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Abstract  

 
      Recently, Artificial Intelligence (AI) has played an indispensable role in advancing healthcare data systems, 

particularly in intricate medical data analysis. Its efficacy in unveiling meaningful relationships has proven 

pivotal for diagnosis, treatment, and prediction across clinical scenarios. One such critical area is arrhythmia, 

a condition marked by deviations in the heart's electrical system, posing a substantial risk of sudden cardiac 

arrest and potential fatality. Electrocardiograph (ECG) signals serve as the primary medium for capturing and 

documenting the heart's electrical activity. This paper provides a comprehensive overview of the application of 

AI techniques at various stages of the arrhythmia classification process. A distinctive presentation approach 

was used as the survey was made in the form of a pipeline. Encompassing the preprocessing of ECG data, 

extraction and selection of pertinent features, classifier training, and performance evaluation, the swift and 

accurate analysis of ECG signals is imperative for monitoring and treating individuals with heart conditions. 

The key goal is deploying these AI-driven solutions in clinical scenarios, ensuring enhanced patient care and 

outcomes. 
  

 

Keywords: Classification, Arrhythmia Classification, Arrhythmia classification pipeline, Arrhythmia, ECG 
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1. Introduction  
  

     The abundant data resources over social media, online shopping, smart devices, and healthcare 
systems are considered an exquisite challenge in various computer applications. This challenge 
demands artificial intelligence techniques for analysing and managing the exponential growth which 
raises non-trivial concerns regarding the efficiency of data gathering, processing, analytics, and 
security [1].  
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     Nowadays, artificial intelligence contributes massively to advancement in dealing with healthcare 
data systems. The healthcare system is mainly associated with data sensitivity and severity in crucial  

 

decisions about human life. Patient records, x-rays, magnetic resonance imaging (MRI), ultrasounds, 
biometric device data, and electrocardiography (ECG) signals are various types of healthcare data [2]. 
Healthcare workers use medical artificial intelligence techniques to aid them in their daily tasks, 
helping with duties that depend on manipulating and understanding data. Given AI's capability to 
analyse intricate medical data and leverage meaningful relationships for diagnosing, treating, and the 
physical examination of cardiovascular diseases (CVDs) due to its affordability and non-invasive 
characteristics. The heart's electrical activity is examined and documented through ECG electrical 
waves, generated by connecting ten electrodes to the human chest and limbs to produce a 12-lead 
image named lead I, II, III, aVF, aVR, aVL, V1, V2, V3, V4, V5, V6 [4-6].  

  

  

  

  

  

 

 

Fig. 1. ECG Heartbeat Components.  

  

      Each cycle of the ECG comprises five waves, namely P, Q, R, S, and T, as illustrated in Fig. 1, 
each corresponding to distinct phases of heart activities. The P wave signifies the standard 
depolarization of the atrium, the QRS complex indicates the depolarization of the right and left 
ventricles, and the T wave signifies the repolarization (or recovery) of the ventricles [7].  

 

       Arrhythmia refers to irregular heartbeats, characterized by an increase (tachycardia), decrease 
(bradycardia), or irregularity in the heartbeats [8]. Arrhythmia causes changes or distortions in the 
heart's electrical system. The severity of arrhythmias varies, ranging from mild cases to critical 
conditions, with some leading to sudden cardiac arrest. Consequently, the prompt analysis of ECG 
signals is crucial for monitoring and treating individuals with heart conditions. Although specialized 
experts traditionally analyse ECGs to assess heart health, the process is stressful and time-consuming, 
potentially resulting in inaccurate diagnoses. That underscores the need for AI techniques within 
healthcare systems [9,10].  
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      This paper's principal contribution is a comprehensive survey of AI techniques employed across 
various stages of the arrhythmia classification pipeline, addressing one of the most prevalent heart 
diseases. A pipeline strategy of systematically presenting and organizing classification techniques was 
adopted, providing readers with a clearer understanding of each stage's workflow and contributions. 
Contrary to [40], which focuses on the broader ECG analysis pipeline, this paper specifically 
concentrates on the arrhythmia classification pipeline. Notably, focusing on recent post-2020 papers, 
ensuring exploration of the latest advancements in AI for arrhythmia classification is achieved, 
providing valuable insights through an in-depth examination of the arrhythmia classification process 
as a comprehensive pipeline.  

 

       In contrast to over prevalent research i.e. [57] and [63], often emphasized single stages such as 
the learning stage, denoising, or feature extraction, all stages were covered by meticulous 
investigation from preprocessing to evaluation. This systematic approach aims to offer a nuanced 
understanding for both researchers and practitioners in the field of arrhythmia classification. 

 

2. Dataset and Imbalance Treatment  

  
        In addition to, the widely recognized database extensively studied in arrhythmia classification 

research: the MIT-BIH database [11], it's noteworthy that some studies in arrhythmia classification 

have opted to utilize multiple datasets in their testing stage. The American Heart Association (AHA) 

database [58], and the St. Petersburg Institute of Cardiological Technics 12-lead Arrhythmia 

(INCART) database [59], For instance; [60] used both MIT-BIH and AHA datasets, while another 

investigation [61] integrated the MIT-BIH and INCART. The rationale behind such amalgamation lies 

in the aim of enhancing the robustness and generalizability of their findings by considering diverse 

sources and increasing the variability in the dataset.  

  

        The MIT-BIH database plays a crucial role as a benchmark dataset in ECG classification, 
significantly advancing the field of arrhythmia classification. This dataset enables the development of 
more accurate models for arrhythmia classification and detection. It consists of 48 half-hours of two-
channel records from 47 subjects studied by the BIH Arrhythmia Laboratory. Each channel records 
360 samples per second with 11-bit resolution over a 10-mV range, annotated by two or more 
cardiologists. However, studies [12-18] have emphasized that the MIT-BIH data is heavily 
imbalanced, with the number of regular beats exceeding other irregular ones. This imbalance 
negatively impacts the classification performance of models. As a solution, [14], [17,18] applied the 
Synthetic Minority Oversampling Technique (SMOTE) [19] to address this data imbalance by 
generating synthetic samples of the minority class. Conversely, [13], [15,16] employed the focal loss 
function, a modified version of the cross-entropy loss function, to counteract the imbalanced data by 
assigning greater weight to minority class samples. 

 

      The AHA dataset, on the other hand, comprises 154 ECG recordings, each lasting for 3 hours, with 
beat class information available only in the last 30 minutes. Each recording in the AHA dataset 
includes two leads (A, B) sampled at 250 Hz. Importantly, the documentation of the AHA database 
does not specify the names of these leads. Annotations within the AHA dataset indicate the class of 
each heartbeat and its position, and these annotations have been verified by independent experts. 
Adhering to the standards and recommendations outlined by the American National Standards 
Institute, as developed by the Association for the Advancement of Medical Instrumentation (AAMI) 
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for the evaluation of ECG classifiers. All heartbeat annotation labels in the MIT-BIH and AHA 
datasets (ventricular ectopic beats), F (fusion beats), and Q (unclassifiable beats). 

 

 

 

      Furthermore, the INCART database includes 75 annotated recordings from 32 Holter records, 

each lasting 30 minutes. Each record has 12 standard leads, and the data was sampled at 257 Hz with 

gains varying from 250 to 1100 analog-to-digital converter units per millivolt. The original records 

were collected from 32 patients (17 men and 15 women, aged 18-80, with an average age of 58) 

undergoing tests for coronary artery disease. None of the patients had pacemakers, but most of them 

had ventricular ectopic beats. The records were chosen based on ECG patterns suggesting ischemia, 

coronary artery disease, conduction abnormalities, and arrhythmias. 

 

 

3. Arrhythmia Classification Pipeline   
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Arrhythmia Classification Pipeline.  

  

    The arrhythmia classification process involves several key steps, starting with the preprocessing of 
ECG data, followed by the extraction and selection of relevant features, then training a classifier, and 
finally evaluating its performance before deploying it for clinical use (refer to Fig.2). This section 
explores the various AI techniques employed at each stage of the pipeline.  

 

3.1 Denoising  
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It is worth noting that denoising techniques can deform the ECG signal and affect the accuracy of 

arrhythmia classification. Therefore, it is essential to carefully evaluate and validate the performance 
of any denoising filter before applying it to ECG signals. 

 

    In ECGs, the presence of artifacts poses a challenge to accurate classification [20,21]. Therefore, a 
pressing objective is the timely removal of these artifacts to ensure data cleanliness and prevent 
interference with the classification task. Powerline interference arises from electrical disturbances in 
the power supply, while baseline wander entails a slow drift or fluctuation in the ECG signal baseline, 
influenced by factors such as respiration, body movement, or inadequate skin-electrode contact. 
Muscle noise results from the electrical activity of skeletal muscles, electrode artifact stems from 
issues with electrode-skin contact, and device interference encompasses artifacts introduced by 
electronic devices near ECG recordings [22,23]. Various ECG motion artifact examples are shown in 
Fig.3 [62]. Addressing these varied artifacts is essential to enhance the reliability of ECG data and 
optimize the accuracy of subsequent classification processes. 

 

 

 

 

 

 

 

                                                                                     (a)    

 

  

 

 

 

 

 

 

                                                                            (b) 

 

 
                                                                        (c)  

 
Fig. 3. ECG Artifact examples: (a) Baseline Wander, (b) Powerline Interference, (c) Muscle Interference. [62]  

 

 Discrete wavelets transform (DWT) [24], empirical mode decomposition (EMD) [25], and 
adaptive filtering [26] are examples of the frequent denoising techniques used to reduce different ECG 
artifacts [27].  
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 A wavelet transform is an ideal tool for analyzing signals in the time and frequency domains used 
widely to remove noise from ECG signals. For example, [17] proposed an algorithm for ECG signal 
preprocessing based on wavelet transform for diagnosing arrhythmia types to reduce the noise in 
original ECG signals using the db6 wavelet basis function. While [18] conducted a wavelet threshold  

 

 

denoising method to remove the artifacts in ECGs by decomposing it into nine levels using the 
Daubechies 9 (db9) wavelet and then applying soft thresholding filtering to reconstruct the signal. 
Other examples of DWT, [16] and [28] subjected the ECG signal to a threshold on wavelet transform 
using ‘db5′ wavelet base to remove the high-frequency noise. In addition, applying 6-level 
daubechies-6 mother wavelet DWT, band-pass filtering, and EMD during the preprocessing stage to 
remove baseline drift artifacts from the signal [29]. Using dual-tree complex wavelet transform 
(DTCWT) after sampling the ECG signal to 360 Hz bandwidth, the noise is deleted and further divided 
into 10 s segments [30].   

  

 Additionally, [23] and [31] applied a median filter to obtain a smooth ECG. Also, the median and 
low-high band-pass filters eliminate the baseline in the ECGs. Likewise, [33] applied a first-order 
median filter to remove baseline wander and a low-pass filter to remove high frequencies. 
Furthermore, adaptive techniques for ECG denoising are also well-researched. The adaptive filter 
proposed with a low pass filter effectively removes power frequency interference noise and preserves 
the original characteristics of the ECG signal [34]. After denoising, identifying individual heartbeats 
and extracting relevant features is essential before the classification.  

  

3.2 Segmentation  
 

 For heartbeat segmentation, it's required to accurately detect the R peak positions of the ECG 
signals as reference points. The MIT-BIH arrhythmia database annotated these R peaks to be 
segmented [35].  

  
  
  
  
  
  
  
  
  
  
  
Fig. 4. ECG Segmentation Methods.  

 

Significant studies in arrhythmia classification apply a fixed sliding window technique to segment 
ECG signals. Others classify arrhythmias using a beat-by-beat level, which means they look at each 
heartbeat separately, as presented in Fig. 4.  
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Complete patient’s ECG data was cut into a single valid beat to improve the system recognition 

accuracy [16]. In [18], the ECG signals were segmented into separate heartbeats. Each cardiac cycle 
segment contains the QRS complex of interest in most instances within 0.6–0.8 s length. For a 
heartbeat sample, the QRS localization method based on the Physiobank WFDB toolbox was used 
[28]. The continuous ECG signal beats were divided into single beats with 300 samples for each Using 
the R-wave peak [34]. According to the position of the R peak, ECG beats were segmented with 300 
sampling points and transformed into an ECG image by drawing it as a separate 128 × 128 grayscale 
image [13]. Furthermore, [36,37] split ECG signals into individual heartbeats using The PanTompkins 
algorithm [38] adopted for the R-peak point detection of ECG signals. With the same approach, [14], 
[21],[39], and [31] segmented ECG signals into a series of individual heartbeats.    

  

    The fixed sliding window technique is a trivial method used in many signal processing applications, 
including ECG signals [40]. It is a simple and easy-to-implement method involving dividing the ECG 
signal into equal-sized segments or windows, each of which is analyzed independently. An example 
thereof, [29] segmented the ECG signals with a window size of 0.4 s and with 50 % overlap. [32] 
constructed a 180-size window throughout the R-peak for each beat. After detecting the QRS complex 
using an adaptive thresholding technique, a window size of 700 MS around the R-peak is set for 
heartbeat segmentation [41]. The extraction window is set to 170 samples [42] to capture the most 
relevant waves that define a heartbeat, and a window of length 0.512 MS is taken across each R-peak 
to determine the size of each ECG signal consisting of 256 samples [23].  

 

3.3 Feature Extraction  
  

The extraction of informative and pertinent features from ECG signals is a pivotal stage in 
arrhythmia classification. Feature extraction is a critical step of the pipeline, aiming to generate a set 
of features that faithfully represent the signals. These features are then processed and input into 
machine learning models to make precise predictions while retaining the information from the original 
dataset. This section provides a concise overview of various techniques employed in feature extraction 
for arrhythmia classification from 2018 onwards.  

  

Initially, [36] utilized a principal component analysis network (PCANet) algorithm with a two-level 
convolution layer to extract heartbeat features, while [23] applied the Discrete Orthogonal Stockwell 
Transform (DOST) Algorithm. The latter involves computing the Fourier spectrum of the ECG signal 
using an N-point FFT, multiplying it with a rectangular window function, and then applying a β-point 
inverse FFT to compute the DST coefficients for each central frequency.  

  

Subsequently, [43] utilized an ECG-derived respiratory (EDR) function from the PhysioNet 
MATLAB toolbox to compute QRS complex features and a set of eleven heart rate variability (HRV) 
features. For increased accuracy, [44] extracted a combination of temporal, morphological, and 
spectral features from ECG recordings. The Short-Time Fourier Transform (STFT) Algorithm with a 
window function was applied to extract frequency features of the heartbeat signals for classification 
[31]. In [12], the power spectral density (PSD) of the ECG signal was estimated using the Welsh 
method and discrete Fourier transform (DFT), with four Hamming window widths: (a) 128, (b) 256,  

(c) 512, and (d) 1024 samples; the transformed signal was logarithmized to normalize the frequency 
components of the PSD.  

      

    More recently, [32] employed the Wavelet Transform Descriptor (WTD) and Local Binary Pattern 
Descriptor (LBP) for feature extraction from ECG signals. Similarly, [21] extracted essential features 
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such as RR intervals, morphological characteristics, and high-order statistics from each segmented 
heartbeat for the classification system. Pre-processed ECGs were fed into an autoencoder to extract 
features, with the interval between two adjacent R peaks (RR interval) extracted as an auxiliary feature 
and input to the model to enhance classification accuracy [30]. Convolutional Neural Networks 
(CNNs) were employed by [16], [29], and [45] due to their capability to automatically learn and 

 

 

extract relevant features from ECG signals, thereby improving the accuracy and efficiency of 
arrhythmia diagnosis and treatment.  

  

3.4 Feature Selection  
  

 Following feature extraction, identifying the most informative aspects of ECG signals becomes 
imperative. The feature selection stage seeks to reduce the feature space dimensionality and the 
computational complexity of classification algorithms [46].  

  

 One widely employed technique is Principal Component Analysis (PCA), which transforms the 
original feature space into a lower-dimensional one while retaining crucial information by pinpointing 
principal components capturing the most variance in the data [47]. For instance, [44] utilized PCA to 
enhance classification performance, reducing the dimensionality of the original 22-dimensional space 
to an 8-dimensional feature space. Similarly, [36] applied a Principal Component Analysis Network 
(PCANet) to perform feature extraction and selection, which is particularly beneficial for dealing with 
noisy ECG signals.  

  

 Given the often high dimensionality of ECG signals, certain studies have devised methods for 
feature selection. [48], for example, introduced an enhanced wrapper feature selection method 
integrated with a random forest classifier, effectively choosing the most relevant features. 
Additionally, [49] developed a Multi-Label Feature Selection Algorithm based on ECG signals 
(MSECG) to address high-dimensional challenges in the intelligent annotation of ECG. That 
algorithm efficiently selects the optimal ECG feature subset by assessing feature importance.  

      Another avenue for selecting relevant ECG features involves the use of metaheuristic 
algorithms and powerful optimization techniques employed in arrhythmia classification. [50], for 
instance, proposed an ensemble feature selection method leveraging the strengths of whale 
optimization, grasshopper optimization, and Grey Wolf Optimization (GWO) methods to identify 
pertinent features effectively.  

  

3.5 Learning Techniques for Arrhythmia Classification  
  

 Arrhythmia classification involves discerning irregular heart rhythms that may pose significant 
health risks [51]. As a result, the development of dependable and highly accurate models is essential 
for making critical medical decisions affecting patients' lives [52]. In recent years, investigations have  

employed a spectrum of learning algorithms, ranging from straightforward approaches to intricate 
deep neural networks, to address the challenges posed by arrhythmia classification.  

  

 Deep neural networks, particularly convolutional neural networks (CNNs), have demonstrated 
significant success in the task of arrhythmia classification, yielding promising outcomes. For instance, 
[37] devised a 9-layer deep CNN capable of automatically identifying five categories of ECG signals, 
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achieving accuracies of 94.03% and 93.47% for heartbeat classification in original and noise-free 
ECGs, respectively. [42] introduced a novel deep CNN using state-of-the-art techniques, achieving an 
accuracy of 99.48% and 88.34% under intra-patient and inter-patient paradigms, respectively, for 
accurate heartbeat classification of five categories in a single lead without data preprocessing. In a 
unique approach, [12] developed a three-layer (48 + 4 + 1) deep genetic ensemble of classifiers 
(DGEC), combining ensemble learning, deep learning, and evolutionary computation to detect 17 
categories of arrhythmias with an accuracy of 99.37%. Leveraging a depthwise separable CNN with 
focal loss (DSC-FL-CNN) method, [13] achieved an accuracy of 98.55% for automatically classifying 
17 categories of arrhythmias in an imbalanced dataset. Employing transfer learning for rapid and 
robust arrhythmia classification, [41] introduced the 'CardioNet' system, a deep learning-based 
automated system that classified 29 arrhythmias with a higher accuracy of 98.92%. Additionally, [53] 
proposed a hybrid model named 2D-CNN-LSTM, combining 2D CNN and the Long Short-Term 
Memory (LSTM) Network, achieving accuracy rates of 98.7%, 99%, and 99% for Cardiac 
Arrhythmias (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR), 
respectively. In another innovation, [15] presented an improved deep residual CNN for automatically 
classifying five arrhythmias in imbalanced ECGs with an accuracy of 88.99%. [14] introduced an 
ECG classification model combining a new capsule network with sequence-to-sequence (Seq2Seq) 
modeling, achieving an accuracy of 99.85% for the classification of five types of arrhythmias. 
Furthermore, [10] proposed a novel classification method, the three-heartbeat multi-lead (THML) 
ECG data, utilizing 1D-CNN combined with a priority model integrated voting method to optimize 
classification effectiveness. That approach achieved average accuracies of 94.82%, 98.10%, 97.28%, 
98.70%, and 99.97% for the N, V, S, F, and Q classes, respectively.  

  

 Nowadays, CNNs continue to be extensively utilized. For instance, [16] introduced two-way 
multiplex CNNs, comprising a 12-layer one-dimensional CNN model and an 11-layer auxiliary two-
dimensional CNN architecture. These models address both time-domain and frequency-domain 
features for arrhythmia classification across 8 categories, achieving an average accuracy of 99.10% 
for the time-domain model and 96.30% for the frequency-domain model. [45] proposed a precise end-
to-end arrhythmia classification model named WavelNet, utilizing a novel CNN architecture based on 
wavelet transform-based spectral analysis of raw time-domain waveforms. That approach achieved a 
90% overall accuracy in automatically classifying five classes of arrhythmias. In a unique approach, 
[54] determined a subset of 12 ECG data via a forward stepwise selection procedure, transforming the 
selected 1D ECG data into 2D recurrence plot (RP) images. These images served as input to train a 
shallow ParNet-adv Network with 12 layers, resulting in an accuracy of 97.60%. Additionally, [33] 
proposed an ECG signal stitching scheme for detecting arrhythmias in drivers during driving. That 
research involved extracting stable ECG signals and transforming them into full 10-second ECG 
signals, subsequently classifying three types of arrhythmias using CNN. The accuracy achieved was 
82.39% for the stitched ECG data and 88.99% for the original ECG data. [61] contributed to the field 
of arrhythmia classification by presenting an automatic end-to-end 2D CNN with an efficient 
DenseNet model. That model is specifically designed for the classification of four classes of 
arrhythmias. The research demonstrated impressive results, achieving high accuracies of 99.80% and  

99.63% on the MIT-BIH arrhythmia and INCART datasets, respectively. The utilization of a DenseNet 
model enhances the effectiveness of the proposed CNN architecture, showcasing its potential for 
accurate and reliable arrhythmia classification across different datasets. That study aligns with the 
broader trend of employing deep neural networks, particularly CNNs, to address the complexities of 
arrhythmia classification, contributing to advancements in automated diagnostic systems.  

 

  Another instance of widely employed deep neural networks in arrhythmia classification involves 
recurrent neural networks (RNNs), with a specific focus on Long Short-Term Memory (LSTM), 
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designed to capture long-term dependencies in sequential data, making them well-suited for time-
series analysis such as ECG signal classification. For example, [30] introduced a model combining 
Auto-Encoder and Bidirectional Long Short-Term Memory (AE-biLSTM) to automatically classify 
six types of ECG signals with an accuracy of 97.15%. In a similar vein, [34] devised a novel network 
layer based on LSTM to enhance the autoencoder structure for improved classification effectiveness 
across five different categories of arrhythmias. Another application of LSTM, as presented by [29],  

 

involved a comparison of four different approaches for detecting and classifying atrial fibrillation 
(AF), a heart rhythm disorder. That included a Convolutional LSTM (CLSTM) model with 
convolution and LSTM layers, and a deep learning architecture with a Bidirectional Long Short-Term 
Memory (BiLSTM) network, achieving the best training accuracy of 97.88% for spectral features and 
the best test accuracy of 87.65% based on P wave detection.  

 

 Support Vector Machine (SVM) stands out as a suitable machine learning algorithm for 
classification tasks, demonstrating widespread use in arrhythmia classification with notable success 
in accurately identifying various types of arrhythmias, thereby contributing to the enhancement of 
healthcare systems. For instance, [36] utilized a linear support vector machine in conjunction with 
features extracted by a principal component analysis network (PCANet) to classify five types of 
imbalanced original and noise-free ECGs, achieving accuracies of 97.77% and 97.08%, respectively. 
Similarly, [23] employed an artificial bee colony (ABC) optimized least-square support vector 
machine (LS-SVM) for classifying 16 categories of ECG signals, achieving accuracies of 96.29% 
overall and 96.08% for five specific classes. Another application of SVM by [31] involved a state-of-
the-art method utilizing a multi-class support vector machine to classify five types of heart disease. 
Furthermore, [32] introduced a hybrid approach named MRFO-SVM, which combines the 
metaheuristic algorithm Manta ray foraging optimization (MRFO) to optimize SVM parameters and 
select significant feature subsets, resulting in the best classification performance for five categories 
of arrhythmias with an accuracy of 98.26%.  

  Active learning, a machine learning technique facilitating the selection of samples from an 
unlabelled dataset for expert labeling, has been employed to enhance classifier accuracy and reduce 
training time and expert labor costs. [39] introduced an active and incremental learning system called 
Active Broad Learning System (ABLS) to classify five types of arrhythmias with an accuracy of 
98.89%.  

 An attention mechanism, a technique allowing models to selectively focus on relevant parts of 
input data, has recently found application in various machine learning tasks, including arrhythmia 
classification. For instance, [17] proposed an algorithm based on the multi-head self-attention 
mechanism (ACA-MA) for the classification of five categories of arrhythmias, achieving an accuracy 
of 99.4%.  

 Various approaches beyond SVM and attention mechanisms have been investigated for arrhythmia 
classification. [43] trained two artificial neural network (ANN) classifiers to predict Ventricular 
fibrillation (VF), achieving prediction accuracies of 72% using eleven HRV features and 98.6% using 
four QRS complex shape features. Another approach [44] introduced a two-staged classification 
structure employing a global k-nearest neighbors (kNN) algorithm and a personalized classifier, 
yielding an accuracy of 96.6% for the early prediction of heart problems. In a different study [21], an 
automated system was presented using the linear discriminant (LD) algorithm to classify five types 
of arrhythmias based on single-lead ECG signals. Furthermore, a few-shot ECG diagnosis framework 
called Meta Siamese Network (MSN) was proposed [26], utilizing metric learning and the N-way K-
shot meta-testing strategy for automatic ECG arrhythmias classification of five categories. That 
approach achieved a high accuracy of 99.34% for five shots versus 96.96% for only one shot. 
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Additionally, the study [60] proposed an innovative approach for automatic and efficient ECG 
arrhythmia classification using Echo State Networks (ESN), a brain-inspired machine learning 
technique. The classifier has been trained and validated through an inter-patient procedure; the ESN 
model exhibited noteworthy results in classifying ventricular ectopic beats (VEB) on both the MIT-
BIH AR and AHA databases. With a high sensitivity of 92.7% and positive predictive value of 
86.1%for the ventricular ectopic beats, using the single lead II, and a sensitivity of 95.7% and positive 
predictive value of 75.1% when using the lead V1.  

3.6 Performance Evaluation  

 

 The last step in the pipeline involves assessing the model's performance, and commonly used 
evaluation metrics include Accuracy, Specificity, Sensitivity, F1-score, and Precision, as widely 
observed in state-of-the-art methods found in the literature [55]. The definitions of these metrics are 
as follows:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP +  TN

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                           (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                (2) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                    (4)  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
          (5) 

 

     Here, TP represents true positives, TN is true negatives, FN denotes false negatives, and FP 
indicates false positives. Typically, researchers employ multiple metrics during the evaluation process 
to comprehensively gauge the model's performance and identify potential areas for enhancement. In 
the context of arrhythmia classification, the evaluation entails assessing how well a model accurately 
classifies various types of heart rhythms.  

 
  Tables 1,2, & 3 below present a comprehensive summary of the various research studies discussed 

in this paper. The tables outline the models proposed in each study, along with details on the 
experimental approach, the number of classes considered, and the diverse set of evaluation metrics 
employed. The 'experience' column in the tables reflects the authors' efforts to refine their work, 
encompassing aspects such as applied data, techniques, or classified categories. 

 
      The results presented in Tables 1,2, & 3 showcase a diverse range of approaches and models 
employed in arrhythmia classification studies. Various models, including CNN, SVM, LSTM, and 
hybrid architectures, have been utilized across different studies shown in Fig.5. The bar chart vividly 
illustrates the varying trends in the utilization of these models over the specified years. Notably, the 
plot reveals a consistent increase in studies utilizing CNN, reaching its peak in 2023. The achieved 
accuracy levels demonstrate the effectiveness of these models, with several studies surpassing 95% 
and some even exceeding 99%. For instance, studies [42] and [56] utilized CNN, achieving accuracy 



Mohammed M. Nasef, Rasha M. Hagag, Soha S. Ibrahiem, Amr M. Sauber   

               55  

 

levels of 99.48% and 99.4%, respectively. These high accuracy values underscore the effectiveness 
of CNNs in detecting arrhythmias. 
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Table 1. Exploration of Arrhythmia Classification Models with Diverse Evaluation Metrics via 2017 - 2020.  

 

Study Year 
No. of 

classes 
Model Experiences Accuracy Sensitivity Specificity Precision 

F1-

Score 

 

[37] 

 

2017 
5 

 

 

CNN 

 

Original Data. 

Noise-Free Data. 

 

93.47% 

94.03% 

 

 

96.01% 

96.71% 

 

 

91.64% 

91.54% 

 

- 

 
- 

[36] 2018 5 PCANet - Linear 

SVM 
Original Data. 

Noise-Free Data. 
97.77% 

97.08% 
86.35% 

82.44% 
97.75% 

97.16% 
95.34% 

93.56% 
- 

[23] 2018 

16 

 

 

5 

(LSTSVM - ABC) 

Class scheme. 

 
Personalize 

scheme. 

96.29% 

 
96.08% 

96.29% 

 
94.04% 

- 
96.29% 

 
94.04% 

76.06% 

 
94.04% 

[42] 2018 5 CNN 

Intra-patient 
paradigm. 

Inter-patient 

paradigm. 

99.48% 

88.34% 
96.97% 

90.90% 
99.87% 

88.51% - - 

[60] 2019 4 

Echo State 
Networks 
(ESN) 

(MIT-BIH) 
Lead II 
Lead V1 

(AHA) 
Lead A 
Lead B 

 
98.6% 
96.8% 

 
98.6% 
97.8% 

 
84.4% 
81.5% 

 
90.4% 
87.9% 

 
99.7% 
98.0% 

 
99.5% 
98.9 

- - 

[31] 2020 5 
Multi-class 

SVM - 90.24% 90.35% 90.18% - - 

[12] 2020 17 
Deep genetic ensemble 
of classifiers 
(DGEC). 

- 99.37% 94.62% 99.66% - - 

[32] 2020 5 MRFO-SVM 
SVM 

MRFO-SVM 

94.47% 
98.26% 

70.29% 
97.43% 

95.55% 
99.31% 

66.35% 
97.65% 

 

67.09% 
97.54% 

 

[30] 2020 6  AEbiLSTM - 97.15% 99.43% 96.22% - - 
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Table 2. Exploration of Arrhythmia Classification Models with Diverse Evaluation Metrics via 2021- 2022.  

 
 

Study Year 
No. of 

classes 
Model Experiences Accuracy Sensitivity Specificity Precision 

F1-

Score 

[41] 2021 29 
CardioNet - deep 

learning system. 
- 98.92% - - - - 

 

[13] 

 

2021 17 CNN - 98.55% - - - 79.0% 

[21] 2021 5 

The linear 

discriminant 

(LD) classifier 

Heartbeat N 

Heartbeat S 

Heartbeat V 

Heartbeat F 

- 

79.2% 

92.2% 

87.2% 

81.4% 

- - 

88.2% 

55.0% 

89.9% 

8.6 

[39] 2021 5 

Active broad learning 

system 

(ABLS) 

SVEB 

VEB 

99.43% 

99.59% 

82.37% 

96.56% 

99.91% 

99.82% 
- - 

[34] 

 
2021 5 LSTM - 98.57% 97.98% - - - 

[53] 2022 3 2DCNN-LSTM 

Without dropout 

regularization. 

With dropout 

regularization. 

99.8% 

 

99% 

99.77% 

 

98.33% 

99.78% 

 

98.35% 

- - 

[14] 2022 5 

Weight capsule 

network 

combined with 

Seq2Seq model 

Heartbeat N 

Heartbeat S 

Heartbeat V 

Heartbeat F 

99.85% 

99.66% 

99.56% 

99.97% 

93.81% 

99.72% 

99.68% 

99.96% 

100% 

- - 

[15] 2022 15 CNN 

N 

SVEB 

VEB 

- 

94.54% 

35.22% 

88.35% 

80.80% 

98.83% 

94.92% 

- - 

[56] 2022 2 
Hybrid of CNN with 

LSTM 
- 99.4% 99.3% 99.2% - - 

[29] 2022 3 BiLSTM CLSTM 
Spectral features. 

P wave detection. 

97.88% 

87.65% 
- - - - 

[28] 2022 5 

Meta Siamese 

Network 

(MSN) 

5 shots. 

1 shot. 

99.34% 

96.96% 
- - - - 

[61] 2022 4 

2D CNN with an 
effective 

DenseNet model 

MIT-BIH 

 
INCART 

99.80% 

 
99.63% 

- - 

98.34% 

 
98.94% 

98.91% 

 
98.91% 
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Table 3. Exploration of Arrhythmia Classification Models with Diverse Evaluation Metrics via 2023.  

 

Study Year 
No. of 

classes 
Model Experiences Accuracy Sensitivity Specificity Precision 

F1-

Score 

[33] 2023 3 CNN 
Stitched ECG 

data. 

Original ECG data. 

82.39% 
 

88.99% 
- - - 

0.5950 
 

0.7163 

[54] 2023 
AF 

Prediction 
CNN ParNetadv - 97.60% - 96.46% 96.54% 97.63% 

[45] 2023 5 CNN 
Heartbeat N 
Heartbeat S 
Heartbeat V 

90% 
91.4% 
49.3% 

91.4% 
- - - 

[16] 2023 8 CNN 

Time domain model. 

Frequency domain 

model. 

99.1% 

 

99.3% 
- - - - 
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Fig.5. Model-wise Distribution of Research Papers Over the Years.                       Fig.6. CNN Model Evaluation Across Various Years:                                                                                                                                                   

Accuracy and Class Count in Each Paper 

  The grouped bar chart in Fig. 6. visually captures the performance metrics of CNN models in 
arrhythmia classification studies conducted over different years. The blue bars represent accuracy 
levels, showcasing variations across studies, with notable high accuracies in 2018, 2022, and 2023. 
Simultaneously, the orange bars depict the number of classes, revealing the diversity in classification 
tasks, ranging from 5 to 17 classes. The chart highlights intriguing relationships between accuracy and 
the number of classes. Some studies achieve high accuracy with a limited set of classes, while others 
maintain accuracy even with a larger number of arrhythmia categories. This suggests the influence of 
model architecture, training strategies, and dataset characteristics on the model's ability to handle 
diverse classification tasks.  

  Analyzing the prementioned models’ performance reveals intriguing variations. That study [36] 
employed a PCANet-Linear SVM combination, achieving an accuracy of 97.77% for classifying five 
arrhythmias. In contrast, the study by [30], implementing an Auto Encoder and Bidirectional LSTM 
(AE-biLSTM), reported a commendable accuracy of 97.15%. The comparison between these models 
will help to understand the implications of model choices on accuracy levels and sensitivity. The 
"Experiences" column in Tables 1, 2, &3 provides valuable insights into the methodological 
considerations of the studies. For instance, another study [39] utilized the Active Broad Learning 
System (ABLS) with supraventricular (SVEB) and ventricular ectopic beat (VEB) classes, achieving 
an impressive accuracy of 99.43%. Understanding the experiences and challenges encountered in 
implementing such systems will contribute to a more comprehensive evaluation of their practical 
feasibility. This discussion explores how the restricted number of channels and focus on specific 
arrhythmias in publicly available datasets, such as MIT-BIH, might influence the generalizability of 
these models to a broader arrhythmia spectrum encountered in clinical practice. Through this focused 
analysis, we aim to provide a nuanced interpretation of the reported results, offering insights into the 
performance variations across studies and the practical considerations in arrhythmia classification 
methodologies. 
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4. Arrhythmia Classification Challenges  
 

Rising stress and depression in society levels underscore the need for timely AI-based Arrhythmia 
classification. After investigating each stage in its pipeline, challenges arise from the signal acquisition 
through all stages to model evaluation. Firstly, publicly available ECG databases pose limitations; 
uneven dataset distribution in MIT-BIH and class imbalance hinder consistent assessment. 
Furthermore, the available datasets lack diverse diagnoses from clinical practice, needed to aid 
physicians in reducing cardiac-related fatalities. Most datasets address only five diagnoses while 
clinical experts refer to more than 25 different diagnoses.  Secondly, the non-stationary nature of the 
raw signal susceptibility introduces unwanted noise, achieving acceptable accuracy requires the 
complex process of noise elimination while preserving essential information. Thirdly, the lack of 
feature standardization and variability influenced by the lifestyle of the person whose ECG is studied 
whether he is an athlete, under stress, or doing exercise adds complexity, requiring careful 
consideration of heart rate-related features. 

 

Addressing these challenges imperatively improves the accuracy and efficiency of ECG arrhythmia 
classification. Consequently, it is essential to consider the real-world implications and strive for 
advancements that align with the practical needs of healthcare professionals. Future research 
directions should focus on solutions that fill the gaps in dataset diversity, feature standardization, and 
algorithmic robustness. Innovative approaches are needed to enhance classification accuracy and 
efficiency. 

 

     

5. Conclusion  
 

   In conclusion, this extensive survey offers a thorough insight into the pivotal role of AI in 
advancing arrhythmia classification. Researchers have made substantial progress, employing diverse 
approaches at each stage of the classification process. The wavelet transform has emerged as a key 
tool for enhancing signal fidelity by removing artifacts in ECG signals. Accurate ECG segmentation, 
achieved through fixed sliding window techniques or beat-by-beat analysis, contributes significantly 
to precise classification. Various advanced techniques such as CNNs, RNNs, SVMs, active learning, 
and attention mechanisms have demonstrated remarkable performance in accurately classifying 
arrhythmias. Notably, CNNs consistently achieve results surpassing 99%, solidifying their widespread 
adoption and continued utilization in the field. This underscores their efficacy in arrhythmia 
classification tasks and their enduring significance in the evolving landscape of medical research and 
healthcare applications. Despite these successful research outcomes, the translation of these models 
into clinical practice faces challenges. Integrating advanced AI techniques holds great promise for 
enhancing the accuracy and efficiency of arrhythmia detection, ultimately benefiting healthcare 
professionals and patients. Moving forward, a concerted effort is required to fill the gap between 
research outcomes and practical clinical applications, ensuring that the full potential of AI in 
arrhythmia classification is realized. 
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 ملخص البحث  

الارتقاء بأنظمة بيانات الرعاية الصحية، لا سيما فيما يتعلق بتحليل البيانات    جوهرياً فيمؤخرًا دورًا   (AI) لقد لعب الذكاء الاصطناعي
في التشخيص والعلاج والتنبؤ عبر مختلف الحالات السريرية.    محوريتهاالطبية المعقدة. وأثبتت فعاليته في الكشف عن علاقات جوهرية، لتثبت  

ا لحدوث  ومن بين هذه المجالات المهمة، عدم انتظام ضربات القلب، وهي حالة تتميز بانحرافات في النظام الكهربائي للقلب، ما يشُكل خطرًا كبيرً 
الوسيلة الأساسية لالتقاط وتوثيق النشاط الكهربائي للقلب. تقدم   (ECG) سكتة قلبية مفاجئة ووفاة محتملة. وتعُتبر إشارات تخطيط كهرباء القلب

نهج هذه الورقة مراجعة شاملة لتطبيق تقنيات الذكاء الاصطناعي في مراحل مختلفة من عملية تصنيف عدم انتظام ضربات القلب. وقد تم استخدام 
يشمل معالجة أولية لبيانات تخطيط كهرباء القلب واستخراج واختيار الخصائص  عمليات متتابععرض متميز؛ حيث أجُريَ المسح على شكل خط 

ج الأفراد ذات الصلة وتدريب المصنف وتقييم الأداء. يعتبر التحليل السريع والدقيق لإشارات تخطيط كهرباء القلب أمرًا بالغ الأهمية لمراقبة وعلا
الحلول القائمة على الذكاء الاصطناعي في السيناريوهات السريرية، ما يضمن تحسين  المصابين بأمراض القلب. والهدف الرئيسي هو نشر هذه  

 .رعاية المرضى ونتائج العلاج
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