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Abstract 

A new distribution with two parameters named a discrete of the 

novel alpha power transformed exponential (DNAPTE) distribution is 

introduced using the survival of discretizing approach. Some of the 

statistical properties are obtained for the new distribution such as 

survival, hazard rate, alternative hazard rate functions, moments, and 

order statistics. Maximum likelihood method is applied under Type II 

censored samples for estimating the unknown parameters, survival and 

hazard rate function of the proposed model. A simulation study is 

carried out to illustrate the theoretical results of the maximum 

likelihood estimation. Finally, the DNAPTE distribution is adopted for 

fitting the number of COVID-19 deaths in China and Europe countries.  

Keywords: Discrete novel alpha power transformed exponential 

distribution; Order statistics; Type II censored samples; Maximum 

likelihood method; A simulation study; COVID-19 data. 
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1. Introduction 

The discrete probability distributions have great importance in 
modeling real count data in many applied sciences such as public 
health, medicine, agriculture, epidemiology, and sociology. Several 
discrete distributions were introduced for modeling count data. 
However, some traditional discrete models such as Poisson, Geometric 
distributions have limited applications in reliability, failure times and 
count. Some real count data show either under-dispersion or over-
dispersion. This has motivated several statisticians to explore new 
discrete models based on classical continuous distributions for 
modeling discrete failure times and reliability data. In the last two 
decades. Nowadays, the authors introduced discrete models by the 
discretization of continuous distribution for example: Krishna and 
Pundir (2009) proposed discrete analogues of the Pareto and Burr 
distribution, Gomez-Deniz (2010) introduced the discrete generalized 
exponential distribution, and Jazi et al. (2010) introduced the discrete 
inverse Weibull distribution. However, there is still a clear need to 
construct more flexible discrete distributions to serve several applied 
areas such as social sciences, economics, and reliability studies to 
properly suit different types of count data. Furthermore, Kamari et al. 
(2016) applied Bayesian approach under two types of loss functions: 
squared error and absolute error. Also, Para and Jan (2016) used the 
ML estimation of the unknown parameters of discrete Burr Type XII 
distribution and discrete Lomax distribution. While AL-Babtain et al. 
(2020a, 2020b) introduced the new two discrete models named the 
discrete Poisson - Lindley and discrete Lindley distributions and the 
natural discrete Lindley distribution, respectively. Al-Metwally et al. 
(2020) introduced a new distribution named discrete Marshall Olkin 
inverse Topp Leone distribution. Eliwa et al. (2020) proposed a new 
flexible discrete family of distributions, named discrete Gompertz-G 
family of distributions. In addition, El-Morshedy et al. (2020a, 2020b) 
introduced the discrete Burr-Hatke and exponentiated discrete Lindley 
distributions, respectively. Almazah et al. (2021) proposed the 
transmuted record type Geometric distribution. Aljohani et al. (2021) 
introduced the uniform Poisson–Ailamujia model. Also, EL deep et al. 
(2021) proposed a new distribution named discrete Ramos Louzada 
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distribution. While Shafgat et al. (2021) proposed a new discrete 
Nadaraiah and Haghighi distribution. A new distribution with two 
parameters named discrete inverted Kumaraswamy (DIK) distribution 
is introduced by El-Helbawy et al. (2022). Also, EL-Morshedy et al. 
(2022) proposed a flexible discrete family of distributions named 
discrete odd Weibull-G family of distributions. Then, Chesneau et al. 
(2022) proposed a new distribution with one parameter heavy tailed 
discrete inverse Burr distribution using the general approach of 
discretization of continuous distribution.  

The rest of the paper is organized as follows: discrete of a novel 
alpha power transformed exponential (DNAPTE) distribution is 
introduced, and some statistical properties are given in Section 2. 
While, in Section 3, maximum likelihood (ML) estimators are derived 
of the unknown parameters. The efficiency of the introduced estimation 
is assessed via simulation study and results are presented in Section 4. 
Section 5 provides two real applications to COVID -19 data of the 
DNAPTE distribution. Conclusion is discussed in Section 6. 

2. Discretizing a Continuous Distribution 

The general approach of discretizing a continuous variable can be 
used to construct a discrete model by introducing a grouping on the 
time axis see Roy (2003, 2004). If the crv, X has the sf, 𝑆(𝑥) =
𝑃(𝑋 ≥ 𝑥) and times are grouped into unit intervals so that the drv of 
X denoted= [𝑋]; which is the largest integer less than or equal to x, 
will have the probability mass function (pmf). 

The probability mass function (pmf) is a mathematical function that 
calculates the probability a discrete random variable will be a specific 
value. pmf also describe the probability distribution for the full range 
of values for a discrete variable. A discrete random variable can take 
on a finite or countable infinite number of possible values, such as the 
number of heads in a series of coin flips or the number of customers 
who visit a store on a given day. 
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𝐏(𝐱) =  𝐒(𝐱) −  𝐒(𝐱 + 𝟏)      , 𝐱 = 𝟎, 𝟏, 𝟐, …                                         
(1) 
The pmf of the drv, dX can be viewed as discrete concentration of pdf 
of X. So, given any continuous distribution it is possible to construct 
corresponding discrete distribution using (1). 
One of the advantages of applying this approach of discretizing is that 
the sf for discrete distributions has the same functional form of the sf 
for the continuous distributions; as a result, many reliability 
characteristics and properties remain unchanged. Thus, discretization 
of a continuous lifetime model according to this approach is an 
interesting and simple approach to derive a discrete lifetime model 
corresponding to the continuous one. 

2.1  Construction of discrete a novel alpha transformed exponential 
distribution. 

Mashwani et al. (2021) proposed a new flexible family of 
distributions, named New Alpha Power Transformed NAPT family of 
distributions. A New Alpha Power Transformed Exponential NAPTE 
distribution is introduced as a special case of this family. They 
obtained some of the statistical properties for the NAPTE distribution. 
The model parameters have been estimated by the ML method. The 
pdf of A NAPTE distribution is given by 

𝒈(𝒙; 𝜶, 𝜷) =
𝐥𝐧(𝜶)𝜷𝜶

𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙ቁ

𝒆𝜷𝒙ି𝟏
,          𝒙 > 𝟎     ,    𝜶, 𝜷 > 𝟎            (2) 

where are 𝛼 𝑎𝑛𝑑 𝛽 shape parameters and should be positive. 
The corresponding cdf and sf are, respectively, given by 

𝑮(𝒙; 𝜶, 𝜷) = 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯,          𝒙 > 𝟎     ,    𝜶, 𝜷 > 𝟎                  (3) 
and 
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𝑺(𝒙) = 𝟏 − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯,          𝒙 > 𝟎     ,    𝜶, 𝜷 > 𝟎            (4) 
Using (1) dX can be viewed as the discrete analogue to the continuous 
NAPTE variable X, and is commonly said to follow DNAPTE 
distribution with two parameters 𝛼 𝑎𝑛𝑑 𝛽, denoted by DNAPTE (𝛼, 𝛽) 
distribution, where the corresponding  pmf of dX can be written as 

𝒑(𝒙) =  𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯           ,   𝒙 = 𝟎, 𝟏, 𝟐, …      
 (5) 

and the cdf, sf and hrf are as follows: 

𝑭(𝒙) =  𝟏 − 𝑺(𝒙) +  𝑷(𝒙) = 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯,   𝒙 = 𝟎, 𝟏, 𝟐, …         (6) 

𝑺(𝒙) = 𝟏 − 𝑭(𝒙) +  𝑷(𝒙) = 𝟏 − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯,   𝒙 = 𝟎, 𝟏, 𝟐, …        (7) 
and 

𝒉(𝒙) =  
𝑷(𝒙)

𝑺(𝒙)
=  

𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷(𝒙శ𝟏)ቁ

ି𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙ቁ

𝟏ି𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙ቁ

   , 𝒙 = 𝟎, 𝟏, 𝟐, … ;  𝜶, 𝜷 > 𝟎  (8) 

There are some problems associated with the definition of ℎ(𝑥), three 
of the more notable ones are given below: 

a. ℎ(𝑥)is not additive for series system. 
b. The cumulative hrf, 𝐻(𝑥) = ∑ ℎ(𝑥) ≠ − ln 𝑆(𝑥). 
c. ℎ(𝑥) ≤ 1 and it has the interpretation of a probability. [For 

more details, see Xie et al. (2002) and Lai (2013) and (2014)]. 

Therefore, it was necessary to find an alternative definition that is 
consistent with its continuous counterpart. Roy and Gupta (1992) 
provide an excellent alternative definition of a discrete hrf denoted 
by ℎଵ(𝑥): 

𝒉𝟏(𝒙) = 𝐥𝐧 ቂ
𝒔(𝒙)

𝒔(𝒙ା𝟏)
ቃ = 𝐥𝐧 ቈ

𝟏ି𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙ቁ

𝟏ି𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷(𝒙శ𝟏)ቁ

     , 𝒙 = 𝟎, 𝟏, 𝟐, … ;  𝜶, 𝜷 > 𝟎  (9) 

There is a relationship between ℎଵ(𝑥) and ℎ(𝑥), given by: 
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 𝒉(𝒙) = 𝟏 − 𝒆ି𝒉𝟏(𝒙)                                                                   
 (10) 
Plots of pmf and hrf of DNAPTE distribution are presented, 
respectively, in Figures 1 to 2, for some selected values of the 
parameters.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 1: The plots of the probability mass function 
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Figure 2: The plots of the hazard rate function 

Figure 1 shows that the pmf of DNAPTE distribution can be 
decreasing and increasing according to the selected values of the 
parameters. While Figure 2 the hrf of DNAPTE (𝛼, 𝛽 ) distribution is 
increasing, decreasing and bathtub so the DNAPTE (𝛼, 𝛽 ) distribution 
provides a good fit to several data in literature. 

2.2 Some properties of discrete a novel alpha Power transformed 
exponential distribution 

This section is devoted to obtain some important statistical properties 
of DNAPTE (𝛼, 𝛽 ) distribution, such as the mode, 𝑟௧ moments and 
order statistics. 
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2.2.1 The moments of discrete a novel alpha power transformed exponential 

         Distribution 
      In this subsection, non-central, central and standard 
moments are obtained.  
a. The non-central moments of the discrete a novel alpha power 

transformed exponential distribution 
The non-central moments of DNAPTE distribution can be obtained 
using (5) as follows: 
𝝁𝒓

ᇱ = 𝑬(𝒙𝒓) =  ∑ 𝒙𝒓 𝒑(𝒙)ஶ
𝒙ୀ𝟎   

      =  ∑ 𝒙𝒓ஶ
𝒙ୀ𝟎 ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ , 𝒓 = 𝟏, 𝟐, 𝟑, 𝟒           (11) 

In particular, the mean (𝜇) of DNAPTE distribution is given by 

𝝁𝟏
ᇱ =  𝝁 =  ∑ 𝒙 ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃஶ

𝒙ୀ𝟎 .                    (12)         

b. The central moments of the discrete a novel alpha power 
transformed exponential distribution 

The central moments can be derived using the relation between the 
central and non-central moments as given below 

𝝁𝒓 =  ∑ ቀ𝒓
𝒋
ቁ𝒓

𝒋ୀ𝟎  (−𝟏)𝒋 𝝁𝒋 𝝁𝒓ି𝒋,       𝒓ୀ𝟏,𝟐,…
ᇱ                                     (13) 

thus, the variance (var) of DNAPTE distribution is 

𝝁𝟐 =  ∑ 𝒙𝟐  ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ −ஶ
𝒙ୀ𝟎

𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ − ቄ∑ 𝒙 ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃஶ
𝒙ୀ𝟎 ቅ

𝟐

 .          (14) 
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c. The standard moments of the discrete a novel alpha power 

transformed exponential distribution 

The 𝑟௧ standard moments can be obtained as follows: 

𝒂𝒓 = 𝑬(
𝒙ି𝝁

𝝈
)𝒓.  (15) 

The skewness and kurtosis of the DNAPTE distribution are given by, 
respectively, 
 

 𝛼ଷ =
ఓయ

ఓమ
భ.ఱ   and 𝛼ସ =

ఓర

ఓమ
మ ,  Where   μ୰, is given by (18)   and r = 1, 2, 

…. 

Table 1: The mean, standard deviation (SD), skewness (SK), 
 Kurtosis (KT) and coefficient of variation (CV) of DNAPTE 

distribution 
𝛼 𝛽 �̀�ଵ SD SK KT CV 

0.25 

0.25 0.2125 3.7876 9.15294 3.16235 17.8241 
0.5 0.15 4.48424 12.9667 4.48 29.8949 
0.75 0.0875 5.56234 22.2286 7.68 63.5684 
1.25 0.3704 2.67634 5.25106 1.814 7.2255 
1.5 0.19711 3.93794 9.86737 3.409 19.978 

0.5 

0.25 0.3000 3.09795 6.4833 2.24 10.3265 
0.5 0.425 2.40133 4.57647 1.58118 5.6501 
0.75 0.3469 2.8073 5.60647 1.93704 8.09211 
1.25 0.43843 2.33912 4.4363 1.53275 5.33524 
1.5 0.44829 2.29464 4.3387 1.49904 5.1187 

0.75 

0.25 0.6375 1.5904 3.05098 1.05412 2.49475 
0.5 0.45 2.2870 4.32222 1.49333 5.08226 
0.75 0.2625 3.36501 7.40952 2.56 12.8191 
1.25 0.6576 1.52819 2.95753 1.02183 2.32374 
1.5 0.5209 1.99439 3.73391 1.29007 3.82873 

1.25 

0.25 1.0625 0.56875 1.83059 0.63247 0.53529 
0.5 0.75 1.26536 2.5933 0.896 1.687145 
0.75 0.4375 2.34336 4.44571 1.536 5.35624 
1.25 0.86817 0.97274 2.24035 0.77404 1.12045 
1.5 2.355 0.6081 1.86696 0.64504 0.583696 
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2.2.2 Entropy 

The average quantity of "information," "surprise," or "uncertainty" 
present in a random variable's potential outcomes is measured by a 
random variable's entropy in accordance with information theory. 
Renyi entropy (RE), (see Renyi (1961)), is a fundamental entropy. It is 
a key sign of complexity and ambiguity in many fields, such as 
statistical inference, physics, econometrics, and pattern recognition in 
computer science. You could enter ( 𝜌 >  0, 𝜌 ≠ 1, as the RE 
specification for the DNAPTE distribution. 

𝑅𝐸(𝜌) =
ଵ

ଵିఘ
𝑙𝑜𝑔 ∑ 𝑝௫

ఘஶ
௫ୀ (𝑥),  

              =
ఘ

ଵିఘ
𝑙𝑜𝑔 ∑ ቄ𝛼୪୬൫ଵିషഁ(ೣశభ)൯ − 𝛼୪୬൫ଵିషഁೣ൯ቅஶ

௫ୀ .   

Shannon entropy (SE), another well-known entropy, can be obtained 
as a special case of RE as 𝜌 → 1, where 𝑆𝐸 = − 𝐸[𝑙𝑜𝑔 𝑝(𝑥)]. 

2.2.3 The order statistic of the discrete a novel alpha power 
transformed exponential distribution 

Let 𝐹(𝑥; 𝛼, 𝛽); the cdf of the 𝑖௧ order statistic for a random sample 
𝑋ଵ, 𝑋ଶ, … , 𝑋 , from the DNAPTE (𝛼, 𝛽) distribution, is given by  

𝑭𝒊(𝒙;  𝜶, 𝛃) =  ∑ ൫𝒏
𝒓
൯𝒏

𝒓ୀ𝒊  [ 𝑭(𝒙;  𝛃 , 𝜶)]𝒓 [𝟏 − 𝑭(𝒙;  𝛃 , 𝜶)]𝒏ି𝒓.        (16) 

Using the binomial expansion for [1 − 𝐹(𝑥; 𝛼, 𝛽)]ି and 
substituting (6) in (21), where 

 𝑭𝒊(𝒙;   𝜶, 𝜷) =  ∑ ൫𝒏
𝒓

൯𝒏
𝒓ୀ𝒊  [ 𝑭(𝒙;  𝜶, 𝜷)]𝒓  ∑ ቀ𝒏ି𝒓

𝒋
ቁ𝒏ି𝒓

𝒋ୀ𝟎  (−𝟏)𝒋 [ 𝑭(𝒙;  𝜶, 𝜷)]𝒋   =

 ∑ ൫𝒏
𝒓
൯𝒏

𝒓ୀ𝒊  ∑ ቀ𝒏ି𝒓
𝒋

ቁ𝒏ି𝒓
𝒋ୀ𝟎  (−𝟏)𝒋  ቂ 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቃ

𝒓ା𝒋
.            (17) 
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Special cases 

Case I: If  i=1 in (22) one can obtain the distribution function of 
the first order statistic, as given below 

𝑭𝟏(𝒙;  𝜶, 𝜷) = 𝟏 − [𝟏 − 𝑭(𝒙;  𝜶, 𝛃 )]𝒏 = 𝟏 − ቂ𝟏 −  ቀ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቁቃ
𝒏

.  

(18) 
Case II: If i = n in (22) the distribution function of the largest 
order statistic, as follows: 

𝑭𝒏(𝒙;  𝜶, 𝛃) = [𝑭(𝒙;  𝜶, 𝛃 )]𝒏 =  ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቃ
𝒏

,    (19) 

which is the cdf of DNAPTE (𝛼, 𝛽), and the sf of DNAPTE ( 𝑛, 𝛽 ) is 

𝑺(𝒙) =  𝟏 −  ቀ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቁ
𝒏

.                                      (20) 

Suppose that X1, X2, X3, ..., Xn is a random sample from the DNAPTE 
distribution with two parameters α and β. Let X1:n, X2:n, X3:n, ... , Xn:n 
denote the corresponding order statistics. Then, the pmf of Xi:n, is 
defined by: 

𝑷(𝑿𝒊:𝒏 = 𝒙) =  
𝒏!

(𝒊ି𝟏)!(𝒏ି𝒊)!
∫ 𝒗𝒊ି𝟏(𝟏 − 𝒗)𝒏ି𝒊𝒅𝒗

𝑭(𝒙)

𝑭(𝒙ି𝟏)
.           (21) 

Using the binomial expansion for(1 − 𝑣)ି, then the pmf in (26). 

𝑃(𝑋: = 𝑥) =  
!

(ିଵ)!(ି)!
 ∑ ቀି


ቁି

ୀ (−1) ∫ 𝑣ା௩ିଵ𝑑𝑣
ி(௫)

ி(௫ିଵ)
=

 
!

(ିଵ)!(ି)!
 ∑ ቀି


ቁି

ୀ (−1)  ቀ
ଵ

ା
ቁ  

× ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቃ
𝒊ା𝒋

− ቂ 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ
𝒊ା𝒋

൨.  (22) 
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The pmf of the smallest order statistic is obtained by substituting 
i=1 in (27) as follows:   

𝑷(𝑿𝟏:𝒏 = 𝒙) = 𝒏 ∑ ቀ𝒏ି𝟏
𝒋

ቁ𝒏ି𝟏
𝒋ୀ𝟎 (−𝟏)𝒋  ቀ

𝟏

𝟏ା𝒋
ቁ × ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቃ

𝟏ା𝒋

−

ቂ 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ
𝟏ା𝒋

൨.                                                                  (23) 

And, the pmf of largest order statistic is obtained by substituting 
i=n in (27) as follows: 

𝑷(𝑿𝒏:𝒏 = 𝒙) = ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ቃ
𝒏

− ቂ 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ
𝒏

.             (24) 

Also, (22) can be used to obtain the pmf of the DNAPTE (𝛼, 𝛽) 
distribution, (see Arnold et al. (2008)). 

3. Estimation of the Parameters of Discrete a Novel Alpha Power 
Transformed Exponential Distribution 

In this section, methods of moments and ML are used to derive the 
estimators of the parameters for the DNAPTE distribution. 
3.1 Method of moments 
In this subsection, method of moments is applied to estimate the 
unknown parameters of the DNAPTE distribution. The method of 
moments is based on equating the population moments; which are 
functions of the parameters to the corresponding sample moments and 
subsequently solving the two equations simultaneously. The first the 
second population and sample moments, respectively, are  

𝝁(𝜶, 𝛃) = 𝝁 =  ∑ 𝒙ஶ
𝒙ୀ𝟎 ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ ,                (25) 

𝝁𝟐(𝜶, 𝛃) = 𝝁𝟐 =  ∑ 𝒙𝟐ஶ
𝒙ୀ𝟎 ቂ𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷(𝒙శ𝟏)൯ − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙൯ቃ ,             (26) 

𝑴𝟏 =  
𝟏

𝒏
 ∑ 𝒙𝒊

𝒏
𝒊ୀ𝟏  𝐚𝐧𝐝  𝑴𝟐 =  

𝟏

𝒏
 ∑ 𝒙𝟐.𝒏

𝒊ୀ𝟏                                     (27) 

𝐓𝐡𝐞𝐧 𝐞𝐪𝐮𝐚𝐭𝐢𝐧𝐠 𝝁൫𝜶, 𝜷෩൯ =  𝑴𝟏 𝐚𝐧𝐝  𝝁𝟐൫𝜶, 𝜷෩൯ = 𝑴𝟐,                (28) 
where 𝛼 𝑎𝑛𝑑 𝛽෨ are the estimators of 𝛼 𝑎𝑛𝑑 𝛽  
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Since the moments of DNAPTE distribution cannot be obtained in 
closed forms and (33) cannot be solved via ordinary techniques, 
therefore the estimates can be obtained numerically. 

3.2 Method of maximum likelihood 

In this section, method of ML is used to derive the estimators of the 
parameters for the DNAPTE distribution. 

The method of ML is used to estimate the vector of two 
parameters, 
 𝜑 =  (𝛼, 𝜆) sf, hrf, and ahrf of the DNAPTE (α, β) distribution. Based 

on Type II censored samples, also confidence interval of the parameters 
(α, β) sf, hrf, and ahrf are derived. Suppose that X1, X2, ..., Xr is a Type 
II censored sample of size r obtained from a life test on n items whose 
lifetimes have a DNAPTE (α, β) distribution. Then the likelihood 
function is 

𝑳 ቀ𝝋, 𝒙ቁ ∝ {∏ 𝒑(𝒙𝒊)
𝒓
𝒊ୀ𝟏 }[𝑺(𝒙𝒓)]𝒏ି𝒓,                            (29) 

 where p(x) and S(x) are given, respectively, by (5) and (7). The 
X(i) ‘s are ordered times for 𝑖 = 1, 2, . . .  𝑟 

𝑳 ቀ𝝋; 𝒙ቁ ∝ ቄ∏ 𝜶𝐥𝐧ቀ𝟏ି𝒆ష𝜷൫𝒙𝒊శ𝟏൯ቁ
− 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙𝒊൯𝒓

𝒊ୀ𝟏 ቅ ×  ቂ𝟏 −

𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙𝒓൯ቃ
𝒏ି𝒓

.                              (30) 

The natural logarithm of the likelihood function is given by 

 ℓ = 𝑙𝑛𝐿 ቀ𝜑; 𝑥ቁ ∝ 𝑙𝑛 ∏ 𝛼୪୬ቀଵିషഁ൫ೣశభ൯ቁ
− 𝛼୪୬൫ଵିషഁೣ൯൨

ୀଵ + 

(𝑛 − 𝑟) ln ቂ1 − 𝛼୪୬൫ଵିషഁೣೝ൯ቃ                                                          (31) 

 

𝓵 = ∑ 𝒍𝒏𝒓
𝒊ୀ𝟏 𝜶𝐥𝐧ቀ𝟏ି𝒆ష𝜷൫𝒙𝒊శ𝟏൯ቁ

− 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙𝒊൯൨ + (𝒏 − 𝒓) 𝐥𝐧 ቂ𝟏 − 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙𝒓൯ቃ.          (32) 
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Considering the two parameters, 𝛼 and 𝛽 are unknown and 
differentiating the log likelihood function in (37), with respect to 𝛼 
and 𝛽, one obtains 

𝝏𝓵

𝝏𝜶
=  

𝐥𝐧൫𝟏 − 𝒆ି𝜷(𝒙𝒊ା𝟏)൯ 𝜶ቂ𝐥𝐧ቀ𝟏ି𝒆ష𝜷൫𝒙𝒊శ𝟏൯ቁି𝟏ቃ൨ − ቂ𝐥𝐧൫𝟏 − 𝒆ି𝜷𝒙𝒊൯ 𝜶ൣ𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙𝒊൯ି𝟏൧ቃ

𝜶𝐥𝐧ቀ𝟏ି𝒆ష𝜷൫𝒙𝒊శ𝟏൯ቁ
− 𝜶𝐥𝐧൫𝟏ି𝒆ష𝜷𝒙𝒊൯

 

𝒓

𝒊ୀ𝟏

 

                  −(𝒏 − 𝒓)
 𝒍𝒏൫𝟏ି𝒆ష𝜷𝒙𝒓൯𝜶

ቂ𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙𝒓ቁష𝟏ቃ

ቈ𝟏ି𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙𝒓ቁ



 .                              (33)    

and          

𝜕ℓ

𝜕𝛽
=  

൜𝛼୪୬ቀଵିషഁ൫ೣశభ൯ቁ

(𝑥 + 1)𝑒ିఉ(௫ାଵ)

1 − 𝑒ିఉ(௫ାଵ) ൨ ln 𝛼ൠ − ൜𝛼୪୬ቀଵିషഁೣቁ


𝑥𝑒ିఉ௫

1 − 𝑒ିఉ௫
൨ ln 𝛼ൠ

𝛼୪୬ቀଵିషഁ൫ೣశభ൯ቁ
− 𝛼୪୬ቀଵିషഁೣቁ

 



ୀଵ

 

   −(𝒏 − 𝒓)
𝜶

𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙𝒓ቁ
൫𝒙𝒊𝒆ష𝜷𝒙𝒓൯ 𝐥𝐧 𝜶

ൣ𝟏ି𝒆ష𝜷𝒙𝒓൧ቈ𝟏ି𝜶
𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙𝒓ቁ



.                                   (34) 

Then the ML estimators of the parameters, denoted by 𝛼ො and 𝛽መ  are 
derived by equating the two nonlinear likelihood (38) and (39) to 
zeros and solving numerically. 
Depending on the invariance property, the ML estimators of S(x), h(x) 
and ℎଵ(x) can be obtained by replacing α and β with their 
corresponding ML estimators 𝛼ො and 𝛽መ , respectively, in (7), (8) and (9) 
as given below 

𝑺𝑴𝑳(𝒙) = 𝟏 − 𝜶ෝ𝐥𝐧ቀ𝟏ି𝒆ష𝜷𝒙ቁ
,                                    𝒙 =  𝟎, 𝟏, 𝟐, …          

(35) 

𝒉𝑴𝑳(𝒙) =  
𝜶ෝ

𝐥𝐧ቀ𝟏ష𝒆ష𝜷(𝒙శ𝟏)ቁ
ି𝜶ෝ

𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙ቁ

𝟏ି𝜶ෝ
𝐥𝐧ቀ𝟏ష𝒆ష𝜷𝒙ቁ

 ,                  𝒙 =  𝟎, 𝟏, 𝟐, …          

(36) 
And 

 ℎଵಾಽ
(𝑥) = ln ቈ

ଵିఈෝ
ౢቀభషషഁೣቁ

ଵିఈෝ
ౢቀభషషഁ(ೣశభ)ቁ

   ,                    𝑥 =  0,1,2, …           (37)  
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When the sample size is large and the regularity conditions are 
satisfied, see (Lehmann and Casella (1998)), the asymptotic 
distribution of the ML estimators is 

𝜑 ∼ Bivariate Normal ൬𝜑, I ିଵ𝑥 ቀ𝜑ቁ൰, where 𝜑 = (𝛼, 𝛽),   𝜑ො =

൫𝛼ො, 𝛽መ൯, and 𝐼 ିଵ(𝜑). 
The asymptotic variance-covariance matrix of the ML estimators α 
and β ,which is the inverse of the observed Fisher information matrix. 
The asymptotic observed Fisher information matrix can be obtained as 
follows: 

𝑰𝒙 ቀ𝝋ቁ ≈ 
− ቀ

𝝏𝟐𝓵

𝝏𝜶𝟐
ቁ − ቀ

𝝏𝟐𝓵

𝝏𝜶 𝝏𝝀
ቁ

− ቀ
𝝏𝟐𝓵

𝝏𝜶 𝝏𝝀
ቁ − ቀ

𝝏𝟐𝓵

𝝏𝝀𝟐
ቁ



൫𝜶ෝ,𝜷൯

.                    (38) 

The asymptotic 100(1 − α) confidence interval for α, λ, SML(x), hML (x) 
and hଵ (x) are given, respectively by: 
𝑳𝝎 = 𝝎ෝ − 𝒁𝜶

𝟐
𝝈𝝎ෝ     𝒂𝒏𝒅       𝑼𝝎 = 𝝎ෝ − 𝒁𝜶

𝟐
𝝈𝝎ෝ ,                            

 (39) 

where Lω and Uω are the lower and upper bound ωෝ  is 𝛼ො, 𝜆መ, 𝑆መ(𝑥), ℎ(𝑥) 
or ℎଵ(𝑥), Z is the 100(1 −  

ఈ

ଶ
 )% the standard normal percentile,  (1 −

𝛼)% is the confidence coefficient, 𝜎௪ෝ  is the standard deviation and 
length = 𝑈ఠ − 𝐿ఠ. 
4. Numerical Results 
This section aims to investigate the precision of the theoretical results 
based on simulated and real data, by evaluating relative absolute 
biases (RABs) and relative errors (REs). 

4.1 Simulation study     

In this subsection, a simulation study is presented to illustrate the 
application of the various theoretical results developed in the previous 
section on the basis of generated. Data from DNAPTE (α, β) 
distribution, for different sample sizes (n=30, 50 and 100) and using 
number of replications N=1000. The computations are performed 
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using R package. The numerical procedures are performed according 
to the following algorithm. 

Step 1: a random sample𝑋ଵ, 𝑋ଶ, … , 𝑋  of sizes (n=30, 50,100) these 
random samples are generated from DNAPTE distribution using the 

following transformation:  𝑥 = −
ଵ

ఉ
ln 1 − 𝑒

ౢ ೠ

ౢ ഀ൨ − 1, 𝑖 = 1,2, … , 𝑛 

and 𝑢 are random sample from uniform (0,1) and then taking the 
ceiling. 
Step 2: two different set values of the parameters are selected as, 
Set 1(𝛼 = 3, 𝛽 = 0.5) and Set 2 𝛼 = 0.5, 𝛽 = 5. 

Step 3: For each model parameters and for each sample size, the ML 
estimates are computed. 

Step 4: Steps from 1 to 3 are repeated 1000 times for each 
sample size and for selected sets of the parameters. Then the averages, 
RABs, REs and variances of the estimates of the unknown parameters 
are computed. 
The results of the simulation study are given in Tables 2 and 3. The 
RABs and REs of ML estimates of the parameters, sf and hrf are 
computed at t0=0.4, as follows:  

 1) Average =  
∑ (௦௧௧)ಿ

సభ

ே
,  

2)  RAB (estimate) =
|௦(௦௧௧)|

௧௨ ௩௨
 , 

3) Relative error (estimate) =
ாோ(௦௧௧)

௧௨ ௩௨
 , 

4) Estimated risk (estimate) =
∑ (௦௧௧ି௧௨  ௩௨)ಿ

సభ

ே
. 

Table 2 shows the averages, RABs, REs, variances for the parameters, sf 
and hrf estimates, also 95% confidence intervals where the initial values 
for the parameters are α=3, β=0.5 under three levels of  




× 100 

percentage of uncensored observations. Type II censoring 80% and 100%. 
Table 3 displays the same computational results, but for different initial 
values of the parameters α=0.5, β=5 , at the same mission time 𝑡 from the 
DNAPTE distribution for different sample sizes where (n=30, 50 and 100) 
and also level of Type II censoring 80% and 100% and  number of 
replications,  N = 1000. 
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Table 2: RABs, REs of ML estimates, 95% confidence intervals of the 
parameters, 

survival and hazard rate functions from DNAPTE distribution for 
different sample sizes n, 

censoring level r and the replications N= 1000, 𝛼 = 3,𝛽 = 0.5, t0=0.9 

 
 

  

𝒏 𝒓 parameters estimates RABs REs LL UL Length 

30 

24 

𝛼 3.2673 0.0891 0.0727 2.7281 3.8067 1.0786 
𝛽 0.5409 0.0818 0.0029 0.4335 0.6482 0.2147 

R(𝑡) 0.6721 0.0398 0.0101 0.4752 0.1934 0.4028 
h(𝑡) 0.3817 0.0066 0.0104 0.6003 0.8781 0.1676 

30 

𝛼 3.1859 0.0619 0.0358 2.8075 3.5641 0.7565 
𝛽 0.5283 0.0565 0.0021 0.4386 0.6179 0.1793 

R(𝑡) 0.6769 0.0052 0.0101 0.4744 0.8771 0.4026 
h(𝑡) 0.3608 0.0271 0.0102 0.1898 0.5943 0.4045 

50 

40 

𝛼 3.1911 0.0636 0.0377 2.8027 3.5793 0.7766 
𝛽 0.5309 0.0619 0.0022 0.4378 0.6241 0.1863 

R(𝑡) 0.7468 0.0038 0.0101 0.4734 0.8759 0.4025 
h(𝑡) 0.3349 0.0310 0.0103 0.1909 0.5961 0.0625 

50 

𝛼 3.1523 0.0509 0.0245 2.8395 3.4659 0.6264 
𝛽 0.5197 0.0394 0.0016 0.4397 0.5997 0.1599 

R(𝑡) 0.7916 0.0074 0.0101 0.4757 0.8786 0.4029 
h(𝑡) 0.2474 0.0166 0.0102 0.4064 0.5896 0.4032 

100 

80 

𝛼 3.0482 0.1461 0.0031 2.9319 3.1557 0.2237 
𝛽 0.5058 0.0115 0.0012 0.4352 0.5763 0.1411 

R(𝑡) 0.8349 0.0023 0.0101 0.4724 0.8749 0.4025 
h(𝑡) 0.1938 0.0048 0.0101 0.1823 0.5848 0.4024 

100 

𝛼 3.0196 0.0065 0.0016 2.9398 3.0995 0.1598 
𝛽 0.5035 0.0069 0.0012 0.4336 0.5734 0.1398 

R(𝑡) 0.8869 0.0027 0.0101 0.4711 0.8735 0.4024 
h(𝑡) 0.0984 0.0036 0.1012 0.1818 0.5842 0.4025 
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Table 3: RABs, REs of ML estimates, 95% confidence intervals of the 
parameters, 

survival and hazard rate functions from DNAPTE distribution for 
different sample sizes n, 

censoring level r and the replications N= 1000, 𝛼 = 0.5,𝛽 = 5, t0=0.9 

 
 
  

𝒏 𝒓 parameters estimates RABs Res LL UL Length 

30 

24 

𝛼 0.4188 0.1624 0.0078 0.2421 0.5955 0.3534 
𝛽 5.4938 0.0988 0.2450 4.5037 6.4839 1.9801 

R(𝑡) 0.0078 0.1971 0.0101 0 0.1949 0.1949 
h(𝑡) 0.9933 0.0026 0.0011 0.7946 1.1972 0.4025 

30 

𝛼 0.4392 0.1268 0.0049 0.2989 0.5793 0.8032 
𝛽 5.2683 0.0535 0.0726 4.7201 5.8064 1.0782 

R(𝑡) 0.0898 0.0681 0.0103 0.1939 0.2085 0.4024 
h(𝑡) 0.8644 0.0015 0.0101 1.1961 0.8937 0.4024 

50 

40 

𝛼 0.4392 0.1217 0.0049 0.2989 0.5732 0.2803 
𝛽 5.2673 0.0535 0.0766 4.7282 5.8064 1.0782 

R(𝑡) 0.1349 0.0681 0.0101 0.0939 0.1939 0.1000 
h(𝑡) 0.7264 0.0011 0.0113 0.9369 1.2984 0.3616 

50 

𝛼 0.4795 0.0411 0.0016 0.3987 0.5602 0.1615 
𝛽 5.1624 0.0325 0.027 4.8302 5.4947 0.6645 

R(𝑡) 0.2948 0.0848 0.0101 0 0.1941 0.1941 
h(𝑡) 0.8394 0.0011 0.1012. 0.9581 1.1684 0.2103 

100 

80 

𝛼 0.4916 0.0168 0.0013 0.4201 0.5632 0.1431 
𝛽 5.1025 0.0205 0.0177 4.8861 5.3189 0.4328 

R(𝑡) 0.4098 0.0065 0.0101 0.2085 0.4983 0.2899 
h(𝑡) 0.8895 0.0006 0.0102 0.7927 0.9219 0.1291 

100 

𝛼 0.4968 0.0063 0.0012 0.4269 0.5667 0.3709 
𝛽 5.0859 0.0172 0.0086 4.9005 5.2714 0.3709 

5.R(𝑡) 0.6981 0.0663 0.0101 0.2085 0.7294 0.5209 
h(𝑡) 0.9235 0.0005 0.0101 0.7927 0.9586 0.1659 
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5. Applications of COVID-19 data 
The DNAPTE distribution's flexibility is demonstrated using two real-
world COVID-19 data sets. The first set of data is the number of 
COVID-19 daily deaths in China from January 23 to March. 
(https://www.worldometers.info/coronavirus/country/china/). 
Table 4: The observations are listed below in ascending order.  
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The second set of data shows the number of COVID-19 daily deaths 
in Europe from March 1 to March 31 (https://covid19.who.int/). The 
observations are as follows: 
Table 5: The observations are listed below in ascending order  

 
Some descriptive measures of both data sets are reported in Table 6. 
 
Table 6: The descriptive measures of the two data sets in China and 
Europe  
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Figure 3. The TTT plot of the DNAPTE model for number of deaths 
in China and Europe 
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Figure 4: The Histogram, pdf, empirical cdf, empirical sf and the P-P 
plots of the DNAPTE model for number of deaths in China. 

 
 

 
 
 
 

 
 
 

 
 
 
 
 

 
Figure 5: The histogram, pdf, empirical cdf, empirical sf and the P-P 

plots of the DNAPTE model for number of deaths in Europe 
 
 
6. Conclusion  
 
        The DNAPTE distribution is proposed in this article as a new 
discrete probability distribution. It can be used as an alternative to 
some well-known discrete distributions. The discrete novel alpha 
power transformed exponential distribution's mathematical properties 
are presented. The model parameters are estimated using the ML 
estimation method with Type II censoring. Comprehensive simulation 
results are obtained to validate the theoretical results. The DNAPTE 
distribution's utility is demonstrated empirically through two 
applications to the number of deaths caused by COVID-19 in China 
and Europe. 
 
 



 
 
 
 
 
 

٣٢٠٢الثاني يونيو العدد                  مجلة العلمية التجارة والتمويل                            ال  

(PRINT) :ISSN 1110-4716                       221                      (ONLINE): ISSN 2682-4825 
 

 

REFERENCES 

1. Al-Babtain, A. A., Ahmed, A. H. N. and Afify, A. Z. (2020a). A new discrete 
analog of the continuous Lindley distribution, with reliability applications. 
Entropy, 22(6): 603. 

2. AL-Babtain, A. A., Gemeay, A. M. and Afify, A. Z. (2020b). Estimation 
methods for the discrete Poisson Lindley and discrete Lindley distributions with 
actuarial measures and applications in medicine.  Journal of King Saud 
University, 33(2): 101224.  

3. Aljohani, H. M., Akdogan, Y., Cordeiro, G. M. and Afify, A. Z. (2021). The 
uniform Poisson–Ailamujia ˘ distribution: actuarial measures and applications 
in biological science. Symmetry, 13(7): 1258. 

4. Almazah, M. M. A., Erbayram, T., Akdogan, Y., AL Sobhi, M. M. and 
Afify, A.Z. (2021). A new extended geometric distribution: properties, 
regression model, and actuarial applications. Mathematics, 9(12): 1336. 

5. AL-Metwally, E. M., Almongy, H. M. and Saleh, H. (2020). Managing risk 
of spreading "COVID-19" in Egypt: Modelling using a discrete Marshall-Olkin 
generalized exponential distribution. International Journal of Probability and 
Statistics, 20(2) :33-91. 

6. Arnold, B., Balakrishnan, N. and Najaraja, H.N. (2008). A First Course 
in Order Statistics. John-Wiley and Sons, New York. 

7. Chesneau, C., Yousof, H., Hamedani, G. G.and Ibrarahim, M. (2022). 
Discrete inverse Burr distribution with characterization properties, applications, 
Bayesian and non-Bayesian estimation, International Academic Press,10,352-
371,0.19139/soic-2310-5070-1393 

8. EL deep, A. S., UL-Haq, M.A. and Eliwa, M. S. (2021). A discrete Ramos 
Louzada distribution for asymmetric and over-dispersed data with leptokurtic-
shaped: properties and various estimation techniques with inference. 
Mathematics,7(2) :1726-1741. 

9. EL-Helbawy, A.  A., Hegazy, M.   A., AL-Dayian, G.  R. and Abd EL-
Kader, R. E. (2022). A discrete analog of the inverted Kumaraswamy 
distribution: properties and estimation with application to COVID-19 data.  
Journal of Statistics and Operation Research, 18(1): 297-328. 

10. Eliwa, M.  S., AL-hussain, Z. A. and El-Morshedy, M. (2020). Discrete 
Gompertz-G family of distributions for over and under-dispersed data with 
properties, estimation, and applications. Mathematics, 8(3): 
358,10.3390/math8030358. 

11. El-Morshedy, M., Eliwa, M. S. and Altun, E. (2020a). Discrete Burr-Hatke 
distribution with properties, estimation methods and regression model. IEEE 
access, 8(10): 74359-74370 

12. El-Morshedy, M., Eliwa, M. S. and Nagy, H. (2020b). A new two-parameter 
exponentiated discrete Lindley distribution: properties, estimation, and 
applications. Journal of applied statistics, 47(2): 354-375. 



 
 
 
 
 
 

٣٢٠٢الثاني يونيو العدد                  مجلة العلمية التجارة والتمويل                            ال  

(PRINT) :ISSN 1110-4716                       222                      (ONLINE): ISSN 2682-4825 
 

 

13. EL-Morshedy, M, S., Eliwa, M. S. and Tyagi, A. (2022). A discrete analogue 
of odd Weibull-G family of distributions: properties, classical and Bayesian 
estimation with applications to count data. Journal of Applied Statistics, 49(11): 
2928-2952 

14. Gomez-Deniz, E. (2010). Another generalization of the geometric distribution. 
Test, 19(2): 399–415.  

15. Jazi, M. A., Lai, C. D., Alamatsaz, M. H. (2010). A discrete inverse Weibull 
distribution and estimation of its parameters. Journal of Statistics Applications 
and Probability, 7(2): 121-132. 

16. Kamari, H., Bevrani, H. and Kamary, P.D. (2016). Bayesian estimation of 
discrete Burr distribution with two parameters. Journal of Statistics and 
Mathematical, 1(2): 62-68. 

17. Krishna, H. and Pundir, P. S. (2009) Discrete Burr and discrete Pareto 
distributions. Journal of Statistics Applications and Probability, 6(2): 177-188. 

18. Lai, C.D. (2013). Issues concerning constructions of discrete lifetime models. 
Quality Technology and Quantitative Management, 10(2): 251-262. 

19. Lai, C.D. (2014). Generalized Weibull distribution. Springer Heidelberg, New 
York, Dordrecht, London. 

20. Lehmann,E.L. and Casella, G. (1998). Theory of Point Estimation, John-
Wiley and Sons, New York. 

21. Mashwani, W. K., Goktas, A. and Unvan, Y., A. (2021). A novel alpha power 
transformed exponential distribution, Journal of Applied Statistics.  
https://doi.org/10.1080/02664763.2020.1870673 

22. Para, B. A. and Jan, T. R. (2016). On discrete three parameter Burr Type XII 
and discrete Lomax distributions and their applications to model count data 
from medical science. Biometrics and Biostatistics International Journal, 4(2): 
1-15. 

23. Rohatgi, V.K. and Saleh, E.A.K. (2001). An Introduction to Probability and 
Statistics. 2nd Edition, John- Wiley and Sons, New York. 

24. Roy, D. (2003). Discrete normal distribution. Communication in Statistics-
Theory and Methods, 32 (10): 1871-1883. 

25. Roy, D. (2004). Discrete Rayleigh distribution. IEEE Transactions on 
Reliability, 53 (2): 255-260. 

26. Roy, D. and Gupta, R.P. (1992). Classifications of discrete lives. 
Microelectronics and Reliability, R-34 (3): 253-255. 

27. Shafgat, M., Ali, S., Shah, I. and Dey, S. (2021). Univariate discrete Nadarajah 
and Haghighi distribution: Properties and different methods of estimation. 
Statistica, 80(3): 301–330. https://doi.org/10.6092/issn.1973-2201/9532  

28. Xie, M, Gaudoin, O. and Bracquemond, C. (2002). Redefining failure rate 
function for discrete distribution. International Journal of Reliability, Quality 
and Safety Engineering, 9(3): 275-286. 
 


