cell offsets. Class Prediction: YOLO predicts the probability of each 

class for every bounding box. This is done using softmax activation over class scores: 

 

Pr  (Class 𝑖 ∣ Object) = 𝜎(𝑡𝑖)         (8) 

 

Here, 𝑡𝑖 is the output of the network representing the confidence score for class 𝑖. 

 

2.6 Object Classification with CNN: 

Following object detection, the third stage involves applying a trained CNN for object 

classification. The CNN distinguishes between various classes, including objects, vehicles, 

and the primary focus – metallic objects. Convolution Operation: The convolution operation 

is the core operation in CNNs, where a filter (also known as a kernel) slides over the input 

image to extract features. The output feature map 𝑂 is computed as: 
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𝑂𝑖,𝑗 = ∑  

𝑀−1

𝑚=0

∑  

𝑁−1

𝑛=0

𝐼𝑖+𝑚,𝑗+𝑛 ⋅ 𝐾𝑚,𝑛 + 𝑏.                                                                                                   (9) 

Here, 𝑂𝑖,𝑗 is the pixel value at position (𝑖, 𝑗) in the output feature map, 𝐼 is the input image, 𝐾 

is the convolution kernel, 𝑀 and 𝑁 are the dimensions of the kernel, and 𝑏 is the bias term. 

2. Activation Function: After convolution, an activation function is applied elementwise to 

introduce non-linearity into the network. The most commonly used activation function is the 

Rectified Linear Unit (ReLU), defined as: 

 

𝑓(𝑥) = max(0, 𝑥)                                                                                                                                           (10) 

 

Pooling Operation: Pooling layers down-sample the feature maps obtained after convolution 

to reduce spatial dimensions and control overfitting. The max-pooling operation computes 

the maximum value within each pooling window. The output 𝑂 is computed as: 

 

𝑂𝑖,𝑗 = max(𝐼𝑖:𝑖+𝑠,𝑗:𝑗+𝑠)                                                                                                                                  (11) 

Here, 𝑠 is the size of the pooling window. 

 

Fully Connected Layers: Fully connected layers are used to perform classification based on 

the features extracted by convolutional layers. The output of the last convolutional or pooling 

layer is flattened into a vector and passed through one or more fully connected layers. The 

output of the final fully connected layer is then passed through a softmax function to obtain 

class probabilities. 

 

𝑧 = 𝑊𝑥 + 𝑏
𝑦 = softmax (𝑧)

                                                                                                                                     (12) 

 

Here, 𝑥 is the input vector, 𝑊 is the weight matrix, 𝑏 is the bias vector, and 𝑦 is the output 

vector containing class probabilities. These equations capture the essence of how CNNs 

process input images, extract features, and perform object classification. Through the iterative 

optimization of weights and biases during training, CNNs learn to accurately classify objects 

in images. 

 

2.7. Enhancing Object Detection and Classification 

To improve the accuracy and robustness of object detection, the study transitions from a 

placeholder algorithm to integrating the YOLOv3 model. The algorithmic representation 

involves sequential execution of the processes – Image Enhancement, Object Detection with 

YOLOv3, and Object Classification with CNN. 
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3. Results and Analysis 

 

The performance of the integrated algorithm was rigorously evaluated using standard metrics 

for both object detection and image classification. The experiment employed a diverse dataset 

consisting of various underwater scenes, encompassing different lighting conditions, object 

sizes, and background complexities. The dataset comprised a mix of synthetic and real-world 

images obtained from ROV missions in various aquatic environments. 

 

3.1 Image Enhancement Process: 

The initial stage of the algorithm focused on enhancing underwater images to improve 

visibility and highlight potential objects of interest. Figure 2 illustrates the effectiveness of 

the image enhancement process. Subfigure (a) represents the original underwater image, 

subfigure (b) shows the image after the application of the max-RGB method, and subfigure. 

 

 
 

 
 

 
 

 
 

  
 

a b 

c d 

e f 
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Fig.2: Image Enhancement Process (a,c,e, and g) for original image ,(b,d,f, and h) for image after 

enhancement   

3.2 Object Detection with YOLOv3: 

The YOLOv3 algorithm was employed for robust object detection in underwater images. The 

algorithm demonstrated high accuracy in detecting various metal objects, including 

submerged robotic systems, cans, ships, anchors, and chains. Figure 3 showcases the results 

of object detection using YOLOv3, with subfigures (a-f) representing different detected metal 

objects. 

 
Fig. 3: object detection using YOLOv3 a. metal can, b. metal can, c. metal ship. D. metal anchor, e. 

metal chain, f. metal chain 

 

Table 1 presents the quantitative results of object detection accuracy before and after the 

image enhancement process. The metrics include Mean Intersection over Union (IoU), 

precision, recall, and F1 score. The image enhancement process significantly improved all 

metrics, indicating enhanced localization accuracy and classification performance. 

Before presenting the detailed results in Table 1, it is essential to emphasize the significance 

of image enhancement in addressing the challenges posed by underwater environments. The 

g h 
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original underwater images, often affected by factors such as low light, turbidity, and color 

attenuation, undergo a preprocessing stage to enhance visibility. This enhancement step is 

crucial for improving the quality of input data before object detection and classification. The 

subsequent table provides a comparative analysis, showcasing the performance metrics of 

object detection before and after image enhancement. By highlighting the impact of image 

enhancement on the effectiveness of the algorithm, this table aims to underscore the value of 

preprocessing techniques in overcoming visibility constraints and ultimately enhancing the 

accuracy of object detection and classification in challenging underwater conditions. 

Figures 4, 5, and 6 visualize the precision of detection for each class obtained using YOLO 

before and after image enhancement. 

 

Table 1: Object Detection Accuracy Before and After Image Enhancement 

Metric Before Enhancement (%) After Enhancement (%) 

Mean Intersection over Union 80 85 

Precision 85 92 

Recall 78 88 

F1 Score 82 90 

 

 

Fig.4: Under water cans detection with enhancement. a. metal cans   detection, b. metal cans 

enhancement and detection 

 

 
 

Fig.5: Metal robe detection with enhancement. a. metal chain detection, b. metal chain 

enhancement and detection 

b 

b 
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Fig.6: Anchor detection with enhancement a. metal anchor detection,b. metal anchor enhancement , 

c. metal anchor enhancement and detection 

 

3.4 Image Classification with CNN 

The CNN-based image classification model was applied to identify specific objects detected 

in the underwater scenes. The model successfully classified various metal objects with high 

confidence. 

 
Fig.7: Object Detection and Classification Results Comparison a. ship b. can. c. chain. d. anchor 

 

Table 2: provides a summary of precision values for different classes obtained from both 

CNN and YOLO models. 

 

 

 

b 
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Table 2: Precision of Classification 

Class Precision (CNN) Precision (YOLO) 

Cans 0.87 0.85 

Ship 0.93 0.90 

Anchor 0.89 0.86 

Chain  0.89 0.87 

These precision values highlight the CNN model's tendency to produce fewer false positives, 

resulting in a more accurate identification of each object class. 

 

3.5 Detection Accuracy Before and After Image Enhancement 

 The decision to assess detection accuracy before and after image enhancement serves several 

purposes in the study. Firstly, it allows for a comprehensive evaluation of the impact of image 

enhancement techniques on the performance of object detection algorithms. By comparing 

detection results before and after enhancement, researchers can quantify any improvements 

or degradation in accuracy attributed to the enhancement process. Secondly, analyzing 

detection accuracy before enhancement provides a baseline reference point for evaluating the 

effectiveness of image enhancement methods. It helps establish the initial performance level 

of the object detection system without any preprocessing, enabling researchers to gauge the 

significance of enhancements in improving visibility and object recognition. 

Furthermore, conducting detection accuracy assessments before and after image enhancement 

facilitates a deeper understanding of how various enhancement techniques affect different 

aspects of detection performance, such as object localization, classification, and overall 

detection rates. This comparative analysis aids in identifying the specific strengths and 

limitations of each enhancement method and guides the selection of optimal techniques for 

improving detection accuracy in underwater environments. In summary, evaluating detection 

accuracy before and after image enhancement is crucial for validating the effectiveness of 

enhancement techniques, establishing baseline performance metrics, and gaining insights into 

the impact of enhancements on object detection outcomes.) 

Table 3 illustrates the detection accuracy metrics before and after the image enhancement 

process. The metrics include Mean Intersection over Union (IoU), precision, recall, and F1 

score. The image enhancement process substantially improved all metrics, indicating 

enhanced localization accuracy and classification performance. 

 

Table3: Object Detection Accuracy Before and After Image Enhancement 

Metric Before Enhancement (%) After Enhancement (%) 

Mean IoU 80 85 

Precision 85 92 

Recall 78 88 

F1 Score 82 90 
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In Figure 8, we present a comprehensive comparison of key metrics (Mean IoU, Precision, 

Recall, F1 Score) pertaining to ladder, Can, Chain, and Ship detection throughout the training 

process. The graph provides insights into the model's performance, showcasing the evolution 

of each metric over successive epochs. The rising or stabilizing trends indicate the 

effectiveness of the model in accurately identifying ladder objects in the given dataset. 

 

  

 
 

Fig.8: Comparison of metrics (Mean IoU, Precision, Recall, F1 Score) for ladder, Can, Chain, and 

ship detection across multiple epochs.  Each line represents the trend of a specific metric as the 

model is trained over successive epochs. 

 

 

4. Discussion 

 

The presented algorithm demonstrates robust performance in underwater object detection, 

achieving high accuracy across key metrics, including Intersection over Union (IoU), 

precision, recall, and F1 score. The algorithm attains a precision rate of 92%, indicating a 

minimal false-positive rate and accurate object identification. A recall of 88% highlights the 

algorithm's effectiveness in capturing a substantial portion of relevant instances within the 

underwater images. The F1 score, reaching 90%, underscores the balanced performance of 

the algorithm in terms of both precision and recall. 

A distinctive aspect of this study is its specific focus on metal object recognition within 

underwater images. The algorithm showcases remarkable accuracy in identifying and 

c 

a b 

d 
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categorizing various metal entities, including robotic devices, cans, ships, and anchors. This 

capability holds significant implications for applications in marine maintenance, 

environmental monitoring, and underwater exploration [16], [17], addressing the unique 

challenges presented by metal objects in underwater environments. 

Acknowledging challenges and limitations is imperative for a nuanced interpretation of the 

study's outcomes. Underwater environments pose inherent complexities, such as varying light 

conditions, color distortion, and occlusions, which can influence the algorithm's performance 

[18]. The accuracy of the study may be contingent on the quality and diversity of the training 

data, emphasizing the importance of a well-curated dataset for robust model generalization. 

In comparison with prior works in the field of underwater object detection [3], [13], [15], [19] 

(those papers are about underwater object detection), the presented algorithm showcases 

competitive or superior performance. The integration of YOLOv3-based object detection with 

a specialized metal object recognition approach contributes to the algorithm's effectiveness in 

diverse underwater scenarios. 

  

 

5. Future Work 

 

In the realm of future research and development, our integrated algorithm presents promising 

outcomes in underwater object detection and classification, paving the way for further 

advancements. Firstly, there is a scope for enhanced object classification, urging refinement 

and expansion of the algorithm's classification capabilities to encompass a broader spectrum 

of underwater entities, such as various marine species, geological formations, and artificial 

structures. This could involve integrating sophisticated deep learning models specifically 

designed for underwater imagery, thereby enhancing the algorithm's recognition capabilities 

across diverse categories. Additionally, investigating real-time implementation strategies to 

optimize computational efficiency during Remotely Operated Vehicle (ROV) operations 

becomes crucial. Exploring lightweight deep learning models and parallel processing 

techniques can address the constraints of onboard computing resources, ensuring the 

algorithm's speed without compromising accuracy. Furthermore, extending the algorithm's 

applicability to different underwater environments and varying conditions would contribute 

to its robustness and adaptability. The continuous evolution of computer vision and deep 

learning techniques offers exciting opportunities for refining and expanding the capabilities 

of underwater object detection and classification systems, providing valuable insights for both 

marine exploration and environmental monitoring. 
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تعزيز اكتشاف وتصنيف الأجسام الموجودة تحت الماء باستخدام مركبة تعمل 

 عن بعد والرؤية الحاسوبية 
 

 الملخص العربي:

 
التي   المختلفة  التحديات  بين  وخاصة من  الأشياء،  وتصنيف  تحديد  فإن  الماء،  تحت  الاستكشاف  تواجه 

العناصر المعدنية، لهما أهمية كبيرة في سياقات متنوعة. تقدم هذه الورقة إطارًا خوارزميًا شاملاً يستفيد 

ورؤية الكمبيوتر لاكتشاف وتصنيف الأجسام المعدنية في البيئات المائية. يوضح  ROVs من المركبات

باستخدام  الماء  تحت  الأجسام  عن  للكشف  المستخدمة  الخطوات  متعددة  العملية  التجريبي  التصميم  قسم 

إلى .ROVs المركبات المستندة  الكائنات  لتحسين الصورة واكتشاف  الخوارزمية   YOLOv3 تخضع 

إلى المستند  الكائنات  على  .CNN وتصنيف  والاختبار  للتدريب  المستخدمة  البيانات  مجموعة  تشتمل 

عة متنوعة من المشاهد تحت الماء ذات الإضاءة المتفاوتة وأحجام الكائنات وتعقيدات الخلفية. يعرض  مجمو

قسم النتائج والتحليل تقييم أداء الخوارزمية المتكاملة. يتم استخدام المقاييس القياسية لاكتشاف الكائنات، بما 

تظُهر الخوارزمية دقة عالية في  .F1 ، والدقة، والاستدعاء، ودرجة(IoU) في ذلك التقاطع عبر الاتحاد

عبر فئات مختلفة  F1 اكتشاف الأجسام المعدنية المختلفة. ويؤكد التحليل المقارن للدقة والاستدعاء ودرجة

  . وتصنيف كائنات معينة تحت الماء فعالية الخوارزمية في تحديد


