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Abstract  

The AM2 model was able to accurately predict gas production in anaerobic digestion, 

with methane production increasing from 0.015 to 0.018   /day as organic loading rates 

(OLRs) increased. However, the model faced limitations in predicting volatile fatty acid 

(VFA) dynamics, especially at high OLRs, due to the presence of excess organic 

matter.In a 37-day experiment of maize silage digestion in a 50-liter anaerobic reactor, it 

was shown that the AM2 model accurately estimates biogas production, with feeding 

intervals of fifteen minutes and a pause during weekends.The extended AM2 model was 

calibrated to ADM1 for grass silage simulation in          2015b. The ADM1 

simulation was unsteady initially, with inconsistent biogas flow and alkalinity output 

profiles, which were stabilized by increasing the disintegration process parameter,    , 

to 0.266 based on a literature review. The profiles demonstrated stability, and an identical 

initial parameter was suggested for     .The organic loading rate (OLR) and hydraulic 

retention time (HRT) were set at 3.58 kg ODM         and 33.09 days, respectively. 

The extended AM2 model successfully simulated biogas and methane flow rate profiles, 

indicating better performance than ADM1 for grass silage digestion simulation.Cattle 

manure digestion is simulated using an extended AM2 model calibrated to ADM1, based 

on literature parameters. Manure composition analysis determines the influent 

composition of organic fractions. Manure is valuable for agriculture, enhancing soil 

structure and nutrient availability, with some nutrients persisting despite cow digestion. 

Anaerobic digestion of manure can be affected by ammonia concentrations, with 

equilibrium digestion achievable by maintaining elevated rates, as detailed in the 

literature.In AM2's extended version, a sensitivity analysis of 24 parameters found that 

    ,   ,   ,    ,      ,      ,    ,    ,     ,    ,    ,         ,         ,        ,        



Khairy Megalaa / Engineering research journal 182(June 2024)M1-M41 

 

M2 
 

,       and        related to substrate degradation and CO2 yield, had the greatest impact on 

model output.The hydrolysis process and organic matter parameters also demonstrated 

high sensitivity.Sensitivity analysis data can improve model accuracy by removing 

parameters with low sensitivity.AM2 model extensions were made based on sensitivity 

analysis and AM2-ADM1 model comparisons, enhancing its applicability and accuracy. 

These modifications allowed AM2 to account for ADM1's combined factors, improving 

simulation results. While biogas generation and key variables showed agreement with 

ADM1 trends, AM2 responded more slowly to feedstock addition. Important findings 

include the consideration of inorganic nitrogen incorporated into organic matter, 

addressing a limitation in the original model. 

Keywords:biogas; co-digestion; anaerobic digestion; modeling; simulation; 

optimization; Anaerobic Digestion Model (AM2); biomass. 

1.Introduction 

         Since fossil fuels are running out quickly, bioenergy is expected to be the primary 

source of energy from renewable sources[1] [2].Biomass wastes from agricultural and 

forestry operations are regarded as carbon-neutral sources of energy[3] [4] . If the amount 

of carbon dioxide and oxides of sulfur emitted is decreased, using biomass is good for the 

ecosystem[5] .A possible technique that lowers pollution from carbon dioxide and other 

hazardous substances is biomethane[6] . 

         Anaerobic digestion (AD) is a process that turns biological material into methane, 

carbon dioxide, as well as digested matter using bacteria. The result is biogas, a 

renewable energy source with numerous advantages[7]. Utilizing agricultural waste along 

with other biomass, biogas is a source of clean energy with a wide range of uses, such as 

power production, heating, fuel manufacture, and the provision of raw materials for 

environmentally friendly chemicals. It can be used straight for cogeneration, cooking, 

lighting, and automobile fuel. Once purified, it can be pumped as biomethane into the gas 

supply grid[8] [9] [10]. Biogas may be processed into inexpensive syngas that is high in 

nitrogen. This syngas can then be utilized to produce liquid biofuel using the Fischer-

Tropsch process[11] . 

         The process of co-digestion (AcoD) reduces carbon dioxide emissions by reducing 

them into carbonate molecules like magnesium carbonate (MgCO3), enhances process 

equilibrium, and increases biogas yield and quality. It also diversifies feedstock 

sources[12].Nevertheless, limited biogas production, high CO2 content, the 

environmental effects of digestate disposal, and the addition of complexity and 
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uncertainty to the AD process are some of the problems that face AcoD[13] .As a result, 

simulation was required to assess and enhance the effectiveness and viability of co-

digestion[14] .Simulation can aid in understanding and improving the AcoD process by 

applying various models, including kinetic, feedstock, reactor, and optimization models, 

to simulate the performance of various co-digestion reactor types. These models can be 

applied using a variety of software packages, including Aspen Plus, SuperPro Designer, 

BioWin, CFD, and MATLAB [15].Several benefits come with co-digestion. In 

comparison with the process of anaerobic digestion alone, it can boost biogas output[61] 

[61] [61] [61]  . This is due to the fact that co-digestion makes it possible to use various 

substrates, including microbe biomass, dung from animals, and waste from food, all of 

which can increase the total amount of methane produced. Moreover, co-digestion can 

raise the co-substrate's carbon-to-nitrogen ratio, which would enhance process stability. 

During digestion, it can also improve the volatile fatty acid, pH, as well as total ammonia 

nitrogen properties. By breaking down biological waste and retrieving nutrients, co-

digestion can offer a sustainable waste management solution. Co-digestion has the ability 

to promote a circular economic model, produce biogas as a renewable biofuel, and aid in 

the decarbonization of the global economy[02] . 

           Anaerobic digestion's fundamental concept is the bacterial process that turns 

organic materials into biogas in the absence of oxygen. A wide range of bacteria, 

including methanogens and syntrophic bacteria, are involved in this process. The primary 

processes in anaerobic digestion include hydrolysis, fermentation, 

acetogenesis/dehydrogenation, as well as  methanogenesis[06].By encouraging direct 

interspecies electron transfer (DIET) among syntrophic bacteria as well as methanogens, 

which increases electron transfer effectiveness and boosts the generation of methane, 

anaerobic digestion can be made more efficient[00]. Thermal pretreatment to increase 

biodegradability as well as recycling are two further methods to promote anaerobic 

digestion[02]. In order to overcome the difficulties posed by the existence of lipid in 

anaerobic reactors, bioreactors with membranes and flotation-based biological reactors 

have been created as well for treating lipid-rich effluent[02]. The weaknesses of each 

individual approach can also be addressed by mixing anaerobic digestion and 

electromethanogenesis, a procedure that bioelectrochemically transforms carbon dioxide 

into methane[02].Anaerobic digestion can be summed up by the chemical formula that 

follows: H12 O6 C6 + 2H2 O → 3CH4 + 3CO2 

The organic substrate glucose (C6H12O6) represents a prime example of one that can be 

broken down anaerobically[01]. 
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           Several of the factors that affect biogas production are pressure, pH, temperatures, 

organic loading rate (OLR), hydraulic retention time (HRT), application of macro- and 

micronutrients, and suitable hybrid selection  [01] [01] . The amount that can be produced 

of fresh maize mass, a popular substrate for producing biogas, can be increased by using 

macro- and micro-fertilizers [01].To increase biogas productivity, pH, temperature, OLR, 

and HRT must all be optimized. The generation of biogas can also be influenced by 

temperature, pH, and pressure. Producing more biogas and methane may result from 

lower internal gas pressure. Furthermore, pre-treatment techniques, substrate degradation, 

feedstock type, and the use of various microbes can all affect the production of 

biogas[22]  . 

              As previously stated, these stages of anaerobic digestion are essential for 

effectively converting biological material into biogas and other useful products. 

Hydrolytic bacteria convert complex organic substances into simpler molecules through 

the process of hydrolysis [26]. Acidogenic bacteria continue to break down the simpler 

compounds into volatile fatty acids (VFAs) throughout the acidogenesis 

stage[20].Following this, acetogenic bacteria transform VFAs into acetate in a process 

known as acetogenesis[22]. At the final stage of anaerobic digestion, methanogenic 

archaea convert hydrogen and acetate into methane gas. The switch from acidogenesis 

into methanogenesis, which is essential for recovering energy, is influenced by the 

microbial ecology and gene expression[22].The process as a whole is affected differently 

by the various stages of anaerobic digestion. The diversity of microbes and composition, 

as well as the amount and quality of extracellular polymeric substances (EPS), were all 

impacted by the kind of substrate, which in turn affected the toxicity of aromatic 

compounds, according to a study by Prem et al. [22]. In their investigation of a two-phase 

anaerobic digestion process, Valentino et al. discovered that a mesophilic temperature 

combined with a 5.0-day hydraulic period of retention produced a VFA-rich stream with 

a high acidification yield, while a thermophilic second methanation stage enhanced the 

equilibrium of energy as well as the generation of biogas[21]. Optimization of anaerobic 

co-digestion (AcoD) was covered by Inayat et al., who highlighted temperatures, 

concentration of co-substrate, the inoculum ratio, and the C/N ratio as crucial 

variables[12]. Aeration can lower the accumulation of volatile fatty acids and raise 

process yields, according to Girotto et al.'s assessment of research on the combined use of 

aerobic treatment as well as anaerobic digestion. However, they also noted that high 

soluble chemical oxygen demand (COD) consumption before the AD phase may 

diminish methane generation[21]. Wu et al. discovered that while the acidogenic stage 

was predominantly responsible for reducing the number of these genes, the two-phase 
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thermophilic digestion also lowered the presence of several antibiotic resistance genes 

(ARGs) [21]. 

          Researchers have modeled the AcoD process for different substrates and conditions 

using various methods and tools, including temperature, co-substrate concentration, 

inoculum ratio, and C/N ratio, evaluating their influence on biogas yield and quality. 

Deng, Y. et al. used response surface methodology (RSM) to optimize the operational 

parameters and biogas yield of AcoD[21], Sendjaja, A. et al. developed a state-space 

model and an adaptive identifier for controlling the biogas generation from AcoD [22], 

Harun, N., et al. simulated the AcoD reactor for three substrates using SuperPro Designer 

software and optimized the process parameters[26], Wang, X. et al. developed and 

validated an online alkalinity monitoring system for AcoD processes using an artificial 

neural network (ANN) model with oxidation and reduction potential (ORP), pH, and 

electrical conductivity (EC) as inputs and two hidden and one output neurons[20]. 

Employed the ADM1 model by Bułkowska et al. to delve into the influence of various 

co-substrates and their subsequent impacts on hydrolysis, propionate degradation, and 

hydrogen inhibition[22]. To increase the production of biogas from maize silage and its 

co-digestion with other substrates, a number of models and tactics were studied [22]. 

Studies on co-digestion that have already been conducted have concentrated on building 

kinetic models for a variety of feedstocks, predicting biogas potential models, and 

designing simulation models to maximize reactor performance  [22].Even with the 

advancements in co-digestion modeling, there are still shortcomings in the modeling of 

dynamic reactors and the forecasting of feedstock effects and operating conditions on the 

composition and quality of biogas.Most experiments are small-scale or isolated, and most 

models are unrealistically simplistic.More dynamic and realistic models, as well as 

representative and doable experiments, are needed to make co-digestion more scalable 

and sustainable. Finding a balance between the theoretical model's complexity and its 

practical application is crucial for applying knowledge to biogas production systems that 

are both sustainable and scalable[12] [21] [21]. 

           Present anaerobic digestion models have difficulties and constraints when it comes 

to accurately representing real system conditions. They don't consider the effects of many 

factors on the quantity and quality of biogas and are predicated on irrational assumptions. 

[12] [21] .High complexity, high computing cost, high value of parameter sensitivity, and 

limited precision are some of these limitations [21].The majority of models are limited in 

their applicability and generalization to various scenarios because they were designed and 

calibrated for certain substrates and conditions.Furthermore, they are not supported by a 

variety of experimental findings[21].Comprehensive modeling that explains the dynamics 
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and interactions of different substrates and bacteria is severely lacking [22]. Although the 

dynamics and interactions of current research in co-digestion processes are not fully 

understood[26], it reduces the intricacies of these systems and ignores the complex 

microbial communities that are essential to the production of biogas[20].There are 

currently few studies being conducted to create comprehensive models that fully capture 

the intricate relationships between various substrates in co-digestion systems [14].Current 

studies often ignore the precise interplay between multiple feedstocks and lack the depth 

required to simulate and improve the potential synergistic and negative effects of 

different substrate combinations[14] [53].Although various models exist for anaerobic 

digestion, they often overlook the special opportunities and problems presented by 

scenarios of co-digestion[52].Our capacity to forecast co-digestion systems' performance, 

efficiency, and stability with any degree of accuracy is hampered by the absence of 

appropriate modeling tools[54].The lack of standardized measurement protocols for 

measuring and monitoring biogas production hinders the comparison of results between 

different studies[55].A number of the existing models are overly complicated and call for 

a high number of parameters that are challenging to measure or estimate[56].Previous 

studies have not tackled the modeling and optimization of co-digestion with seasonal 

substrate changes[57].The integration of biogas production with other renewable energy 

sources, known as biogas hybridization, has not yet been thoroughly studied[58].The 

ideal parameter configurations—such as changing substrate compositions, mixing ratios, 

and operation conditions—remain inadequately investigated and thus contribute to the 

knowledge gap[59] [60].This is further hindered by the lack of strong models that take 

into account the synergistic effects of different feedstocks[61]. The lack of attention to 

comprehensive evaluations of co-digestion also affects economic and environmental 

decisions.The potential of alternative substrates, especially lignocellulosic materials, 

remains largely untapped due to limited understanding and challenges in their effective 

utilization .The dynamic population of microorganisms and the complexity of metabolic 

pathways also affect this gap[62].Because of a lack of variety among the places 

researched, anaerobic digestion studies face geographic gaps, mostly focused on 

industrialized countries and agricultural waste substrates. This narrow focus fails to 

consider the influence of various environmental and climate conditions on co-digestion 

systems worldwide, ignoring organic variety in industrial and urban environments and 

impeding thorough modeling of anaerobic digestion processes[63] [64]. The rules and 

regulations governing the generation of biogas differ across nations and areas. These 

measures in European nations are evaluated using a biogas policy model. This model 

takes into account a number of factors, such as the kind of policy, the administrative 
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level, the administrative region, the value chain segment that is being targeted, and 

changes as time passes[12]. 

           It's important to create sophisticated and accurate models that can accurately 

represent the system's dynamic behavior, forecast biogas production and quality under 

various conditions, and be verified by experimental data. This will facilitate the design of 

complete systems that account for various organic material kinds and operating 

conditions, as well as the improvement and management of co-digestion processes. Since 

pretreatment effects increase organic matter's bioavailability, they must also be 

incorporated into the models. To give a thorough understanding of the whole biogas 

generation process, current models must be improved, as they frequently overlook the 

effects of pretreatment techniques on microbial communities[11].There are obstacles to 

overcome, including infrastructural shortages, poor government support, and 

technological shortcomings. However, there are also opportunities for improved waste 

management, pollution reduction, energy recovery, and economic gains when biogas 

systems are implemented in developing nations [11]. 

            The goal of this study is to increase the co-digestion processes' efficiency and 

applicability in the production of biogas. The primary objectives are to tackle the current 

obstacles in this field, specifically the absence of all-encompassing and precise 

forecasting models for biogas production and quality under diverse circumstances. The 

study includes evaluating several parameters that affect the yield and quality of biogas 

and validating these models. It highlights the application of simulation methodologies to 

enhance co-digestion procedures. The anticipated advantages encompass amplified 

biogas generation via process optimization, the transformation of organic waste to reduce 

carbon dioxide emissions, and the attainment of equilibrium by regulating pH, 

temperature, and substrate composition. It also seeks to verify experimental results and 

optimize operational factors, including feedstock composition and mixing ratios. In 

addition, the study looks at using co-digestion procedures to produce biogas, which has 

drawbacks such as low biogas output, environmental issues, and complicated processes. 

It also looks into how biogas hybridization may be used to improve the sustainability and 

scalability of biogas production systems employing substrates including cattle manure, 

grass silage, and maize silage. 

2. METHODOLOGY 

2.1 AM2 Model Test 
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The digestion of maize silage over a period of 37 days in a 50-liter experiment was 

studied. Maize silage was used as an organic material to produce biogas. Every feeding 

into the reactor took place every fifteen minutes. The feeding was stopped over the 

weekend, on days 5, 13, 20, 27, and 34. Silage is a preserved animal feed produced by the 

fermentation of green plants under anaerobic conditions. 

2.2 Enhanced AM2 Model Outperforms ADM1 in Simulating Grass Silage 

Anaerobic Digestion 

For grass silage in         2015b, the extended version of AM2 was likewise 

calibrated to ADM1.The parameters for ADM1 were taken from the literature.The 

model's equations were applied in the same way as they were in the previous studies. The 

organic loading rate (OLR) and hydraulic retention time (HRT) were taken into 

consideration as operating parameters; they were 3.58 kg ODM       and 33.09 days, 

respectively.The production of biogas and methane, alkalinity (Z), methanogenic and 

acidogenic bacteria (X1, X2), organic material (S1), volatile fatty acids (S2), and 

inorganic carbon (C) are the output variables that needed to be improved.Fmincon, a 

         optimization function, was employed. 

2.3 The Development of a Simulation for Co-Digestion Processes in the 

Production of Biogas 

The AM2 model aims to address challenges in co-digestion systems by providing 

accurate predictions of biogas production and quality under various conditions. It 

considers substrate characteristics, pH, temperature, and mixing ratios, while also 

evaluating the impact of pretreatment on microbial communities. The model employs 

simulation techniques and different models to simulate co-digestion reactor performance. 

It offers the potential to optimize co-digestion processes, enhance biogas yield, and 

achieve stability through operational factor control, contributing to a sustainable and 

efficient solution. 

3. Results and Discussion 

3.1 Simulation's Use in Anaerobic Digestion 

          Anaerobic digestion processes are difficult to comprehend and optimize without 

the use of simulation. This method offer practical guidance for addressing the 

technological difficulties associated with anaerobic digestion[68]. Using MATLAB, 

dynamic models using modified Hill's model may be created to accurately estimate 

biomethane production for batches as well as continuous processes with varying 
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substrates and circumstances[69].With a variance of fewer than ±7.6% from values found 

in the scientific literature, such models have demonstrated great precision as well as 

durability. The production of biogas can be optimized by using modeling and simulation 

of anaerobic digestion processes[70].For accurate predictions, sensitivity analysis 

techniques like Shannon's entropy can help identify parameters that are sensitive in 

anaerobic digestion models[71].When it comes to lowering overall summary error, 

automatic parameter optimization in anaerobic digestion models typically performs better 

than human optimization [72]. For parameter estimation, a sensitivity-based hierarchical 

as well as sequential individual parameter optimization technique was suggested, which 

is followed by a correlation-based approach. By using this technique, the total error and 

computation times are decreased, and fewer parameters need to be fitted to the data[73]. 

The accuracy and effectiveness of the calibration of the anaerobic digestion model are 

being improved by sophisticated parameter estimation methods such as particle swarm 

optimization-based smart algorithms[74]. 

3.2 AM2 Validation 

         Using experimental data from two anaerobic digesters running at varied organic 

loading rates (OLRs), the AM2 model was validated by comparing its predictions of gas 

output and volatile fatty acid (VFA) concentration.The purpose of the study was to 

validate the predictive accuracy of the AM2 model with reference to anaerobic digester 

settings. Though there were a few small variations from the actual numbers, the AM2 

model accurately anticipated the system's behavior.When it came to replicating the 

creation of VFA, researchers found that the model performed rather accurately.It is 

crucial to remember that the model's accuracy is dependent on a number of variables, 

including the OLR.The model predicted a rise in methane production in tandem with an 

increase in OLR.But from days 5 to 11, there was an adaptation phase, during which the 

methane production rapidly increased to 0.024      .Additionally, the model correctly 

predicted that methane production in the area of trials 1 and 2, which had measurements 

of 0.015       and 0.016      , respectively, would drop to 0.018      . 

Nevertheless, in comparison with the experimental findings, the model was unable to 

correctly forecast the dynamics of VFA concentration.Because of the excess organic 

matter at high OLRs, the variation is explained. Therefore, even though the AM2 model 

is a useful resource for comprehending anaerobic digestion, there are situations in which 

it is not ideal.The AM2 model is a helpful tool for understanding anaerobic digestion, but 

it should be used with caution, especially when forecasting the concentration of volatile 

fatty acids, the study concluded after comparing the model's output with the real 

anaerobic digestion results. See papers[75] [76]. 
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3.3. AM2 application on substrates 

3.3.1 maize silage     

A study was done on the 37-day digestion of maize silage in a 50-liter anaerobic reactor. 

In Figure 1a, because of the brief feeding duration, multiple peaks corresponding to the 

gas generation rate emerge during digestion. Every feeding into the reactor took place 

every fifteen minutes. The feeding was stopped over the weekend, as evidenced by the 

observations made on days 5, 13, 20, 27, and 34. Figs. 1b and 1c, respectively, display 

the results of the biogas as well as the methane production rate and the AM2 simulation. 

The results show that AM2 does a good job of estimating the generation of biogas 

(paper[75]). 

 

Figure 1. a) In a 50-L scaled anaerobic digestion process, the organic loading rate was 

observed throughout 36 days with an alternating feedstock load. 
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Figure 1.b): Biogas production using online experimental data  and AM2 simulation. 

 

Figure 1.c): Methane generation using online experimental data  and AM2 simulation  
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Figure 2. Analyzing the differences between the 36-day simulation of the modified AM2  

and ADM1  at varying feedstock loads in a 50-L scaled process of anaerobic digestion. 
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Figure 3)Biogas production rate  in a 100-L scaled anaerobic digestion process. 

3.3.2 The lumping variables 

         Lumping variables, grouped elements in a system, simplify research and analysis. 

They're vital to understanding complex interactions in processes like digestion. In the 

context of anaerobic digestion, variables like bacteria concentrations and chemical 

characteristics are considered lumping variables. In AM2, these include X1, X2, Z, S1, 

S2, and C, representing bacterial concentrations and chemical constituents. AM2 offers a 

streamlined approach, breaking digestion into steps and highlighting the acidogenic and 

methanogenic bacteria roles.While the ADM1 model is more detailed, it's complex due to 

its extensive equations and parameters. AM2's mathematical simplicity aids in simulating 

waste conversion using equations dependent on bacterial growth and environmental 

factors. ADM1, in contrast, offers detailed representations but is harder to analyze 

(paper[75]). 

3.3.3 Grass silage 

        For grass silage in         2015b, the extended version of AM2 was likewise 

calibrated to ADM1. The parameters for ADM1 were taken from Paper[77] .The model's 

equations were applied in the same way as they were in the paper[75] .The ADM1 

simulation was unsteady at first, with inconsistent output profiles for alkalinity and 

biogas flow. The parameter of the process of disintegration,     [     ], might be 

increased to a value of 0.266, as mentioned in the papers[78] [79]. This was discovered 

after examining the literature.Both profiles demonstrated sufficient stability following 

alteration, as shown in paper[80] . As a result, an identical value was suggested for the 

initial parameter of      for the estimation of parameters. After the process was 

completed, 0.5 was the result.The organic loading rate (OLR) and hydraulic retention 

time (HRT) were taken into consideration as operating parameters; they were 3.58 kg 

ODM        and 33.09 days, correspondingly.The production of biogas and methane, 

alkalinity (Z), methanogenic and acidogenic bacteria (X1, X2), organic material (S1), 

volatile fatty acids (S2), and inorganic carbon (C) are the output variables that needed to 

be improved. Fmincon, a         optimization function, was employed.The ADM1 

model output is in good agreement with the AM2 biogas and methane flow rate profiles, 

as shown in paper[80] .The results of the simulation suggest that the extended AM2 

model works better than the ADM1 model to simulate the anaerobic digestion of grass 

silage. 

3.3.4 Cattle manure 
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          The identical process that was described for grass silage was used to estimate the 

parameters of AM2 on ADM1 for cattle manure.Finding the calibrated parameters that 

would bring the model variables as well as simulation outputs as close to the process's 

ADM1 profiles as feasible was the optimization's goal function. The source of the 

parameters for ADM1 was the paper [77]. The chemical contents of cattle manure were 

examined in order to determine the influent composition of each of the feedstock's 

organic fractions. This information is provided in Table 1. Based on the calculation 

described in the paper [75],  the influent composition of the substrate is displayed in 

figure 4.  

          Manure is useful for agricultural use because it improves the structure of the soil, 

microorganisms, pH neutralization, and nutrient availability.Although the cow has gone 

through four stomachs, cow dung usually still retains a large portion of the nutrients it has 

consumed. Sometimes the grass, feed, as well as nutrients are just transformed, and as a 

result of passing through the digestive system, they break down more quickly. In 

anaerobic digestion, methane output per digester volume can be raised by using crops in 

the feedstock as opposed to just digesting the manure alone (paper [81]).Cattle manure's 

anaerobic digestion may be hindered during digestion by ammonia concentrations.After 

some operating time, ammonia concentrations at specific elevated rates could be 

maintained to maintain an equilibrium digestion. But as acetate concentration rises, 

methane is decreased, and volatile fatty acid concentrations rise (paper [82]). 

Additionally, ammonia toxicity in populations that use hydrogen and acetate has 

demonstrated a greater susceptibility of the aceticlastic in comparison to the 

hydrogenotrophic methanogens (paper [82]). 

Table 1: Chemical composition of maize silage, grass silage and cow manure 

Contents Maize [%] GrassValue 

[%] 

Cattle manure 

Value [%] 

Dry matter (DM) 

 

33.4 37.4 9.3 

Organic dry matter (ODM) 

 

81.7 89.8 81.7 

Water 

 

66.6 62.6 90.7 

Crude protein (CP) 

 

2.8 4.0 12.2 

Crude fiber (CF) 

 

4.8 8.8 17.8 

Crude ash 1.1 3.1 – 
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Crude lipids (CL) 

 

1.1 0.97 4.3 

Neutral detergent fiber (aNDF) 

 

11.2 17.9 – 

Sugar as sucrose 

 

3.1 6.8 – 

Acid detergent lignin (ADL( 0.55 0.97 – 

 

Acid detergent fiber (ADF) 5.7 10.4 – 

 

 

         The table illustrates that cattle manure contains the highest amount of protein and 

fiber. It contains a large amount of organic matter, but it also has the highest water 

content. On the other hand, maize silage has the lowest amount of protein and fiber 

content. Grass silage contains the highest percentage of dry matter and a higher 

percentage of protein compared to maize silage, but less than cattle manure. 

 

Figure 4. Cow manure, maize silage and grass silage content influence the AM2 

simulation. 
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Table.2 provides the calibrated parameters for manure from cattle, grass silage, and 

maize silage. The input values used for maize silage in the parameter estimation method 

were derived from papers [12] [12] [11] . 

Table 2: Cattle manure, grass, and maize characteristics calibrated using AM2. 

Parameter Unit Grass silage Maize silage manure 

The maximum growth rate of 

acidogenic bacteria, or μ1max 

 

    0.7 0.6 0.7 

The maximum growth rate of 

methanogenic bacteria,or μ2max 

 

    0.4 0.3 0.4 

Inhibition constant,             991.3 998.2 250.0 

Coefficient of volumetric gas-

liquid mass transfer,or     

    22.1 22.0 80.4 

Constant of half-saturation,or           1.3 3.5 9.0 

Constant of half-saturation, or     

 
       34.4 34.5 33.7 

Degradation yield of the substrate, 

or k1 

[-] 24.0 25.5 26.0 

Generation yield of VFA, or k2         220.7 309.7 226.6 

Consumption yield of VFA, or k3         874.0 1074.0 637.6 

Generation yield of CO2, or k4         90.0 90.0 34.9 

Generation yield of CO2, or k5         200.0 200.0 24.8 

Generation yield of CH4, or k6 

 
        488.2 575.0 155.0 

Bacterial fraction in the liquid 

phase, or α 

[-] 1.0 1.0 1.0 

Ficara's extension's parameters     

The amount of nitrogen in the 

biomass,or Nbac 

 

        9.0 11.0 34.4 

The amount of nitrogen in the 

substrate,or Ns1 

 

                                 

Biomass degradation rates, X1 and  

X2,      and     
    4.4%μ1max 

4.4%μ2max 

5.3% μ1max 

5.3% μ2max 

7.9%μ1max 

15 %μ2max 

parameters, the process of 

hydrolysis 

    

Hydrolyzing carbohydrates,             10 10 10 

Hydrolyzing  lipids,              10 10 10 



Khairy Megalaa / Engineering research journal 182(June 2024)M1-M41 

 

M17 
 

Hydrolyzing proteins,             10 10 10 

Disintegration,          0.5 0.5 0.2 

Rate of biomass degradation X1 

and X2         and         

 

    0.033 0.032 0.032 

Disintegration yield coefficient of 

the substrate,or k7 

[-] 12.7 12.7 25.0 

Disintegration yield coefficient of 

the carbohydrates,or k8 

[-] 0.01 

 

 

0.01 0.01 

Disintegration yield coefficient of 

the proteins, or k9 

[-] 0.03 0.01 0.01 

Disintegration yield coefficient of 

the lipids, or k10 

[-] 0.01 0.01 0.01 

 

3.5 Sensitivity Analysis 

      Sensitivity analysis is a statistical technique or method that's used to assess how 

much a given parameter or set of variables influences a mathematical model's output.It's a 

means of researching how variations in model parameters impact its output.It indicates 

which parameters are highly relevant and have a big influence on the anaerobic digestion 

result, and which ones don't really matter that much.As a result, this analysis can assist in 

refining the model and lowering the quantity of estimations needed.To ascertain which 

parameters are important and to what degree, the values of each parameter are changed 

one at a time.Every time, the final result is tracked to observe any changes. The 

parameter is sensitive if there are significant changes in the outcome. The parameter is 

insensitive if there is little variation in the outcome. All parameters go through this 

process again, and the outcomes are then compared. 

         In AM2's extended version, 02 parameters were subjected to a sensitivity analysis 

in order to determine which ones affected the model's output. In Figure 5, the prescribed 

procedure for parameter analysis is displayed.It is evident that the following primary 

parameters have a considerable impact on the model results:  ,   ,   ,   ,      ,      

,    ,    ,    ,     ,    ,        ,         ,         ,       ,       ,         .  

-However, the levels of sensitivity for parameters   ,    as well as          remain lower. 

-Lastly, it has been shown that the parameters   ,    as well as      are the least 

responsive to the model (refer to Figure 5). 
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-The original AM2 is the source of several highly sensitive parameters, including   ,   

,    ,     and     which are associated with substrate degradation, CO2 yield, as well as 

half-saturation constants, respectively.Their correlation with the model's equations for 

organic substrate, volatile fatty acids, and organic carbon is significant. The hydrolysis 

process's parameters    ,        ,       ,        ,       ,        ,         and         exhibit a 

strong correlation with the organic matter. The decay rates of biomass,    and    , are 

the crucial parameters of the extension that determine the alkalinity. 

         Figure 2 demonstrates that the amount of fermentation gas generated is less affected 

by factors with smaller normal variation, or those that are near 0 on the graph. On the 

other hand, values that are closer to 0.25 on the graph and have a higher normal variation 

have a bigger effect on the amount of fermentation gas generated. This implies that, 

generally speaking, characteristics with smaller normal fluctuations have less significance 

in estimating the volume of fermentation gas generated. By eliminating parameters with 

less normal variation, the extended AM2 model's accuracy can be raised with the help of 

this data. 

 

Figure 5. Sensitivity study of the enlarged AM2's 24 parameters. The normal parameter 

variance ranges from 0 to 0.25. (paper [12]) 

3.6 Am2 Extensions 

        There were additions made to the original AM2 model in order to increase the 

model's applicability and performance simulation accuracy. These additions were made 
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in light of the findings from the sensitivity study and the AM2 vs. ADM1 comparison.At 

first, the AM2 model was unable to account for all of the ADM1 model's combined 

factors. This constraint was addressed by adding additional elements to the AM2 model, 

as described in the paper [85], and was applied especially to silage made from maize. The 

model's outputs were then contrasted with the ADM1 model's, encompassing biogas 

generation, methane levels, as well as its internal elements. 

         Results show that, according to the results reported by Arzate et al.[75] , biogas 

generation in AM2 generally responded more slowly to the addition of feedstock than in 

ADM1. In addition, because the model lacked precise hydrolysis-related equations, it 

tended to overstate the presence of organic material. However, according to the results 

reported by Arzate et al.[75] shows, important variables such as biomass, VFA (volatile 

fatty acids), alkalinity, as well as inorganic carbon agreed well with the ADM1 model's 

trends. One important finding of these studies is the precise incorporation of inorganic 

nitrogen into organic matter by taking alkalinity into account. 

3.6.1 Biomass Extension    

       Recent studies on maize silage have utilized the original AM2 model[83] to simulate 

the flow rates of methane and biogas production. To optimize state variables and 

accurately predict biomasses (x1, X2), organic substrate (S1), volatile fatty acids (S2), 

inorganic carbon (C), and alkalinity (Z), adjustments are necessary to the model. 

Modifications were therefore made to the fundamental framework of the model to 

improve its capabilities[86] [87].The AM2 model was modified to account for nitrogen 

and alkalinity in a biogas process. The model uses differential equations (1, 2) to simulate 

the dynamics of two types of bacteria. 

  
   

  
 = (  -     -   )x1                                                                             (1)   

  
   

  
 = (  -     -   )x2                                                                            (2) 

 A new method for calculating alkalinity in anaerobic digestion processes was developed. 

This was achieved by creating a new equation, Equation 3, which is an extension of the 

AM2 model.It takes into account a variety of factors, including nitrogen content in 

biomass and substrate,as well as dilution rate, bacterial growth rates, and decay rates[88]. 

  
  

  
 =    (   -Z)+[(      -    )  X1]–      X2+(            X1)  

+(            X2)                                                                                             (3) 
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          Equations 1 and 2 in the context of the Advanced Microbial Model AM2 describe 

the growth and decay dynamics of acidogenic and methanogenic bacteria involved in 

anaerobic digestion processes. These equations provide insights into understanding the 

behavior of biomass concentrations (X1 for acidogenic bacteria and X2 for methanogenic 

bacteria) over time. Regarding the choice of time span in equations 1 and 2, there isn't a 

rigid limitation on the length of the time interval. Instead, researchers should select a 

suitable timeframe that adequately captures the essential features of the targeted biogas 

process. For instance, if investigating short-term phenomena such as start-up or shock 

loading events, shorter time intervals might suffice. Conversely, long-term trends, such as 

those related to nutrient cycling or seasonal variations, require longer time spans.  

        The range of possible values for X1 and X2 varies substantially depending on the 

type and conditions of the biogas process being examined. In small-scale laboratory 

reactors, where precise control over operating conditions is achievable, typical biomass 

concentrations lie within the range of a few grams per liter (g/L) to tens of grams per liter 

(for example, 5–50 g/L). On the contrary, industrial-scale digesters operate under harsher 

conditions and generally exhibit higher biomass concentrations, sometimes exceeding 

several hundred grams per liter. 

            The rate of change of biomass concentration for acidogenic microorganisms, 

denoted as dX1/dt in equation 1, depends on the unique properties of the biogas process 

being analyzed. In a well-performing anaerobic digestion system, the rate of change 

exhibits a quick rise during the acclimation phase, eventually settling down to a constant 

value known as the steady state. Typical steady-state values for dX1/dt range between -

0.01 g/L/day and +0.01 g/L/day. However, when dealing with transient situations, such as 

alterations in feedstock composition, the rate of change may display considerable 

variability.The rate of change of biomass concentration for methanogenic 

microorganisms, indicated as dX2/dt in equation 2, follows similar patterns as described 

above for acidogenic microorganisms. A well-functioning anaerobic digestion process 

displays an initial surge in the rate of change during the acclimation stage, subsequently 

reaching a consistent value around the steady state. Steady-state values for dX2/dt also 

remain within the same order of magnitude (-0.01 g/L/day to +0.01 g/L/day). When 

confronted with transient scenarios, such as shifts in feedstock composition, the rate of 

change may demonstrate noticeably greater fluctuations.      

        The decay rate terms, represented as   *X1 and   *X2 in equations 1 and 2, 

respectively, account for the natural decay or degradation of biomass over time for 

acidogenic and methanogenic microorganizations in a biogas process. The specific range 

for these variables can vary depending on factors such as experimental setup, system 
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characteristics, and operational parameters. It is recommended to consider experimental 

data, literature references, and constraints specific to the biogas process when 

determining the allowable range for these terms.                                                                                       

         The variables in equation 3, which models the alkalinity dynamics in a bioreactor 

system, can also affect an anaerobic digestion system.Alkalinity (Z) represents the 

concentration or amount of substances that can neutralize acids in the system. The rate of 

change of alkalinity over time (dz/dt) is influenced by several factors, including the 

influent flow rate of substrate (Din), influent alkalinity (Zin), and the nitrogen content 

(   ) of the biomass or microorganisms (    ) present in the system. Bacterial growth, 

particularly of acidogenic bacteria and methanogenic bacteria, also plays a significant 

role in affecting alkalinity dynamics.The growth rates (    and     ) for these bacteria 

are described by specific equations. Additionally, there are terms that consider the 

maximum growth rates (            X1 and             X2) and how they impact 

changes in alkalinity based on nitrogen content. 

 

Figure 6: Simulation of Equation 1:The Effect of Nutrient Concentration on Biomass 

Growth (Increase the concentration of composites linearly with time in seconds according 

to the simulation of equation 1) 
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Figure 7: Effect of nutrient concentration on acid and methane biomass growth rates and 

exponential decay of acid and methane biomass over time(s) 

 

-For stable biomasses with slow decay rates over time, k may be small (e.g., between 

0.001 and 0.01 per day). 

-When k1=0.01 per day. and k2 = 0.02 per day. The results will be as follows in Figure 9  

-When k1=0.001 per day. and k2 = 0.002 per day. The results will be as follows in 

Figure10 
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Figure 8 shows that k may be minimal (k1 = 0.01 and k2 = 0.02) per day when stable 

biomass with slow degradation rates over time is present. 

       For more labile biomasses with faster degradation rates, k may be larger (e.g., 

between 0.05 and 0.5 per day). 

-When k1=0.005 per day. and k2 = 0.006 per day. The results will be as follows in 

Figure11  

-When k1=0.5 per day. and k2 = 0.6 per day. The results will be as follows in Figure12  
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Figure 9 shows that k may be minimal (k1 = 0.001 and k2 = 0.002) per day when stable 

biomass with slow degradation rates over time is present. 
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Figure 10 shows that k may be more labile biomass  (k1 = 0.005 and k2 = 0.006) per day 

when lable biomass with more degradation rates over time is present. 

 

Figure11 shows that k may be more labile biomass  (k1 = 0.5 and k2 = 0.6) per day when 

lable biomass with more degradation rates over time is present. 

3.6.2 Hydrolysis Extension 

          The hydrolysis extension was added to the AM2 model (paper[75]). During 

substrate degradation, composites, carbohydrates, proteins, and lipids are broken down 

into smaller components—a process known as hydrolysis. Additionally, some equations 

were added to illustrate how the rate of hydrolysis varies over time based on variables 

such as the energy available, the amount of water present, and the speed at which the 

waste is mixed. This work contains equations that represent the rate of change of these 

components over time, taking into account variables like yield coefficients, hydrolysis, 

and disintegration. The hydrolysis stage is characterized by Eq. 4 and involves the partial 

disintegration of degradable particulate organic substrates or composites, Xc, into 

carbohydrates (Xch), proteins (Xpr), and lipids (Xli) (paper[89]). Eqs. 5, 6, and 7 define 

the hydrolysis of Xch, Xpr, as well as Xli. 
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 = -           +    (     -   )+                                       (5) 

    

  
  = -           +    (     -   )+                                      (6) 

 
    

  
 = -           +    (     -   )+                                             (7) 

         Equation 4 describes an extension for high organic loading rates in the AM2 model, 

which is used to simulate the acidification of anaerobic digestion processes. The equation 

incorporates a term related to the yield-coefficient of substrate disintegration and the 

yield-coefficient of carbohydrates, proteins, and lipids. This extension is incorporated 

into the AM2 model from previous work by Ficara et al. [11] and is specifically applied 

when high organic loading rates, up to 5.0, are present during the process. This extension 

is crucial for accurately simulating the behavior of the anaerobic digestion process under 

high organic loading rates, providing a more comprehensive and accurate representation 

of the system dynamics.Equation 4 outlines the rate of change in the composite's 

concentration (dXc/dt) over time.Variables involved include the current composite 

concentration (Xc), the disintegration rate constant for composites (    ), the initial input 

concentration of composites in the substrate (       ) and decay rate constant for X1 

component  and its interaction with X1 

 

Figure 12: The Effect of Time on X Concentration in a Hydrolysis 
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Figure 13: The Effect of Time on the Concentration of Carbohydrates in a Hydrolysis 

 

Figure 14: The Effect of Time on the Concentration of Proteins in a Hydrolysis 
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        Equations (5), (6), and (7) represent the hydrolysis of carbohydrates, proteins, and 

lipids, respectively, into volatile fatty acids (VFAs) during anaerobic digestion. All 

equations consider degradation rate, pH, and temperature as influencing factors. 

4.Conclusions 

         The extended AM2 model developed in this study provides a more accurate and 

detailed description of the anaerobic digestion process compared to the original 

model.Experimental data from two anaerobic digesters operating at organic load rates are 

used in a variety of ways to better accept the model.The biogas generation rate and 

methane content were precisely anticipated by the model; however, the dynamics of the 

volatile fatty acid (VFA) concentration were not well predicted. This occurred especially 

at high organic loading rates (OLRs) due to the presence of excess organic matter.There 

are multiple reasons why the AM2 model cannot precisely predict the dynamics of VFA 

concentration.Firstly, there are complicated metabolic pathways as well as microbial 

interactions that are involved in the creation and consumption of VFA.Secondly, there are 

differences in the composition of the substrates, data collection and monitoring, and 

environmental elements (such as pH and temperature) that impact microbial activity and 

the production of volatile fatty acids.Thirdly, the intricate relationships and feedback 

cycles between these variables are difficult for the model to accurately represent. 

Furthermore, it can be difficult to make precise projections because of the variety in the 

composition and quality of organic waste.To increase the precision of VFA production 

forecasts, these factors should be taken into account and investigated further.This 

explains that the AM2 model is a helpful tool in understanding anaerobic digestion but 

should be used with caution, especially when predicting VFA concentrations. Improving 

knowledge of microbial populations and their interactions in VFA generation and 

consumption, as well as identifying the critical variables influencing VFA dynamics, are 

necessary to improve the prediction of VFA concentration during anaerobic digestion. 

Furthermore, to accurately record the dynamics of VFA generation and consumption, 

complete models incorporating microbial dynamics, environmental parameters, and 

substrate features should be constructed and integrated with real-time monitoring. Also, 

advanced analytical techniques for continuous VFA concentration measurement plus 

model calibration should be investigated, and experimental research should be carried out 

to collect data on VFA concentration dynamics according to various conditions. 

Sensitivity analysis showed that the model output is highly sensitive to associated 

parameters such as substrate degradation, CO2 yield, and half-saturation constants. These 

parameters were further improved by adding additional factors such as nitrogen 

concentration and alkalinity, resulting in better agreement with the ADM1 model in terms 
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of biogas production, methane concentration, and content. Overall, the extended AM2 

model provides a valuable tool for modeling and optimizing biogas production from 

various feedstocks. Maize, grass silage, and animal manure substrates were studied in this 

study. 

Symbols used 

   [-] yield for substrate 

degradation 
    [mol   ] inhibition constant 

   [mol    ] yield for VFA generation     [   ] decay rate of 

biomass X1 

  [mol    ] yield for VFA 

consumption 
    [   ] decay rate of 

biomass X2 

  [mol    ] yield for CO2 production      [   ] parameter for 

disintegration 

process 

  [mol    ] yield for CO2 production        [   ] parameter for 

hydrolysis 

carbohydrates 

  [mol    ] yield for CH4 production        [ 
  ] parameter for 

hydrolysis proteins 

   [-] yield for substrate 

disintegration 
       [ 

  ] parameter for 

hydrolysis lipids 

   [-] yield for carbohydrates, 

proteins and lipids 
       

[kgCODkgCO   ] 

yield of 

carbohydrates on 

composites 

      Max growth rate of 

acidogenic bacteria 
       

[kgCODkgCO   ] 

yield of proteins on 

composites 

      Max growth rate of 

methanogenic bacteria 
       

[kgCODkgCO   ] 

yield of lipids on 

composites 

    [kg   ] half-saturation constant        [   ] decay rate of 

acetogenic bacteria 

X1 

    [mol   ] half-saturation constant        [   ] decay rate of 

methanogenic 

bacteria X2 

ADM1 Anaerobic digestion 

model No. 1 

AM2 Anaerobic 

digestion model 

two steps 

X1 

[kgCOD   ]  

Concentration of 

acidogenic bacteria 

X2 

[kgCOD   ] 

Concentracion of 

methanogenic 

bacteria 
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dX1/dt rate of change of biomass 

concentration for 

acidogenic bacteria 

dX2/dt rate of change of 

biomass 

concentration for 

methanogenic 

bacteria 

 

    [ 
  ] 

 

growth rate of acidogenic 

bacteria 

 

t 

 

Time 

    [   ] growth rate of 

methanogenic bacteria 
   [        ] nitrogen content of 

substrate S1 

α [-] fraction of bacteria in the 

liquid phase 
     [mol     ] nitrogen content in 

the biomass 

    [   ] dilution rate in Influent 

  [kgCOD   ] particulate composite dXc/dt The rate of change 

of the 

concentration of 

composites over 

time. 

   [kgCOD   ] particulate component of 

carbohydrates 
        [ 

  ] parameter for 

hydrolysis 

carbohydrates 

   [kgCOD   ] particulate component of 

proteins 
        [ 

  ] parameter for 

hydrolysis proteins 

   [kgCOD   ] particulate component of 

lipids 
         [ 

  ] parameter for 

hydrolysis lipids 

Z   [mol    )] Total alkalinity  S1[kgCOD   ] Organic substrate 

concentration 

      [mol     ] influent value for 

alkalinity 
S2[mole   ] Volatile fatty acids 

concentration 

  [mol C    ] Total inorganic carbon 

concentration 
    [kgCOD   ] influent value for 

organic substrate 

    [mol C    ] influent value for total 

inorganic carbon 
    [mol   ] influent value for 

volatile fatty acids 
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