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In this article, numerical approaches for a complex order mathematical model for HIV 
that includes drug resistance across the course of therapy are presented. HIV is a virus 
that weakens the immune system, making a person more susceptible to infections and 
diseases. This model consists of five nonlinear complex order differential equations 
where the derivatives is specified in the sense of Atangana-Baleanu-Caputo. Mittag-
Leffler kernels are used in new numerical approaches to simulate complex order 
systems. These methods are based on Lagrange polynomial interpolation and the 
fundamental theorem of fractional calculus. For the two-step Lagrange polynomial 
interpolation, we suggest a straightforward adjustment to the step size to achieve high 
stability. The stability of the disease free equilibrium point of the proposed model is 
presented. The complex order HIV model is mathematically studied using two different 
techniques: the standard and nonstandard Two-step Lagrange interpolation methods, 
which are suggested. To support the theoretical foundations, comparative investigations 
and numerical simulations are provided. 

 

1. Introduction  

HIV is a virus that damages the body’s immune 
system, increasing a person’s susceptibility to illnesses 
and infections. It is transmitted through coming into touch 
with the bodily fluids of HIV-positive individuals, most 
frequently during unprotected sexual contact, or by 
exchanging injectable drug apparatus. HIV cannot be 
eliminated by the body and there is no effective treatment 
for it. 

Nowadays, mathematical models are widely 
acknowledged as a trustworthy method for verifying 
experiments, evaluating hypotheses, and simulating 
complicated system dynamics. 

The history or memory of the variable can be recorded 
using fractional derivatives, which is a special quality. 
Additionally, current memory has a stronger impact than 
earlier history [33]. Using derivatives of integer order is 
challenging. Since integer order derivative models are 
less accurate when compared to fractional derivative 
models when using real data, their usage is warranted for 
resolving a range of issues. 
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In contrast to fractional and complex order derivatives, 
integer-order derivatives are unable to account for 
systems that are affected by inherent qualities of materials 
and techniques as well as history memories ([3],[38]). 
Recently, Atangana-Baleanu Caputo (ABC) defined an 
improved Caputo fractional derivative by substituting a 
generalised Mittag-Leffler function for the nonlocal kernel 
and  non-singular [14]. These current versions have been 
utilised in a variety of disciplines to represent real-world 
applications. 

        The fractional order derivative and the integer order 
derivative are recognised as having gained popularity as a 
result of the complex order derivative when the imaginary 
part of the complex order equals zero [11]. A unique 
mathematical model focused on a complex order model 
was presented by Pinto and Carvalho in [3] for HIV 
infection with treatment resistance. They came to the 
realization that the complex order system has a number of 
benefits, including rich dynamics and the ability to add 
new information to the modelling work of intracellular 
delay by changing the complex order derivative value. 
Additionally, Pinto and Machado suggest the forced van 
der Pol oscillator in [22] as a complex-order 
approximation. Also, Sweilam et al. in [39] devised a 
technique for dealing with the complex order mathematical 
formula of HIV with treatment resistance over the course 
of treatment. 

This work’s main contribution is the development of a 
productive numerical technique for approximating the 
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solutions of the complex order HIV model, which is 
presented in [3]. When compared to the standard two-step 
Lagrange interpolation method (S2LIM), the nonstandard 
two-step Lagrange interpolation method (NS2LIM) 
performs better [1]. On offer are numerical simulations for 
the complex order model. 

The article is divided into the following sections: In 
Section 2, the complex order calculus are introduced. The 

HIV model is described in section3 in a complex order. In 
section 4, the stability of the disease free equilibrium point 
of the proposed model is presented. In section 5 NS2LIM 
is discussed. The numerical method for the presented 
utilising NS2LIM is described in section 6. In section 7, 
numerical simulations are utilised to show the 
effectiveness and applicability of the NS2LIM. Finally, 
section 8 contains the conclusions. 

 

2   Preliminaries and Notations 

The basic definitions of complex order calculus that will be used in this artical are covered in this section. 

2.1   Complex Order Calculus 

The following is the general form of the complex order ordinary differential equation: 
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Definition 2.1  For complex order derivatives of a function )(tg , the Caputo formula  is as follows Cz  [18]:  
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    The gamma function appears as follows for Cz  [7]:  
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Definition 2.2  For complex order derivatives of a function )(tg , the Grünwald-Letinkov formula (GL) is as follows 
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 the integer portion of 
h

as −
 is denoted by ][

h

as −
, the bounds of operation for )(sgD z

sa  are a  and s , see [18] 

for more information.  

Definition 2.3  For complex order derivatives of a function )(tg , the Atangana-Baleanu complex order derivative 

(ABC) in the Liouville-Caputo senses is defined as follows [5]:  
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3.  The Mathematical Model  

In the following the complex fractional order HIV model 
is considered. This model proposed by Pinto and Carvalho 
in [3] and sweilam et al studied HIV in a complex order in 
[39]. This model consists of five nonlinear complex 

fractional order differential equations. The definitions of 
each variable in the suggested model are listed in table 1. 
Table2 also introduces the parameters and their 

interpretation for the suggested model. The target cells T  
that are not infected are listed as follows [4] : 
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Table 1: Variables in the model [3]. 

 Variable   Definition  

T   Uninfected TCD +4  populations cells  

sT    drug-sensitive cells with infection 

rT   drug-resistant cells that are infected 

sV    virulent, medication-sensitive pathogens 

rV   viruses that are contagious and resistant to medication 

Following is a description of the complex order model: 
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Table 2: Parameters in the model [3] 

Parameter Value Definition 

  75  the frequency of T cell synthesis. 

  1 Infected cell death. 

maxT  1500  carrying capacity of T . 

r  0.03 The T  gene’s rate of proliferation. 

sk  
6102.4 −  The percentage of sV  infections. 

s

pn
 

0.1  
Wildtype strain’s PI effectiveness. 

rk  
6102 −  The percentage of rV  infections . 

s

rtn  0.4  RTI’s rate effectiveness for wild type. 

u  5103 −  Proliferation of the T virus (without the virus or infected T 
cells). 

d  0.1  The fatality rate of T . 

c  23 viral clearance rates, in percentage terms. 

sN  4800  Drug-sensitive strain bursting sizes. 

rN  4000  Drug-resistant strain bursting sizes. 

r

rtn  0.2  RTI’s rate effectiveness for mutants. 

r

pn  0.1  PI’s effectiveness in treating mutations. 

 

4  Stability of the Disease-Free Equilibrium Point 

According to [3], more information on how to compute 
the disease-free equilibrium point can be found. The 
absence of all diseases is referred to as the disease-

free equilibrium. In the following the free Equilibrium 
point is locally asymptotically stable [39]. In equation(7) 
we put  
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and 0=rT  then we solve the obtained algebraic system to have the disease-free equilibrium point 1  of HIV model 

(7) as follows:  
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Evaluation of the Jacobian matrix at the free equilibrium point in [39] then the characteristic equation is given as 
follows:  

 0.=2082.08984381.30443101.6195820.213853.1 2345 +++++ DDDDD  (8) 

Then the eigenvalues are given by, 

0.0500,=1 −D     11.5973,=2 −D    0.4027,=3 −D    11.6051,=4 −D      

0.3949.=5 −D   

Therefore, when 1D , 2D , 3D , 4D  and 5D  0 , the model’s free equilibrium point is asymptotically stable. If all the 

eigenvalues iD  of the Jacobian matrix 
t
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 and 1<0  ife  Consequently, the equilibrium point is asymptotically stable locally.

5.  Numerical Technique 

In numerical analysis, Lagrange polynomials are 
applied for polynomial interpolation. For a specified 

collection of points ),( ii yx  with no two ix  values 

equal, the Lagrange polynomial is the polynomial of 

lowest degree that assumes at each value ix  the 

corresponding value iy , so that the functions match at 

each point. The following are the procedure’s 
headlines: 

The initial value problem is [1]: 
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 Using the two-step Lagrange polynomial  
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When we insert Eq.(12) into (11) and follow the same steps as in [9] we obtain:  
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We employed a simple modulation in (13) to get good stability [31]. Changing the step size h is the 

purpose of this modulation to )(h  as a result )(=)( 2hOhh + , 1)(<0 h . For more details see ([25],[26], 

[28], [29], [30]). 

Below is an illustration of the non-standard two-step Lagrange interpolation method (NS2LIM): 
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6  Numerical Scheme 

 The system (7) is represented numerically as follows using the NS2LIM (14): 
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7  Numerical Results 

Following are presented numerical simulations of the 

 complex HIV model. The initial conditions are 1000=T , 

1=sT , 0.01=sV , 0.01=rT , 0.01=rV . Table 3 details 

how the numerical algorithms NS2LIM, S2LIM, and Ode45 
behave in terms of convergence when e = 1 and f = 0. The 

CPU time shows in Table 4 when 0.9=e  and 0.2=f . 

Figure 1, displays how the behaviour of Infected TCD +4  

drug-sensitive cells and Infected TCD +4  drug-resistant 

cells at i01+ , i0.211+  with 
510*2.4= −

sk , 

510*2= −

rk  and rate of growth 1G  using NS2LIM. Figure 

2, represented how the behaviour of Uninfected TCD +4  

populations cells at different values vu   with 
510*2.4= −

sk , 
510*2= −

rk  and rate of growth 1G  using 

NS2LIM. Figure 3, portrays the behaviour of Infected 

TCD +4  drug-sensitive cells and Infected TCD +4  drug-

resistant cells at at different values vu   with 
510*2.4= −

sk , 
510*2= −

rk  and rate of growth 1G  using 

NS2LIM. Figure 4, displays the behaviour of Infectious 
viruses of drug-resistant and Infectious viruses of drug-

sensitive at different values of vu   with 
510*2.4= −

sk , 

510*2= −

rk , 
810*3= −u  and rate of growth 1G  using 

NS2LIM. Figure 5, displays the behaviour of Uninfected 

TCD +4  populations cells at different values vu   with 
510*2.4= −

sk , 
510*2= −

rk , 
810*3= −u  and rate of 

growth 2G  using NS2LIM.  

 

Table 3:  Comparisons between NS2LIM, S2LIM, Ode45 and 1000=finals  at different various of h ,  1=e , 0=f .  

 

 

  

   

 

 

 

 

 

 

Table 4:  The CPU time when 0.8=e  , 0.25=f .   

 f inalt   NS2LIM CPU time   S2LIM CPU time  

200   0.3758 sec   1.4714 sec 

900   0.42154 sec   2.562173 sec  

3000   0.56262 sec   4.623946 sec  

6000   0.536201 sec   22.432765 sec  

 

 

h   NS2LIM   S2LIM   Ode45  

0.2 Convergent   Convergent   Convergent 

3 Convergent   Convergent   Convergent  

6  Convergent  Divergent   Divergent 

20 Convergent   Divergent  Divergent 

30 Convergent  Divergent   Divergent 

50 Convergent   Divergent   Divergent 
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Figure  1: Numerical simulation of rt  and st  with 

510*2.4= −

sk , 
510*2= −

rk  and growth rate 1G  

using NS2LIM. 

   

   

 

 

Figure  2: Numerical simulation of T  with 
510*2.4= −

sk , 
510*2= −

rk  and growth rate 1G  using 

NS2LIM. 
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Figure  3: Numerical simulation of rt , st  with 

510*2.4= −

sk , 
510*2= −

rk  and growth rate 1G  using 

NS2LIM. 

  

 

   

 

  

  

Figure  4: Numerical simulation of rV  and sV  with 

510*2.4= −

sk , 
510*2= −

rk , 
810*3= −u  and growth 

rate 1G  using NS2LIM. 

 

  

Figure  5: Numerical simulation of T  with 
510*2.4= −

sk , 

510*2= −

rk , 
810*3= −u  and growth rate 2G  using 

NS2LIM. 
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8  Conclusions 

The mathematical model for HIV complex order is 
discussed in this article. It is easier to depict biological 
processes with memory using this dynamical model. The 
complex-order system also exhibits a diverse range of 
dynamics for the complex-order derivative value. An 
interpolation technique based on Lagrange polynomials is 
employed to obtain numerical solutions for a complex 
order HIV model with Mittag-Leffler kernels. The approach 
is precise, effective, and straightforward. 
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