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ABSTRACT 
In this paper, the Firefly Algorithm (FA) is proposed to find the optimal solution for 

the Optimal Power Flow (OPF) problem in a power system. The proposed algorithm is 

applied to determine the optimal settings of control variables of the OPF problem. The 

performance of the proposed algorithm was examined and tested on the standard IEEE 30-

bus test system with different objective functions and compared to other methods reported in 

the literature recently. Simulation results clearly obtained from the proposed (FA) approach 

indicated that (FA) provides an effective and robust high-quality solution for the OPF 

problem. 
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INTRODUCTION 

The problem of optimal power flow (OPF) has received much attention and it is 

considered an important field of many utilities and it was marked as one of the most 

operational needs. The OPF problem solution aims to optimize a selected objective function 

via optimal adjustment of the power system control variables, while at the same time 

satisfying various equality and inequality constraints
(1)

.  

 The OPF problem is a large-scale highly constrained non-linear and non-convex 

optimization problem; it has taken decades to develop efficient algorithms for its solution.      

Many different mathematical techniques have been employed for its solution
(2–3)

. A wide 

variety of classical optimization techniques have been applied in solving the OPF problems 

considering a single objective function such as nonlinear programming
(1-4)

, quadratic 

programming
(5-6)

, linear programming
(7–8)

, Newton-based techniques
(9-10)

, sequential 

unconstrained minimization technique
(11)

, interior-point methods
(12)

. The non-linear 

programming optimization algorithm deals with problems involving nonlinear objective and 

constraint functions. Generally, non-linear programming-based procedures have many 

drawbacks such as insecure convergence properties and algorithmic complexity. The 

quadratic programming technique is a special form of non-linear programming whose 

objective function is quadratic with linear constraints. Quadratic programming based 

techniques have some disadvantages associated with the piecewise quadratic cost 

approximation. Newton-based techniques have a drawback of the convergence characteristics 

that are sensitive to the initial conditions and they may even fail to converge due to the 

inappropriate initial conditions. The sequential unconstrained minimization optimization 

techniques are known to exhibit numerical difficulties when the penalty factors become 

extremely large. Although the linear programming methods are fast and reliable, but they 

have some disadvantages associated with the piecewise linear cost approximation. The 

interior- point method converts the inequality constraints to equalities by the introduction of 
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non-negative slack variables. This method has been reported as computationally efficient; 

however, if the step size is not chosen properly, the sub-linear problem may have a solution 

that is infeasible in the original non-linear domain. In additional, this method suffers from 

initial, termination, and optimality criteria and, in the most cases, is unable to solve non-

linear quadratic objective functions. For more discussions on these techniques, the reader can 

consult the comprehensive survey presented in Alsac and Stott
 (2)

 and  Momoh et al. (1999).  

In general, most of the classical optimization techniques mentioned apply sensitivity analysis 

and gradient-based optimization algorithms by linearizing the objective function and the 

system constraints around an operating point. Unfortunately, the OPF problem is a highly 

non-linear and a multimodal optimization problem, i.e. there exist more than one local 

optimum. Hence, local optimization techniques, which are well elaborated, are not suitable 

for such a problem. 

Moreover, there is no criterion to decide whether a local solution is also the global 

solution. Therefore, conventional optimization methods that make use of derivatives and 

gradients are not able to identify the global optimum. Conversely, many mathematical 

assumptions such as convex, analytical, and differential objective functions have to be given 

to simplify the problem. However, the OPF problem is an optimization problem with in 

general non-convex, non-smooth, and non-differentiable objective functions. It becomes 

essential to develop optimization techniques that are efficient to overcome these drawbacks 

and handle such difficulties. 

More recently, OPF has enjoyed renewed interest in a variety of formulations through 

the use of evolutionary optimization techniques to overcome the limitations of classical 

optimization techniques. A wide variety of advance optimization techniques have been 

applied in solving the OPF problems such as genetic algorithm (GA)
(14-15)

, simulated 

annealing
(16)

, Tabu Search
(17)

, and particle swarm optimization (PSO)
(18)

. The results reported 

were promising and encouraging for further research in this direction. Unfortunately, recent 

research has identified some deficiencies in GA performance. 

The degradation in efficiency is appeared in applications with highly epistatic 

objective functions, i.e. where the parameters being optimized are highly correlated. In 

addition, the premature convergence of GA degrades its performance and reduces its search 

capability. Recently, a new intelligent algorithm, called firefly algorithm (FA), has been 

proposed and introduced. The algorithm is inspired by biological and sociological 

motivations and can take care of optimality on rough, discontinuous and multi-modal 

surfaces. Ths algorithm mainly has three advantages: finding the true global minimum 

regardless of the initial parameter values, fast convergence, and has a few control parameters. 

Being simple, fast, easy to use, very easily adaptable for integer and discrete optimization, 

quite effective in non-linear constraint optimization including penalty functions and useful 

for optimizing multi-modal search spaces which represent the other important features of FA. 

In the present study, a novel firefly approach was proposed to solve the OPF problem. 

The problem is formulated as an optimization problem. In this study, different objective 

functions were considered to minimize the fuel cost, to improve the voltage profile, and to 

enhance power system voltage stability. The proposed approach has been examined and 

tested on the standard IEEE30-bus test system. 

 The potential and effectiveness of the proposed approach are demonstrated. 

Additionally, the results were compared to those reported in the literatures. The OPF problem 

solution aims to optimize a selected objective function via optimal adjustment of the power 

system control variables, while at the same time satisfying various equality and inequality 

constraints. Mathematically, the OPF problem can be formulated as follows
(1)

: 
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Min f (x, u) ............................................................(1) 

Subject to:g(x, u) =0 .............................................(2) 

h (x, u) ≤0  ...........................................................(3) 

where   f is objective function to be minimized.  

x is the vector of dependent variables (state vector) consisting of: 

1. Active generating power at slack bus PG1. 

2. Load-bus voltage VL. 

3. Generator reactive power outputs QG. 

4. Transmission line loading (or line flow) Sl. 

Hence, x can be expressed as: 

x
T
= [PG1, VL1. . . VLNL , QG1. . . QGNG , Sl1. . . Slnl]  ...................................(4) 

where, NL, NG, and nl are the number of load buses, number of generators, and number of 

transmission lines, respectively.  

u is the vector of independent variables (control variables)consisting of: 

1. Generator voltage VGat PV buses. 

2. Generator real power output PGat PV buses except at the slack bus PG1. 

3. Transformer tap setting T. 

4. Shunt VAR compensation (or reactive power of switchable VAR sources) Qc. 

Hence, u can be expressed as: 

u
T
= [PG2. . . PGNG , VG1 . . . VGNG , Qc1. . . QcNc, T1. . . TNT]  ...................(5) 

where, NT and NC are the number of the regulating transformer and VAR compensators, 

respectively. g is the equality constraints represent typical load flow equations. 
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where, i = 1, . . ., N;  

N is the number of buses;  

PGis the active power generated,  

QGis the reactive power generated,  

PD is the load active power;  

QD is the load reactive power,  

Gijand Bijare the transfer conductance and susceptance between bus i and bus j , respectively. 

h is the system operating constraints that includes: 

1. Generator constraints: generator voltages, real power outputs, and reactive power 

outputs are restricted by their lower and upper limits as follows: 

≤ VGi ≤ ,     i = 1, . . . ,NG  .............................................. (8) 

≤ PGi ≤    ,    i = 1, . . . ,NG ..............................................(9) 

≤ QGi≤  ,    i = 1, . . . ,NG  .............................................(10) 

 

2. Transformer constraints: transformer tap settings are bounded as follows: 

≤ Ti ≤     i = 1, . . . ,NT ..............................................(11) 

 

3. Shunt VAR constraints: shunt VAR compensations are restricted by their limits as 

follows: 

≤ Qci≤  ,      i = 1,. . . . ,NC ...........................................(12) 
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4. Security constraints: these include the constraints of voltages at load buses and 

transmission line loadings as follows: 

≤ VLi≤  ,    i = 1, . . . ,NL .............................................(13) 

≤  ,    i = 1, . . . , nl ............................................................(14) 

 

RESULTS AND DISCUSSION 

Firefly Algorithm (FA) 

The firefly algorithm (FA) is another swarm intelligence algorithm, developed by 

Xin-She Yang
(19)

,that evolves fast for almost area of optimization and engineering problems. 

Stand alone firefly algorithm already has managed to solve problems. For problems that have 

multi dimensional and nonlinear problem, some modification or even hybridization with the 

other metaheuristic is advisable. This modification and hybridization will help for the 

computational constrain and it will become more flexible and more efficient
(20,21)

. The Firefly 

Algorithm (FA) is based on the communication behaviour of tropical fireflies and the 

idealized behaviour of the flashing patterns. FA uses the following three idealized rules
(22-23) 

to build the mathematical model of the algorithm: 

 All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of 

their sex; 

 Attractiveness is proportional to their brightness. Thus for any two flashing fireflies, the 

less bright one will move towards the brighter one. The attractiveness is proportional to 

the brightness and they both decrease as their distance increases; 

 The brightness of a firefly is affected or determined by the landscape of the objective 

function. (Thus, for a maximization problem, the brightness can simply be proportional to 

the value of the objective function.) 

In the standard firefly algorithm, there are two important points. One is the 

formulation of the light intensity and another is the change of the attractiveness. Firstly, we 

can always assume that the brightness of the firefly can be determined by the encoded 

objective function landscape. 

Secondly, we should define the variation of light intensity and formulate the change of 

the attractiveness. As we know that in nature the light intensity decreases with the distance 

from its source and the media will absorb the light, so in our simulation we suppose the light 

IntensityI varies with the distance r and light absorption parameter γ exponentially and mono-

tonically
(24)

. That is 

 .........................................................................................(15) 

where I0 is the original light intensity at the source (i.e., at the distance r = 0) and γ is the light 

absorption coefficient. From the idealized rules we known that in our simulation we suppose 

the attractiveness of firefly is proportional to the light intensity I. So we can define the 

firefly’s light attractive coefficient β in the similar way as the light intensity coefficient I. 

That is  

 .................................................................................... (16) 

where β0 is the original light attractiveness at  r = 0. 

The Cartesian distance is used to calculate the distance between any two fireflies i and j at  xi  

and  xj 

 ............................................(17) 

where d is the number of dimensions. The amount of movement of firefly i to another more 

attractive (brighter) firefly j is determined by 

 ........................................................(18) 
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where the first terms the current location of firefly i, the second terms due to the attraction, 

while the third termis randomization with the vector of random variables εibeing drawn from 

different distributions such as the Uniform distribution, Gaussian distribution and Lévy flight. 

In the third term, α is a scaling parameter that controls the step size and it should be linked 

with the interests of the problems. 

According to the above idealization and approximations rules, the pseudo-code of 

standard firefly algorithm can be summarized in Algorithm 1. 

Objective function f(x), x = (x1,_ _ _,xD)
T
 

Initialize a population of fireflies xi (i = 1,2,_ _ _n) 

Calculate the light intensity Ii at xi by f(xi) 

Define light absorption coefficient γ 

While (t <Max Generation) 

for i = 1: n all n fireflies 

for j = 1:n all n fireflies 

Calculate the distance r between xi and xj using Cartesian distance equation 

              if (Ij> Ii) 

Attractiveness varies with distance r via  

Move firefly i towards j in all d dimensions end if Evaluate new solutions and update light 

intensity end for j end for i 

Rank the fireflies and find the current best end while Algorithm Pseudo-code for the FA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Single-line diagram of IEEE 30-bus test system. 

 

The IEEE 30-bus system has been investigated here as shown in Fig.1 to present the 

efficiency of the proposed algorithms (FA) and Particle Swarm Optimization (PSO). The line 

data and the bus data are taken from Valenzuela and Smith
(29)

. The system real and reactive 

power demands are respectively 2.834  p.u and 1.262 p.u at 100 MVA base. One case is 

selected to examine the basic objective function. The FA and PSO algorithms have been 

implemented to solve the OPF problem for one case illustrated as objective function. The 

population and generation number for each algorithm are 15 and 50 respectively. The bounds 

of control variables are given in Valenzuela and Smith
(29)

. The simulation execution has been 

carried out under Matlab software. 
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Table 1. (Comparison of cost for PSO method) 

 Method 

Unit           FA PSO  

P1  176.784  154,647 

P2  48.841  48,826 

P3  21.483  21,382 

P4  21.618  21,740 

P5  12.053  11,722 

P6  12.0  33,194 

Fuel cost ($/hr)  

 

801.8437  801,855 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. System voltage profile 

 

The control variable parameters achieved by the FA and the values the objective 

function with different algorithms are exposed in the table 1. In addition, a comparative study 

with another algorithm has been done in order to solve the single objective OPF problems. 

From Tables (1 & 2) it can be observed that, the FA method performed and supplied 

remarkable results compared with PSO method and other algorithms reported in the 

literature. Also, the voltage profile enhancement at all buses is clearly attained in case of FA 

algorithm and illustrated in Figure (2). 

 

Table  2. Comparison of cost for different methods. 

Method  Author Cost ( $/hr) 

Gradient-based Approach   25 804.853 

Evolutionary Programming   27 802.62 

Nonlinear Programming 

solution  
 

 

28 802.40 

Tabu Search Algorithm   26 802.29 

Firefly Algorithm  Present 801.8437 
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Fig. 3. Objective function OPF problems 
The convergence curves of the total cost for the proposed algorithms are illustrated in 

Figure (3). It is quite noticeable that the FA has the best convergence characteristics with best 

value of objective function. FA converges better than PSO towards a final exact solution. 

 

Conclusion 

In this study, a novel algorithm called FA has been shown and employed to solve the 

OPF problem. The fuel cost has been considered the main objective function. FA was applied 

to obtain minimum value of the objective function. Real power of the generators was chosen 

as control variables during this study. The IEEE 30-bus system has been presented here to 

examine the performance of the proposed algorithms. The simulation results obviously 

proved that the proposed FA algorithm achieves best value of the objective function as 

compared with PSO algorithm.    
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