EFFECT OF DIFFERENT RATES OF (N, P, K) FERTILIZERS ON BEMISIA TABACI (GENN.) INFESTATION ON TOMATO AND ITS EFFECT ON THE YIELD

K.K. EL-RAFIE

Plant Protection Research Institute, Agricultural Research Centre, Dokki, Giza.

(Manuscript received 12 January 1998)

Abstract

The relation between the major plant nutrients, NPK and their combinations on tomato infestation with *B.tabaci* (Genn.), was studied in Imbaba district, Giza Governorate during 1995-1996. An obvious increase of this pest accompanied by decreasing in tomato yield was observed on the plants treated with high levels of N. (ammonium sulphate, 21% N).

On the other hand, the study proved that the moderate level of N (150 unit) corresponding with potassium sulfate [Potasium sulfate, 60 units/K2O)] and superphosphate (60 unit/P2O2) - in mixtures-gave low population of B.tabaci and higher level in yield.

INTRODUCTION

The relationship between mineral contents of tissues and their effect on insect infestation has been taken in consideration in the recent years. Elements such as, nitrogen, phosphorus, potassium, calcium, iron, zinc, manganese, magnesium, etc. appeared to affect plant attacked by insects (Hasseman, 1946). The author showed that the greenhouse thrips Heliothrips haemerrhoidalis (Bouche) attacked only those plants growing on the lower levels of nitrogen, although calcium played no important role in making the plants attractive to the pest. Hunter (1958) reported that higher concentration of nitrogen in tomato roots infected by Meloidogyne incognita acrita than in the healthy roots. Beckham in Georgia (1970) reported that Aphis gossypii were more numberous on the leaves of its vegetable hosts as the nitrogen rate increased. Sharaf and Nazer (1983) found that the use of P2O5 fertilizer improved the development of the tomato plants, thus encouraging whiteflies migration.

The effect of N.P.K. and their combinations on tomato infestation caused by *Myzus persicae* Sulz. and *Thrips tabaci* Lind. studied by Omar *et al.* (1993). They mentioned that an obvious increase of these pests was observed on plants treated with superphosphate (16% P₂O₅, 300 kg/fed.) either alone or in mixtures with potassium sulfate (48% P₂O, 100 kg/fed.) and ammonium sulfate (21% N., 300 kg/fed.).

Tomato at Nili plantation suffered from the infestation of *B.tabaci* in Giza Governorate, therefore the present study was conducted to study the relation between levels of N.P.K., *Bemisia tabaci* (Genn.) infestation and its relation with tomato yield.

MATERIALS AND METHODS

Field trials were carried out over two tomato growing seasons (Nili plantations of 1995 and 1996). The main purpose of these trials was to determine the relationship between rates of N, P_2O_5 , P_2O fertilizers, on *B.tabaci* tomato infestation, and tomato yield.

The experimental area was five feddan at Abo-Ghaleb village, Imbaba district, Giza province, cultivated by Dora tomato hybrid. The field was divided into 108 plots, i.e. 3 rates x 4 replicates in a complete randomized plot design.

Forty days after planting, weekly samples of 30 leaves each, were chosen, at random, from the plants of each replicate, examined for adults carefully, early in the morning, and picked in a paper bag for laboratory examination. Sampling was continued for 12 weeks and the weekly infetation averages were worked out for each replicate.

Three rates of previous nutrient elements were tested in these trials in alternation as following:

Rates of Nitrogen (N) were 100, 150 and 200 units added four times, the first after hoeing and before the 1st irrigation. The second at flowering stage, the third at fruiting stage and the fourth before colouring stage.

Rates of Phosphorus ($\mathrm{P_2O_5})$ were 40, 50 and 60 units added before the second ploughing.

Rates of Potassium (K_2O) were 40, 50 and 60 units added twice; the first at flowering and the second at fruiting stage.

At the end of the season, the yield was evaluated, and the average for every treatment was recorded.

RESULTS AND DISCUSSION

Effect of NPK againt Bemisia tabaci (Genn.) population

The population averages of B.tabaci under the differnt fertilizer treatments in the two successive seasons of 1995 and 1996 was shown in Table 1 and 2.

The largest increase in the whitefly population was found in (200 unit of N + 60 unit of P_2O_5 + 40 unit of $K_2O)$, (200 unit of N + 40 unit of P_2O_5 + 40 unit of $K_2O)$, (200 unit of N + 40 unit of $K_2O)$ and (200 unit of N + 60 unit of P_2O_5 + 50 unit of P_2O_5 + 40 unit of P_2O_5 and P_2O_5 + 40 unit of P_2O_5 and P_2O_5 and

Plants fertilized with high rates of nitrogenous fertilizers were longer, had more and larger leaves. This would attract further adults of *B.tabaci* as well as providing a more favourable habitat for population of the tomato whitefly. The aforementioned results were in agreement with Sharaf and Nazer (1983) who studied the effect of soil fertilizers on the population of *B.tabaci* on tomato.

Effect of NPK on the yield

At the end of the season of the two successive seasons 1995 and 1996, yield was determined as weight in kilogram. Analytical methods by F-test and L.S.D. was calculated. As shown in Tables 1 and 2, the yield of treatments which had more population of *B.tabaci* were very low in the yield. On the other hand, treatments which had low population of *B.tabaci* gave the higher level in tomato yield.

Table 1. Effect of different fertilizers and their combinations on Bemisia tabaci population infesting tomato and corresponding yield during Nili plantation, 1995.

ield of	te (kg)		841.5	882	721.75	702.25	607.25	629	672.5	662	658	652.75	640.5	602.5	615.25	589.5	546.5	511.5	573.75	561.25	549.25	535.25	521.25	501.25	488.25	477.25	466	450.25	423.5	121.25*
Mean yield of	replicate (kg)		3366	3540	2887	2809	2429	2716	2690	2648	2632	2611	2562	2210	2461	2358	2186	2046	2295	2245	2197	2141	2085	2002	1953	1909	1864	1801	1694	121
10. of	i adult		58	62.75	56.25	69.25	91.75	65.5	73.0	84.5	86.25	89.5	97.75	102.25	116.0	127.25	150.75	159.25	152.5	163.25	169.0	167.75	181.25	186.0	189.5	193.25	196.75	194.0	203.75	41.50*
Mean no. of	B. tabaci adult		232	251	225	277	367	262	292	338	345	358	391	409	464	509	603	637	610	653	929	671	725	744	758	773	787	922	815	41.
ate	4	X4	842	883	719	200	809	629	672	099	657	652	640	602	691	587	546	511	572	558	552	531	520	449	487	473	469	450	421	
replica	R4	Υ4	58	61	26	69	91	65	72	83	87	90	96	103	119	124	150	161	155	164	170	166	183	186	180	194	195	194	203	
every		X3	840	887	721	705	209	229	674	665	629	655	642	604	590	592	549	508	575	266	549	534	518	504	491	479	465	452	427	
yield ir	R3	۲3	59	65	57	89	93	29	75	98	85	88	66	101	117	128	153	158	153	166	168	169	179	187	188	192	196	192	207	
s and		XZ	843	884	725	701	605	681	671	662	657	651	639	601	589	590	544	515	572	260	546	540	556	500	486	481	462	448	421	
ci adult	R2	Y2	57	63	. 55	7	91	9	71	84	87	91	26	104	110	129	149	160	150	163	170	167	181	185	191	195	199	194	201	CSD
B. taba		×	841	886	722	703	609	629	673	199	629	653	641	603	591	589	547	512	576	561	550	536	521	502	489	476	468	451	425	
No. of B. tabaci adults and yield in every replicate	R1	X	58	62	57	69	92	99	74	85	98	88	66	101	116	128	151	158	152	166	168	169	182	186	189	192	197	196	204	
rate		K20	09	09	20	20	09	09	09	20	20	40	40	40	09	40	20	09	09	20	40	20	09	40	40	20	20	40	40	
Fertilization rate	(units)	P205	09	09	09	09	20	20	40	40	20	09	40	09	40	20	40	40	20	50	40	50	09	20	50	09	40	40	09	
Fertiliz		z	100	15	100	150	100	150	150	150	150	150	150	100	200	150	200	100	200	100	200	200	200	100	200	200	100	100	200	

Number of Bemisia tabaci based on 30 leaves/sample.

Table 2. Effect of different fertilizers and their combinations on Bemisia tabaci population infesting tomato and corresponding yield during Nili plantation, 1996.

Fertil	Fertilization rate	rate	No. of	B.tab	No. of B.tabaci adults and yield in every replicate	Its and	yield i	n ever	y replic	ate	Mean	Mean no. of	Mean	Mean yield of
	(units)		1	R1	~	R2	8	R3	~	R4	B.tab	B. tabaci adult	replica	replicate (kg)
z	P ₂ 0 ₅	K ₂ 0	۲۱	X1	Y2	X2	۲3	X3	γ4	X4				<
100	09	09	26	852	59	841	52	854	57	861	224	56.00	3408	852
150	9	09	61	197	52	216	63	782	55	791	231	57.75	3146	786.5
100	9	20	52	731	63	722	58	.736	64	742	240	00.09	2931	732.75
150	09	20	99	715	63	723	59	419	64	712	252	63.00	2869	717.25
100	20	09	91	616	88	622	63	619	92	621	335	83.75	2778	694.5
150	20	09	64	687	29	685	82	169	69	269	257	64.25	2760	0.069
150	40	09	73	681	92	673	75	685	77	683	294	73.5	2722	680.5
150	40	20	82	673	80	899	83	661	856	654	330	82.5	2656	664.0
150	20	20	83	629	98	658	81	661	84	653	334	83.5	2651	662.75
150	09	40	82	661	84	627	81	663	89	654	339	84.75	2650	662.5
150	40	40	96	662	98	653	93	629	26	655	384	96.00	2629	657.25
100	09	40	98	612	105	631	66	625	103	628	405	101.25	2496	624.00
200	40	09	113	618	108	616	105	621	106	629	432	108.00	2484	621.00
150	20	40	123	602	119	605	117	609	121	617	480	120.00	2433	608.25
200	40	20	149	593	153	587	147	599	146	586	595	148.75	2365	591.25
100	40	09	151	518	148	202	157	513	151	909	209	151.75	2044	11.00
200	20	09	148	591	157	579	159	583	157	573	621	155.25	2326	581.5
100	20	20	157	579	159	561	161	572	156	580	633	158.25	2292	573.0
200	40	40	163	295	161	569	156	260	163	557	633	158.25	2248	562.0
200	20	20	167	548	167	295	162	559	165	546	199	165.25	2215	553.75
200	09	9	179	532	176	527	317	521	177	517	202	176.25	2097	524.25
100	20	40	184	517	181	525	185	529	183	523	733	183.25	2094	523.5
200	20	40	185	509	187	495	183	502	186	498	741	185.25	2004	501.0
200	09	20	189	489	190	486	193	492	191	497	692	192.25	1964	491.0
100	40	20	193	493	193	481	195	487	194	485	773	193.25	1946	486.5
100	40	40	193	442	169	463	193	451	197	456	779	194.75	1812	453.0
200	09	40	199	435	198	438	199	441	197	454	793	198.25	1768	445.0
					LSD						41	41.50*	121.25*	.25*

Number of *Bemisia tabaci* based on 30 leaves/sample.

REFERENCES

- 1 . Beckham, M. 1970. Effect of nitrogen fertilization on the abundance of cotton insects. J. Econ. Entomol., 63 (4): 1219-1220.
- 2 . Hasseman, L. 1946. Influence of soil mineral on insects. J. Econ. Entomol., 39: 8-11.
- 3 . Hoda, F.M., M.M. El-Beheiri, G.A. Ibrahim and H.A. Taha., 1986. Effect of soil fertilization and density of plant on the population of the spider mite *Tetrany-chus cucurbitacearum* (Sayed) on soybean plants (Acari : Tetranychidae). Bull. Soc. ent. Egypte, 66: 97.
- 4 . Hunter, A.H. 1958. Nutrient absorption and translocation of phosphorus as influenced by the root-knot nematode (*Meloidogyne incognita acrita*) in soil. Science, 43: 330-338.
- Omar, H.I.H., M.F. Haydar and F.M.L. Afifi. 1993. Effect of NPK and their combinations as soil fertilizer on tomato infestation with certain insects. Egypt. J. Agric. Res., 71 (1), 1993.
- 6 . Sharaf, N.S. and J.K. Nazer. 1983. Effect of N, P and K soil fertilizers on population trends of the tobacco whitefly *Bemisia tabaci* Genn. (Homoptera, Aleyrodidae) and the incidence of tomato yellow leaf curl virus in tomatoes in the Jordan valley. Agric. Res. J., Univ. of Jordan, I: 13-24.
- Siddig, S.A., Sudan Gezira-Research Station. 1987. Annual report of the Gezira Research Station and substations, 1978-1979, 1987, 310-317. Gezira Research Station, Khartoum, Sudan.

تأثير النيتروجين والفوسفور والبوتاسيوم ومخاليطها كعناصر سمادية للتربة علي إصابة الطماطم بحشرة الذبابة البيضاء وعلاقة ذلك بالمحصول

خيرات خيري الرافعي

معهد بحوث وقاية النباتات - مركز البحوث الزراعية - الدقي - جيزة.

درست العلاقة بين معدلات التسميد المختلفة بالعناصر السمادية الرئيسية الثلاثة (النيتروجين والفوسفور والبوتاسيوم) علي نباتات الطماطم، وأثر ذلك علي الاصابة بحشرة الذبابة البيضاء وتأثيرها على المحصول.

وقد دلت النتائج على أن هناك زيادة واضحة في تعداد الآفة على النباتات في المعاملات التي عوملت بمعدلات عالية من الأزوت (٢٠٠ وحدة أزوت)، في حين أن المعاملات التي عوملت بمعدلات متوسطة من الأزوت (١٥٠ وحدة أزوت) مع البوتاسيوم (٦٠ وحدة) والفوسفور (٦٠ وحدة) كان تعداد الذبابة البيضاء فيها أقل بكثير.

وبالاضافة إلى ذلك كانت هناك زيادة واضحة في المحصول في معاملات الأزوت المعتدلة مع البوتاسيوم والفوسفور.

لذلك كان من الأهمية بمكان ضرورة الاعتدال في التسميد الأزوتي والإهتمام بالتسميد البوتاسي والفوسفوري.

Table 2. Effect of different fertilizers and their combinations on Bemisia tabaci population infesting tomato and corresponding yield during Nili plantation, 1996.

Fert	Fertilization rate	rate	No. of	B.taba	aci adul	ts and	yield	No. of B.tabaci adults and yield in every replicate	y replic	ate	Mean	Mean no. of	Mean	Mean yield of
	(units)			R1	~	R2	1	R3	1	R4	B.taba	B. tabaci adult	replica	replicate (kg)
z	P ₂ O ₅	K ₂ 0	۲1	X1	Y2	X2	У3	X3	γ4	X4		-		×
100		09	26	852	59	841	52	854	57	861	224	56.00	3408	852
150	150	09	61	797	52	276	63	782	55	791	231	57.75	3146	786.5
100		20	52	731	63	722	58	736	64	742	240	00.09	2931	732.75
150	09	20	99	715	63	723	59	419	64	712	252	63.00	2869	717.25
100		9	91	616	88	622	63	619	92	621	335	83.75	2778	694.5
150		09	64	687	29	685	85	691	69	269	257	64.25	2760	0.069
150		09	73	681	92	673	75	685	22	683	294	73.5	2722	680.5
150		20	82	673	80	899	83	661	856	654	330	82.5	2656	664.0
150		20	83	629	98	658	81	661	84	653	334	83.5	2651	662.75
150		40	82	661	84	627	81	663	89	654	339	84.75	2650	662.5
150		40	96	662	98	653	93	629	97	655	384	96.00	2629	657.25
100	64	40	98	612	105	631	66	625	103	628	405	101.25	2496	624.00
200		09	113	618	108	616	105	621	106	629	432	108.00	2484	621.00
150		40	123	602	119	605	117	609	121	617	480	120.00	2433	608.25
200	_	20	149	593	153	587	147	599	146	586	595	148.75	2365	591.25
100		09	151	518	148	507	157	513	151	909	209	151.75	2044	11.00
200		09	148	591	157	579	159	583	157	573	621	155.25	2326	581.5
100		20	157	579	159	561	161	572	156	580	633	158.25	2292	573.0
200		40	163	295	161	569	156	260	163	222	633	158.25	2248	562.0
200		20	167	548	167	562	162	559	165	546	661	165.25	2215	553.75
200		09	179	532	176	527	317	521	177	517	705	176.25	2097	524.25
100		40	184	217	181	525	185	529	183	523	733	183.25	2094	523.5
200		40	185	509	187	495	183	502	186	498	741	185.25	2004	501.0
200		20	189	489	190	486	193	492	191	497	692	192.25	1964	491.0
100		20	193	493	193	481	195	487	194	485	773	193.25	1946	486.5
100		40	193	442	169	463	193	451	197	456	779	194.75	1812	453.0
200		40	199	435	198	438	199	441	197	454	793	198.25	1768	445.0
					CSD						41	41.50*	121	121.25*

Number of *Bemisia tabaci* based on 30 leaves/sample.

REFERENCES

- 1 . Beckham, M. 1970. Effect of nitrogen fertilization on the abundance of cotton insects. J. Econ. Entomol., 63 (4): 1219-1220.
- 2 . Hasseman, L. 1946. Influence of soil mineral on insects. J. Econ. Entomol., 39: 8-11.
- 3 . Hoda, F.M., M.M. El-Beheiri, G.A. Ibrahim and H.A. Taha., 1986. Effect of soil fertilization and density of plant on the population of the spider mite *Tetrany-chus cucurbitacearum* (Sayed) on soybean plants (Acari : Tetranychidae). Bull. Soc. ent. Egypte, 66: 97.
- 4 . Hunter, A.H. 1958. Nutrient absorption and translocation of phosphorus as influenced by the root-knot nematode (*Meloidogyne incognita acrita*) in soil. Science, 43: 330-338.
- Omar, H.I.H., M.F. Haydar and F.M.L. Afifi. 1993. Effect of NPK and their combinations as soil fertilizer on tomato infestation with certain insects. Egypt. J. Agric. Res., 71 (1), 1993.
- 6 . Sharaf, N.S. and J.K. Nazer. 1983. Effect of N, P and K soil fertilizers on population trends of the tobacco whitefly *Bemisia tabaci* Genn. (Homoptera, Aleyrodidae) and the incidence of tomato yellow leaf curl virus in tomatoes in the Jordan valley. Agric. Res. J., Univ. of Jordan, I: 13-24.
- Siddig, S.A., Sudan Gezira-Research Station. 1987. Annual report of the Gezira Research Station and substations, 1978-1979, 1987, 310-317. Gezira Research Station, Khartoum, Sudan.

تأثير النيتروجين والفوسفور والبوتاسيوم ومخاليطها كعناصر سمادية للتربة علي إصابة الطماطم بحشرة الذبابة البيضاء وعلاقة ذلك بالمحصول

خيرات خيري الرافعي

معهد بحوث وقاية النباتات - مركز البحوث الزراعية - الدقي - جيزة.

درست العلاقة بين معدلات التسميد المختلفة بالعناصر السمادية الرئيسية الثلاثة (النيتروجين والفوسفور والبوتاسيوم) علي نباتات الطماطم، وأثر ذلك علي الاصابة بحشرة الذبابة البيضاء وتأثيرها على المحصول.

وقد دلت النتائج على أن هناك زيادة واضحة في تعداد الآفة على النباتات في المعاملات التي عوملت بمعدلات عالية من الأزوت (٢٠٠ وحدة أزوت)، في حين أن المعاملات التي عوملت بمعدلات متوسطة من الأزوت (١٥٠ وحدة أزوت) مع البوتاسيوم (٦٠ وحدة) والفوسفور (٦٠ وحدة) كان تعداد الذبابة البيضاء فيها أقل بكثير.

وبالاضافة إلى ذلك كانت هناك زيادة واضحة في المحصول في معاملات الأزوت المعتدلة مع البوتاسيوم والفوسفور.

لذلك كان من الأهمية بمكان ضرورة الاعتدال في التسميد الأزوتي والإهتمام بالتسميد البوتاسي والفوسفوري.