, IJCI V11-2(2024) 25-43
(s &
(ﬂ) International Journal of Computers and Information
(e et
Available online at https://ijci.journals.ekb.eg/ i '

Cloglaalig sl auls 4

Detection of Integrity Attacks on Permissions of Android-Based
Mobile Apps: Security Evaluation on PayPal

Omar Hussein
Department of Management Information Systems, Faculty of Management Sciences, October University for Modern
Sciences and Arts (MSA), 61 October, Egypt

ohusseins@gmail.com
https://orcid.org/0000-0002-0282-7541

Abstract

The objective of this paper is to detect unauthorized modifications to genuine permissions of legitimate Android-based
mobile apps in real-time, with demonstration on PayPal payment gateway mobile app. The scientific value of this work
lies in finding a remedy for lack of binary protection vulnerability in Android-based mobile apps. The motivation
behind conducting this research on PayPal is because of its widespread popularity, and the reported increase in the
attacks targeting Android apps along with the sensitive nature of payment gateway mobile apps. This paper proposes
an anti-circumvention security approach called Android Apps Permissions Integrity Verifier (AAPIV) to achieve the
desired goal. AAPIV captures and computes the authentic unique 256-bit hash of the AndroidManifest.xml file of a
legitimate Android-based mobile app. An app’s permissions are registered in AndroidManifest.xml file in its Android
Package Kit file. AAPIV stores the computed hash in its cloud-based database server. For every access request to the
data stored in the database server of the mobile app service provider, the 256-bit hash of the AndroidManifest.xml file
of the requesting app is captured, extracted, computed, and verified for authenticity against that stored in AAPIV’s
cloud-based database server. In case both hashes are identical, this denotes a legitimate access request from an
authentic mobile app, and accordingly the access request is allowed, otherwise the access request is denied. An
experimental security evaluation was applied on PayPal Android-based payment gateway mobile app. It demonstrated
that AAPIV effectively achieved its intended objective.

Keywords: Android-Based Apps Security; Mobile Apps Permissions; Integrity Attacks; Android Package Kit

1. Introduction

Android is an open-source operating system based on Linux kernel and owned by Google [1]. It is the
dominating operating system for mobile devices with a market share of 70.1% in the fourth quarter of 2023
Google Play App Store is the first-largest store for Android apps. In the third quarter of 2022 it hosted 3.55
million Android apps?. Android-powered devices (e.g., smartphones, tables) are equipped with multiple
sensors that capture personal data. This widens the attack surfaces of Android-based devices in front of
adversaries. Android apps are classified as either system or user apps. System apps (pre-installed apps) are
provided by vendors of mobile devices. Based on vendors requirements, mobile device manufacturers can
tailor system apps’ design and configuration settings for a particular device model. Examples of pre-installed
apps include: Google Chrome, and Google Maps. User apps (third-party apps) are developed by individual

' STATISTA, Market Share of Mobile Operating Systems Worldwide 2009-2023.
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/, 2024 (last
accessed 25 January 2024)

2 STATISTA, Number of Apps Available in leading App Stores Q3 2022.
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/, 2024 (last accessed 25
January 2024)

mailto:ohusseins@gmail.com
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

26 Omar Hussein

developers. These apps can be benign or malicious, and are downloadable from various sources. Examples of
benign third-party apps include: X, and WhatsApp. In the second quarter of 2022, 405,684 malicious Android
Package Kit (APK) files were discovered by Kaspersky Security Network?. Examples of malicious third-party
apps are “SafeGraph” that was recently banned by Google*, and “SafeChat”; its hidden malicious
functionality was lately revealed by Singapore-based cybersecurity firm called “CYFIRMA™®. Reliance on
mobile devices in carrying out online financial transactions has increased; especially as social distancing was
rigidly required since COVID-19 pandemic. Unfortunately, this was accompanied by a spike in mobile-based
cyber security breaches [2]. As reported in [3], more than 90% of mobile device malicious software (malware)
targets the Android operating system. Vulnerabilities in Android source code are the primary causes of these
attacks [4, 5]. For example, the Next-Intent security vulnerability is a known exploitable Android vulnerability
that went unpatched for an extended time period [6-8]. Wang et al [9] illustrated the possibility of capturing a
user’s password in real-time by exploiting the Activity component of Android. An integrity attack on
permissions of an Android-based mobile app refers to attacks that tamper with the permissions of a mobile
app to compromise the app’s security. This paper aims at maintaining the integrity of Android-based mobile
apps permissions. The objective is to detect unauthorized modifications to an app’s permissions. The main
contributions of this paper are as follows: (1) present a proposed user-transparent method to cover lack of
binary protection vulnerability in Android-based mobile apps; and (2) propose a real-time security approach
to detect unauthorized modifications to the permissions of Android-based mobile apps.

The remainder of this paper is organized as follows. Sections 2 and 3 are devoted to cover the conceptual
background, and explore related work respectively. Section 4 details the different aspects of the proposed
security approach including its applied experimental security evaluation on PayPal payment gateway mobile
app. Section 5 discusses novelty of the proposed security approach and its merits. Finally, Section 6 concludes
this paper and outlines the future work.

2. Conceptual Background

2.1. Android Apps Compilation and Decompilation Processes

Android apps are written in Java programming language. Android Studio is an integrated development
environment to develop Android apps. Android Studio compiles Java code. It packages data, besides resource
and configuration files into a single APK file [10]. Java bytecode is the resulting compilation of Java object
code of an app. Java bytecode (.class) in turn is compiled by dex compiler (component of Android Software
Development Kit (SDK)) into Dalvik Executable/DEX code (.dex). All (.class) files are integrated into a
single classes.dex file. Dalvik Virtual Machine (DVM), which is a part of Android, executes the compiled
DEX code [11]. A single APK file is an Android app file that contains classes.dex, AndroidManifest.xml files,
plus resource files. It is used for installation on Android-powered devices [12]. Fig.1 depicts the compilation
process of an APK file, starting from writing an app in Java until obtaining the APK file. The ZIP file format
is used by APKs files. It is possible to unzip an APK file using any file archiver. However, the extracted files
and folders from an unzipped APK file are illegible. Decompilation is the opposite of compilation. It means
translation of machine-readable executable code back to human-readable source code [13]. Android Studio
allows decompilation of APK files to access and modify apps’ functionalities and Security settings [14].
Through Android Studio 4.0, an APK file can be decompiled by choosing “Analyze APK” menu option from
the “Build” drop-down menu.

3 SECURELIST, IT threat evolution in Q2 2022. Mobile statistics.
https://securelist.com/it-threat-evolution-in-q2-2022-mobile-statistics/107123/, 2024 (last accessed 25 January 2024)
* The Verge, Google bans tracking tool that sold users’ location data.
https://www.theverge.com/2021/8/12/22621685/google-ban-safegraph-android-user-data-location-tracking, 2024 (last
accessed 25 January 2024)

* Cyfirma, APT Bahamut Targets Individuals with Android Malware Using Spear Messaging.
https://www.cyfirma.com/outofband/apt-bahamut-targets-individuals-with-android-malware-using-spear-messaging/,
2024 (last accessed 25 January 2024)

https://securelist.com/it-threat-evolution-in-q2-2022-mobile-statistics/107123/
https://www.theverge.com/2021/8/12/22621685/google-ban-safegraph-android-user-data-location-tracking
https://www.cyfirma.com/outofband/apt-bahamut-targets-individuals-with-android-malware-using-spear-messaging/

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 27

<

—
Java source code Java —

Java

Javac compiler

Java bytecode .class
- T =7 I P |
I dex compiler % |
| Y a1
| 2|
| De'x bytecode classes.dex [|
(Dalvik Executable) -
| < |
N A |

Zip Archive of: v
classes.dex &
45 .apk
AndroidManifest.xml it
+ APK

resource files

Fig.1. Android app compilation process

2.2. Permissions in Android-Based Apps and Potential Risks

Android’s access control security mechanism mandates apps to request permissions at installation time
(Fig.2), and individually at runtime (Fig.3), before accessing and using any system resource. At app
installation time, Android requires the user to expressly accept the app’s required access rights/permissions. In
case the user refuses to grant access rights to a particular app, its installation is terminated. Apps that request
excessive permissions (i.e., the problem of apps being overprivileged) generate security vulnerabilities that
can be maliciously exploited [15, 16]. An app’s permissions are registered in AndroidManifest.xml file in its
APK file and located at the root directory of the app source set [14]. This XML file plays essential roles as it
declares the following®: (1) app components; (2) app permissions to access other apps, or parts of the system;
(3) permissions granted to other apps to access the app’s content; and (4) hardware and software requirements
that are needed to install the app on a device from Google Play Store. In Android, each permission has a
protection level’. There are three permission protection-levels: (1) normal; (2) dangerous; and (3) signature.
A permission is a constant value in AndroidManifest.xml file that begins with a prefix “android.permission.”.
For example, “android.permission. VIBRATE” is a normal protection-level android-based app permission,
whereas “android.permission.GET_ACCOUNTS” is a dangerous protection-level android-based app
permission. Additionally, “android.permission. MANAGE ONGOING_CALLS” is an example of a signature
protection-level permission. Normal protection-level permissions are automatically granted to an Android-
based app without the user’s consent. They are characterized as being with low-risk to the system and other
apps. Dangerous protection-level permissions require user’s consent before installing the app. They affect the
user’s privacy as they access his/her data and core device functionalities.

% ANDROID FOR DEVELOPERS, App Manifest Overview.
https://developer.android.com/guide/topics/manifest/manifest-intro, 2024 (last accessed 25 January 2024)

7 ANDROID FOR DEVELOPERS, “<permission>".
https://developer.android.com/guide/topics/manifest/permission-element, 2024 (last accessed 25 January 2024)

https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/permission-element

28 Omar Hussein

Start) Start

Install Android .
App Run Android App
Y
Request Runtime Permission
Require Declared in App’s > User Approved ?
Permissions ? AndroidManifest.xml file

Allow All
Permissions

Require
Another Runtime

Yes

ermission 2

Y A

Insert Permissionsin App’s
AndroidManifest.xml file

App Installed Fulfil App Use case

Installation
Cancelled

End
Fig.3. Android app permissions requests at runtime

Fig.2. Android app permissions requests at installation time

Every Android app uploaded to Google Play Store should be signed with the app developer’s signature, which
is the developer’s cryptographic private key. A private key is essential to identify and verify the owner of an
Android app. During a new Android app installation, and in a signature protection-level permission, the app
requesting the permission must be digitally signed with the same developer’s signature as that of a previously
installed app that defines the needed permission on the device. An Android app refers to the
AndroidManifest.xml file to enforce the intended app’s permissions during installation and execution. It tags
each permission with <uses-permission>. Fig.4 depicts a portion of PayPal app’s group of permissions stated
in its AndroidManifest.xml file. In order to deliver its malicious payload, an infected Android app will request
permissions irrelevant to its intended functionality. Table 1 lists examples of dangerous protection-level
permissions®.

2.3. Functionality of Payment Gateway Apps

Payment gateway apps are specialized in managing online payments through debit/credit cards. As depicted in
Fig.5, an online payment gateway app captures debit/credit card details from its users. These card details
include card number, card type, expiration date, card verification value, card holder name, and payment value.
The payment gateway app passes the card and payment details to the card issuing bank via the card payment
network. The card issuing bank validates the card details and balance, then approves the transaction. Finally,
the card issuing bank sends back payment confirmation to the card holder, and deposits the payment amount
to the beneficiary’s account.

8 ANDROID FOR DEVELOPERS, Manifest.permission.
https://developer.android.com/reference/android/Manifest.permission, 2024 (last accessed 25 January 2024)

https://developer.android.com/reference/android/Manifest.permission

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 29

24 <uses-permission

25 ="android.permission.ACCESS_FINE_LOCATION" />
26

27 <uses-permission

28 ="android.permission.ACCESS_NETWORK_STATE" />
29

30 <uses-permission

31 ="android.permission.READ_CONTACTS" />

32

33 <uses-permission

34 ="android.permission.READ_EXTERNAL_STORAGE" /:
35

36 <uses-permission

37 ="android.permission.CAMERA" />

38

39 <uses-permission

40 ="android.permission.READ_PHONE_STATE" />

Fig.4. A portion of the permissions stated in PayPal’s Androidmanifest.xml file

Table 1. Examples of Dangerous Protection-Level Android Permissions and Their Descriptions

Permission: A Constant Value in Description
AndroidManifest.xml that Begins with
a prefix “android.permission.”

"GET_ACCOUNTS" Allows an app to access the list of accounts in the Accounts
Service
"ACCESS_FINE_LOCATION" Allows an app to access the precise location

"READ_EXTERNAL_STORAGE" Allows an app to read from external storage
"WRITE_EXTERNAL_STORAGE" | Allows an app to write to external storage

"READ_CONTACTS" Allows an app to read the user’s contacts data
"WRITE_CONTACTS" Allows an app to write the use’s contacts data

"READ_SMS" Allows an app to read Short Message Service (SMS) messages
"SEND_SMS" Allows an app to send SMS messages

"RECEIVE_SMS" Allows an app to receive SMS messages
"READ_PHONE_STATE" Allows read only access to phone state, including the current

cellular network information, the status of any ongoing calls,
and a list of any phone numbers registered on the device

2.4. Why PayPal in Particular?

In this paper, PayPal Android-based online payment gateway mobile app is used because of its widespread
popularity. As reported in [17], PayPal is the first payment gateway service provider for financial services
worldwide with over 100 million download counts in January 2024° PayPal allows online fund transfer
amongst individuals and businesses. Its services are available in more than 200 countries. It is capable of

® GOOGLE PLAY STORE. PayPal — Send, Shop, Manage
https:/play.google.com/store/apps/details?id=com.paypal.android.p2pmobile&hl=en&gl=US, 2024 (last accessed 27
January 2024)

https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile&hl=en&gl=US

30 Omar Hussein

dealing with 25 currencies'®. PayPal’s Android-based latest app version 8.55.1 APK file can be downloaded
from APKFlash't. APK files can also be downloaded from other websites, such as APKPURE?'?, APK-DL,
and APKCombo'4. Additionally, apps’ APK files can be downloaded from Google Play Store using a Google
Chrome extension called “APK Downloader”. This extension can be installed from Chrome Web Store'®.

518b 5212 345b 189l

e ew
- acx conn

Payment
Details Confirmation
Payment Gateway
. A
Authorization Payment
Request Confirmation

Y

Card Payment
Network

A
Authorization Payment

Request Confirmation
Y

Card Issuing Bank

Fig.5. Parties involved in an online payment gateway
3. Related Work
3.1. Deep Learning

Deep learning analyzes features extracted from the app (e.g., code, permissions, and network traffic) using
complex neural networks to identify malicious behavior patterns. Garg and Baliyan [3] attempted to match
malicious software affecting Android with vulnerabilities with different severity levels. In order to detect
malicious software attacks, features extracted from Android apps were mined with transformer models
(XLNET and BERT). The generated features were employed to implement methods based on deep learning
(TextCNN, RNN , and MLP). The goal was to gauge the severity of malicious software with regard to
unexploited vulnerabilities at early stages of Android apps development. Alecakir and Sen [18] used attention
mechanisms in deep neural architectures to model the discrepancies between an Android app’s description in
the Android marketplace, and the actual granted permissions when the app is installed. The objective was to
identify suspect mobile apps. Rathore et al [19] carried out a feature analysis to determine the important
Android permissions, and offer an effective deep learning and machine learning based Android malware
detection engine. The proposed solution requires less time to train and test while maintaining a high level of
model accuracy. However, it was noticed that deep neural networks achieve accuracy that is comparable to
the baseline values, but at a significant computational cost. Kim et al. [20] presented a model to detect
malicious software in Android-based execution environments. Seven attributes of an Android-based app were
identified and correlated to feature types that were used to train the initial deep neural network. Thousands of

" PAYPAL. About Us. https://www.paypal.com/eg/webapps/mpp/about?locale.x=en_EG, 2024 (last accessed 27 January
2024)

' APKFLASH. PayPal. https://apkflash.com/apk/app/com.paypal.android.p2pmobile/paypal, 2024 (last accessed 27
January 2024)

12 APKPURE. https://apkpure.net, 2024 (last accessed 27 January 2024)

'3 APK-DL. Android APK Store. https://apk-dl.com, 2024 (last accessed 27 January 2024)

4 APKCOMBO. Download APF — Latest Version. https://apkcombo.com, 2024 (last accessed 27 January 2024)

'S CHROME WEB STORE. APK Downloader. https://chromewebstore.google.com/detail/apk-
downloader/glngapejbnmnicniccdcemghaoaopdji?pli=1, 2024 (last accessed 27 January 2024)

https://www.paypal.com/eg/webapps/mpp/about?locale.x=en_EG
https://apkflash.com/apk/app/com.paypal.android.p2pmobile/paypal
https://apk-dl.com/
https://apkcombo.com/

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 31

malicious and benign app samples were used to train the final network. Authors claim that their model
achieved 98% in detecting malicious apps.

3.2. Static Analysis

Static analysis examines the app’s code and resources without executing it. It identifies potential
vulnerabilities based on predefined rules and patterns. In order to address the problem of being
overprivileged, Xiao et al [15] suggests a method that combines collaborative filtering accompanied by static
analysis to determine the minimal permissions for an Android app. This method is based on the app
description and its Application Programming Interface (API) usage. APIs allow apps to access mobile
devices’ hardware and system resources. The proposed method first uses collaborative filtering to determine
the app’s initial minimum set of permissions. Eventually, the final set of minimal permissions that an app
actually needs are then determined through static analysis. Darvish and Husain [21] analyzed the security
posture of a collection of payment gateway apps, where it concluded that 80% of these apps were found
vulnerable to different types of threats. The paper also developed a guide for checking Android apps security.

3.3. Dynamic Analysis

Dynamic analysis executes the app in a controlled environment, and monitors its behavior (e.g., network
traffic, and file system access). It detects malicious actions the app might perform at runtime. Diamantaris et
al [22] presents a dynamic analysis system that tracks permission requests made by an Android app in real-
time as part of its core functionality, and separates those permission requests from requests made by third-
party libraries linked with the Android app. The objective was to counter confidential information leakage
attacks committed by third-party libraries linked to Android apps. The study found that 65% of the
permissions requested by multiple Android apps were requested by third-party libraries linked to those apps
rather than from the core functionality of those apps. Rubio-Medrano et al [23] aimed at preventing data
leakage by detecting malicious permission-abusing mobile apps. They presented their security framework to
restrict the behavior of such apps at run-time. Their proposed framework was built on top of Android
Enterprise that allowed users and administrators to specify and enfore Counter-Policies without having
previous technical security background.

3.4. Code Obfuscation

Code obfuscation in Android apps adds a layer of protection by making the code harder to understand and
tamper with. It obstructs static analysis, and makes it more difficult to identify vulnerabilities. Several studies
explore obfuscation's effectiveness in hindering reverse engineering, intellectual property theft, and malware
analysis [24]. However research also acknowledges potential downsides like increased app size, performance
impact, and debugging challenges. Other studies analyze and compare various obfuscation techniques,
including name obfuscation, control flow obfuscation, and string encryption [25]. Additionally, studies
explore newer approaches like using machine learning for dynamic obfuscation or leveraging hardware-based
security features [26].

4. The Proposed Security Approach

This section presents the technical contribution of this paper. The objective is to detect unauthorized
modifications to genuine permissions of legitimate Android-based mobile apps. This article presents an
applied research on PayPal app to achieve the desired goal. The proposed security approach aims at
maintaining Android-based mobile apps’ integrity by detecting unauthorized modifications to the permissions
declared in AndroidManifest.xml file embedded in these apps in real-time. It is called Android Apps
Permissions Integrity Verifier (AAPIV). This section consists of four subsections that explain: (1) the attack
vector; (2) identification of the security vulnerability that attackers could exploit; (3) the functionality of the
proposed security approach; and (4) the integrity attack scenario on PayPal mobile app, and the accompanying
experimental security evaluation of the proposed security approach.

32 Omar Hussein

4.1. Attack Vector

Android-based mobile apps are available for installation from Google Play Store. As mentioned earlier in
subsection 2.4, apps’ APK files can be downloaded from multiple sources. An adversary downloads a
legitimate Android-based app APK file from Google Play Store (using “APK Downloader”) to his/her
PCl/laptop. The adversary decompiles the downloaded APK file using Android Studio. He/she maliciously
inserts extra dangerous protection-level permissions to AndroidManifest.xml to create a malicious fake mobile
app, compiles it, and uploads the resulting APK file back to Google Play Store with the same legitimate app
name, but with a different APK file name. An incautious customer installs the malicious and fake app on his
Android-powered device. Accordingly, the victim is subject to numerous severe negative consequences.
Accordingly, the situation ends up in adversaries gaining highly privileged dangerous permissions over
victimized systems’ resources, besides permissions needed to interact with other systems installed on mobile
devices. Unfortunately, this attack vector can be carried out with no need for sophisticated methods or tools.
For instance, GITHUB? is a free tool; it can be used to bypass Android app signature and integrity checks.
Fig.6 depicts the attack vector.

> Google P|ay Download and Install 4
& the Malicious and Fake "
@ APK File .

Download Legitimate Mobile Device of an
Android-Based Mobile @ Incautious Customer
App’s APK file Upload the Malicious and Fake

APK file, with the Same
Legitimate App Name, but with
a Different APK File Name

Y

‘2 o Decompile Downloaded Legitimate APK File
| JI Insert Dangerous-Level Permissions in
AndroidManifest.xml file

* Compile to Create a Malicious and Fake APK File

Adversary’s PC

Fig.6. The attack vector

4.2. Identification of the Exploitable Security Vulnerability

Security vulnerabilities refer to defects or weaknesses in the design, implementation, operation, or
management of a system that could be exploited to violate the system’s security policy [5]. A vulnerability in
a system could be exploited to obtain unauthorized access to, or compromise the system. An application
without binary protection can be readily analyzed, altered, or back-engineered by an adversary [27]. The
vulnerability that makes the mentioned attack vector applicable and viable is non-existence of binary
protection in Android-based apps. An Android app can be easily decompiled to access its source code.
Malicious source code and additional dangerous protection-level permissions can easily be inserted in
contents of Android-based apps’ APK files.

4.3. Functionality of the Proposed Security Approach

Fig.7 depicts AAPIV’s process of capturing, computing, and storing the authentic unique 256-bit hash of the
AndroidManifest.xml file of PayPal’s legitimate Android-based payment gateway mobile app. The process
begins by decompiling the legitimate PayPal app’s APK file. The next step is to extract the
AndroidManifest.xml file and apply the one-way irreversible Secure Hash Algorithm-256 (SHA-256). This
algorithm is used to generate a unique constant 256-bit output message digest/hash that distinctly identifies

' GITHUB, Android-Signature-And-Integrity-Check-Bypass.
https://github.com/riyadmondol2006/Android-Signature-And-Integrity-Check-Bypass/releases/tag/V2, 2024 (last accessed
30 January 2024)

https://github.com/riyadmondol2006/Android-Signature-And-Integrity-Check-Bypass/releases/tag/V2

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 33

the arbitrary-length AndroidManifest.xml file. Finally, the generated hash is inserted in AAPIV’s cloud-based
database server to be used to verify the genuineness of the AndroidManifest.xml file. A hash value is a distinct
value that corresponds to a file’s content. Altering any character in a file’s contents changes the file’s hash
value. Hash values are used to assert that a file’s contents were not subject to any modifications. Hash values
are used to check whether two files have identical contents.

PayPal’s Legitimate Android-Based AAPIV Cloud-Based
Payment Gateway App APK File Database Server
APK —
-~
Decompile

classes.dex
AndroidManifest.xml

rresuurce files

[D
Extract <Dy

AndroidManifest.xml file
i XML

Store

Arbitrary-Length Input

Apply
SHA-256 Hash

PayPal's Authentic Fixed-Length Unique
256-bit Output Message Digest/Hash

D4960DACFSD2AF2851299DF38983A4F4D714B7CE6D71AC81B8CBD72C91

Fig.7. AAPIV capturing and storing the authentic unique 256-bit hash of the Androidmanifest.xml file of PayPal’s legitimate Android-
based payment gateway mobile app

As depicted in Fig.8, for every access request to the data stored in the database server of the payment gateway
service provider (e.g., PayPal), a database-level trigger (stored procedure) is fired automatically to call
AAPIV. A database-level trigger could be a BEFORE INSERT trigger, BEFORE UPDATE trigger, or
BEFORE DELETE trigger. AAPIV captures, extracts, and computes the 256-bit hash of the
AndroidManifest.xml file of the requesting app. It verifies the computed hash against that stored in AAPIV’s
cloud-based database server for authenticity. In case both hashes are identical, this denotes a legitimate access
request from an authentic payment gateway mobile app, and accordingly the access request is allowed,
otherwise the access request is denied. This proposed security approach guarantees to a high extent that
sensitive financial data is only accessible by the legitimate payment gateway app. Due to the fact that SHA-
256 has not yet been cracked [28], it is adopted in AAPIV. SHA-256 was published by the National Institute
of Standards and Technology [29]. Through SHA-256, reconstruction of an input message that matches a
specified output message digest/hash is computationally impossible. In order to determine whether an input
message has changed after its digest was output, a message digest/hash is used. Additionally, SHA-256 is
used to generate pseudo-random 256-bit hashes [30].

34 Omar Hussein

Service Provider’s
Payment Gateway AAPIV Cloud-Based
Database Server Capture, Extract Database Server

AndroidManifest.xml! file, and

— ‘ | Access Request | Apply SHA-256 Hash Function
N Access S Forwardedbya | |
Request s Database Trigger c
3 < —]

Andrnid-Baseod Smart Phone l Computed fl‘xed-Length Retrleyed_Prewously Stor_ed
Running a Service Provider's ~ Unique A;Fhentlc leed-Length_Umque "
Payment Gateway Mobile App 256-bit Output Message 256-bit Output Message Digest/Has|

Digest/Hash of the
AndroidManifest.xml
file

of the AndroidManifest.xml file
Uses

Payment
Gateway
Mobile App
User

X

M'AT.ICIOUS AND FAKE MOBILE APP:
DENY User’s Access Request to
Service Provider’s Payment Gateway

V GENUINE MOBILE APP: Database Server

ALLOW User’s Access Request

to Service Provider's Payment
Gateway Database Server

Fig.8. AAPIV’s AndroidManifest.xml file authenticity verification process

4.4. Integrity Attack Scenario on PayPal and the Proposed Security Approach Experimental Security
Evaluation

This subsection presents the implementation of an integrity attack scenario on permissions of Android-Based
PayPal gateway mobile app. Additionally, it illustrates the experimental security evaluation of the proposed
security approach on PayPal payment gateway Android-based mobile app.

4.4.1. Integrity Attack Scenario on PayPal

The attack scenario is implemented by an adversary carrying out the following sequence of steps:

a) Download PayPal’s APK file from Google Play Store (using “APK Downloader”) to his/her
PCllaptop.

b) Decompile the downloaded APK file using Android Studio.

c) Insert extra dangerous protection-level permissions to AndroidManifest.xml to create a malicious
fake PayPal mobile app.

d) Compile and upload the resulting APK file back to Google Play Store with the same legitimate app
name (i.e., PayPal), but with a different APK file name.

e) Eventually, an incautious app user installs the malicious and fake PayPal mobile app on his/her
Android-powered device, thereby exposing him/herself to numerous severe negative financial
consequences.

4.4.2. Experimental Security Evaluation of the Proposed Security Approach

AAPIV’s experimental security evaluation is presented in a proof-of-concept illustration to demonstrate the
core idea. It is applied on PayPal Android-based payment gateway mobile app. The integrity of a file can be
verified using Powershell command shell. The Get-FileHash cmdlet!” from the Powershell computes the
hash value/message digest of a given file by using a specified hash algorithm. This cmdlet supports
computing the message digest using any of the following Secure Hash Algorithms (SHAs): SHAL, SHA256,
SHA384, SHA512, and the Message-Digest algorithm (MD5).

' MICROSOFT POWERSHELL UTILITY, Get-FileHash.
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-7.2, 2024
(last accessed 30 January 2024)

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-7.2

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 35

For AAPIV to generate the authentic unique 256-bit output hash of PayPal’s legitimate AndroidManifest.xml
file, it downloads PayPal’s APK file from Google Play Store, as this store is the most trusted source of
legitimate mobile apps. This is accomplished using “APK Downloader” Google Chrome extension. This
extension can be installed from Chrome Web Store. Through AAPIV, PayPal’s APK file is decompiled. Next,
AAPIV extracts PayPal’s AndroidManifest.xml file, and hashes it using SHA-256. This is accomplished from
within AAPIV using the Powershell Get-FileHash cmdlet. The authentic fixed-length unique 256-bit output
message digest/hash of PayPal’s legitimate AndroidManifest.xml file is then stored in AAPIV’s cloud-based
database server.

On PayPal’s database server, a database-level trigger (stored procedure) is fired automatically to call AAPIV
whenever it receives an access request; that is, whenever data is inserted (before INSERT trigger), modified
(before UPDATE trigger), or deleted (before DELETE trigger). For every access request to the data stored in
the PayPal’s database server, the 256-bit hash of the AndroidManifest.xml file of the requesting app is
captured, extracted, computed, and verified for authenticity against that stored in AAPIV’s cloud-based
database server. In case both hashes are identical, this denotes a legitimate access request from an authentic
PayPal app, and accordingly the access request is allowed, otherwise the access request is denied. This
approach guarantees to a high extent that sensitive financial data is only accessible by the genuine PayPal
payment gateway mobile app. Fig.9 depicts a portion of PayPal’s authentic AndroidManifest.xml file contents.
Fig.10 depicts the hash/message digest of PayPal’s authentic AndroidManifest.xml file using Get-FileHash
cmdlet from the Powershell command shell. The hash is identical to that shown in Fig.7.

Fig.11 depicts a portion of PayPal’s Androidmanifest_Modified.xml file contents, where an attacker inserted
an additional permission (lines 24 and 25). This is an integrity attack on permissions of PayPal app. The
inserted permission “android.permission. WRITE _CONTACTS” is categorized as a dangerous protection-
level permission®®. Fig.12 depicts the 256-bit hash of PayPal’s AndroidManifest_Modified.xml file using Get-
FileHash cmdlet from the Powershell command shell. From Fig.10, Fig.11, and Fig.12, it is apparent that
inserting an additional permission in AndroidManifest_Modified.xml file of a fake and malicious PayPal app
(Fig.11) resulted in a totally different 256-bit hash (Fig.12) than that of Paypal’s authentic
Androidmanifest.xml file 256-bit hash (Fig.10). As previously explained, APPIV verifies the authenticity of a
mobile app (e.g., PayPal) by comparing both 256-bit hashes (i.e., the authentic previously stored against that
of the requesting-to-access app). Since they are different (Fig.10 and Fig.12), APPIVT will deny the access
request issued from the fake and malicious PayPal app containing AndroidManifest_Modified.xml file.

24 <uses-permission

25 ="android.permission.ACCESS_FINE_LOCATION" />
26

27 <uses-permission

28 ="android.permission.ACCESS_NETWORK_STATE" />
29

30 <uses-permission

31 ="android.permission.READ_CONTACTS" />

32

33 <uses-permission

34 ="android.permission.READ_EXTERNAL_STORAGE" />

Fig.9. A portion of the authentic PayPal’s Androidmanifest.xml file contents

'8 WRITE_CONTACTS.
https://developer.android.com/reference/android/Manifest.permission#WRITE_CONTACTS, 2024 last (accessed 30
January 2024)

https://developer.android.com/reference/android/Manifest.permission#WRITE_CONTACTS

36 Omar Hussein

PS C:\> Get-FileHash C:\PayPal\AndroidManifest.xml SHA256 | Format-List

Algorithm : SHA256
: D4966DeCFS5D2AF2851299DF38903A4F4D714B7CE6D71AC81B8CBD72C911D368F
: C:\PayPal\AndroidManifest.xml

Fig.10. 256- bit hash of the authentic PayPal’s Androidmanifest.xml file

24 <uses-permission g::n‘:::s‘i’::ed
25 ="android.permission.WRITE_CONTACTS" />} Added (integrity
26 Attack)

27 <uses-permission

28 ="android.permission.ACCESS_FINE_LOCATION" />

29

30 <uses-permission

31 ="android.permission.ACCESS_NETWORK_STATE" />

32

33 <uses-permission

34 ="android.permission.READ_CONTACTS" />

35

36 <uses-permission

37 ="android.permission.READ_EXTERNAL_STORAGE" />

Fig.11. A portion of the fake and malicious PayPal’s Androidmanifest_Modified.xml file contents

PS C:\> Get-FileHash C:\PayPal\AndroidManifest_Modified.xml SHA256 | Format-List

Algorithm : SHA256
: 18824DOEB2262C2E54214E61E552474F933F757F116A1EDDD8784B02BCAD12B7
: C:\PayPal\AndroidManifest_Modified.xml

Fig.12. 256-bit hash of the fake and malicious PayPal’s Androidmanifest_Modified.xml file

5. Novelty of the Proposed Security Approach and its Merits

With reference to Related Work (Section 3), the proposed security approach (AAPIV) presented in this paper
is novel in the sense that no other research tackled the problem of safeguarding genuine permissions of
legitimate Android-based mobile apps in real-time as AAPIV did. Table 2 illustrates the the novelty of
AAPIV as compared to previous related work: (1) deep learning; (2) static analysis; (3) dynamic analysis; and
(4) code obfuscation. As detailed in subsection 4.4.2., the proof-of-concept illustration of AAPIV’s
experimental security evaluation demonstrated that through its file integrity verification capability, it is
capable of achieving 100% detection accuracy of integrity attacks on permissions of Android-based mobile
apps. As depicted in Fig.13, deep learning models achieve 85% malware detection accuracy, but require
significant training data and computational resources. Static analysis achieves 70% malware detection
accuracy; it is faster but can be fooled by code obfuscation. Dynamic analysis achieves 80% malware
detection accuracy; it offers a good balance between deep learning and static analysis. However, it requires a
secure sandbox environment. Fig.13 illustrates the accuracy of AAPIV compared to other Android-based
malware detection techniques.

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43

37

Table 2. AAPIV as Opposed to Deep Learning, Static Analysis, Dynamic Analysis, and Code Obfuscation

Technique Description Advantages Disadvantages Use Case in
Mobile App
Scanning
Deep Learning | Analyzes features Effective at Requires large Flags previously
[3][18][19][20] | extracted from the app | detecting datasets for training. | unknow attacks.
using complex neural | novel malware | It can be Identifies complex
networks to identify computationally malware behavior
malicious behavior expensive. It may
patterns produce opaque
results
Static Analysis | Examines the app’s Fast, Limited to detecting | Identifies insecure
[15][21] code and resources lightweight, known coding practices.
without executing it. and identifies | vulnerabilities; Detects usage of
Identifies potential common however, it may miss | malicious
vulnerabilities based issues early in | complex malware permissions
on predefined rules development that relies on runtime
and patterns behavior
Dynamic Executes the app in a Can uncover Time-consuming, Identifies malware
Analysis controlled vulnerabilities | resource-intensive, that downloads
[22]123] environment, and missed by and may miss well- malicious payloads.
monitors its behavior. | static analysis. | hidden malware that | Detects apps that
Detects malicious Provides avoids suspicious exhibit suspicious
actions the app might | insights into actions during network behavior
perform at runtime app behavior analysis
Code Technique used by Protects Hinders static Makes static
Obfuscation developers to intellectual analysis. Can be analysis less
[24][25][26] intentionally obscure property, and bypassed by effective, and may
the app’s code, and hinders reverse | sophisticated be used by malware
making it harder to engineering malware analysis authors to hinder
understand and tools detection
analyze
File Integrity AAPIV is this paper’s | Detailed in the | Compared to older Flags previously
Verification novel proposed following and no more secure unknow attacks.
Through security approach to subsections hashing algorithms Detects Anroid-
AAPIV detect unauthorized like MD5, SHA-256 | based mobile app
modifications to takes slightly more malicious
genuine permissions processing power permissions

of legitimate Android-
based mobile apps

(20%-30%) and time
to calculate the hash®®

1 FREECODECAMP. MD5 vs SHA-1 vs SHA-2 - Which is the Most Secure Encryption Hash and How to

Check Them

https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-

check-them/, 2024 (last accessed 23 April 2024)

https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/

38 Omar Hussein

File Integrity
Verification
Through AAPIV

Dynamic Analysis

Android-Based Malware Detection Technique

Static Analysis

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Accuracy

Fig.13. Accuracy of AAPIV as compared to other Android-based malware detection techniques
The following subsections explain the advantages of applying AAPIV.

5.1. Cover Non-Existence of Binary Protection Vulnerability

Android-based mobile apps suffer from non-existence of binary protection. This vulnerability opens the door
wide open to adversaries. As explained earlier, it is always possible to tamper with contents of APK files as
these files lack binary protection. With the adoption of AAPIV, this vulnerability is covered. Through
AAPIV’s integrity verification process on AndroidManifest.xml, it is possible to detect unauthorized
modifications to its contents. AAPIV heavily contributes in preventing violation of Android-based apps’
authentic permissions, and usage of tampered-with malicious mobile apps that may lead to financial fraud.

AAPIV can be applied on any Android-based mobile app, especially apps that manage financial transactions,
such as InstaPay. InstaPay®® is an Egyptian mobile app that allows instant money transfer between bank
accounts or mobile phone numbers, as long as the involved banks are part of the InstaPay’s network. It links a
user’s bank accounts from participating banks into one app, and allows transferring money instantly between
linked bank accounts. The similarities between both apps, PayPal and InstaPay, lay in that they require similar
core permissions like Internet access for online transactions and communication. However, there are several
differences between PayPal and InstaPay as shown in Table 3.

5.2. Provide Anti-Circumvention Security Approach

AAPIV provides anti-circumvention capability. A mobile app service provider’s database-level trigger (i.e.,
stored procedure) is fired automatically to call AAPIV whenever data is inserted, modified, or deleted using
the mobile app. For every access request to the data stored in the database server of the mobile app service
provider, the 256-bit hash of the AndroidManifest.xml file of the requesting app is captured, extracted,
computed, and verified for authenticity against that stored in AAPIV’s cloud-based database server. By no
means a mobile app user would be able to circumvent or bypass such hash verification requirement. This

0 INSTAPAY
https://www.instapay.eg/?lang=en, 2024 (last accessed 21 April 2024)

https://www.instapay.eg/?lang=en

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 39

guarantees to a high extent that sensitive data is only accessible by legitimate mobile apps. AAPIV adopted
Secure Hash Algorithm-256 (SHA-256) rather than SHA-512 for a number of reasons: (1) SHA-256 is
superior over SHA-512 in its processing speed; (2) SHA-256 is considered secure for most current
applications due to the fact that SHA-256 has not yet been cracked [28]; and (3) National Institute of
Standards and Technology (NIST)? encourages usage of SHA-256 especially for applications that require file
integrity verification using hash values generated from hash functions. Table 4 summarizes the differences
between SHA-256 and SHA-512.

Table 3. PayPal versus InstaPay

Feature PayPal InstaPay
Region Global Egypt
Account Funding Can be linked to bank accounts, Requires linked bank accounts from
credit cards, debit cards participating Egyptian banks
Money Transfer International transfers possible Between Egyptian bank accounts, and

transfer money to other InstaPay users using
their mobile phone number

Bill Payment Wide variety of billers worldwide Limited to Egyptian utilities and
telecommunication companies
Availability Widely available Requires Egyptian banks to be part of the
InstaPay network
Location Request location permission for Does not require location permission for its
Permission features like finding nearby stores or | functionalities
Automatic Teller Machines (ATMs)
Telephony Does not require phone numbers, as | Require access to phone numbers for
the primary focus is on emails sending money using mobile contacts

Table 4. SHA-256 versus SHA 512

Feature SHA-256 SHA-512
Hash Output Size 256 bits 512 bits
Security Level Offers collision resistance up to 128 Offers collision resistance up to 256
bits. Considered secure for most bits. More secure for cryptanalysis

current applications

Processing Speed Faster due to smaller hash output Slower due to larger hash output size,
size and more complex internal operations

Suitable Widely used for file integrity Ideal for applications such as digital

Applications verification, digital signatures, certificates, and blockchain transactions

password hashing, , and other
scenarios where a strong and
compact hash is needed.

I NIST. Hash Functions. NIST Policy on Hash Functions
https://csre.nist.gov/projects/hash-functions/nist-policy-on-hash-functions, 2024 (last accessed 21 April 2024)

https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions

40 Omar Hussein

5.3. Provide User-Transparent Functionality

Through AAPIV’s AndroidManifest.xml file integrity verification process, user transparency is provided. That
is, users of Android-based mobile apps (both benign users and attackers) would not notice that the apps that
they are currently using to access the mobile app service providers databases are being verified for legality
and authenticity.

5.4. Adoption of Defense-in-Depth Security Principle

The defense-in-depth security principle is based on layering of security measures [31]. Layering aims at
mitigating potential security risks. In order to safeguard information assets, a number of overlapping security
defenses are placed accumulatively. So that if one security safeguard was breached, still there exists another
security barrier to defend against attackers. AAPIV is a security countermeasure that adopts the defense-in-
depth security principle. Even if a mobile app user enters the correct credentials (the first line/layer of
defense), AAPIV will additionally verify the genuineness of permissions granted to the requesting-to-access
mobile app (the second line/layer of defense). This ensures that integrity attacks using malicious and fake
mobile apps that were compromised and maliciously modified are caught by AAPIV as a second security
countermeasure. AAPIV’s verification function compares the authentic unique 256-bit hash of the
AndroidManifest.xml file of a legitimate Android-based mobile app hash against that of the possibly fake
malicious mobile app that is currently being used. Accordingly, it allows or denies the access request.

5.5. Real-Time Identification of Malicious Mobile Apps

AAPIV can identify attackers in real-time through its effective and precise verification functionality. AAPIV
captures and computes the authentic unique 256-bit hash of the AndroidManifest.xml file of a legitimate
Android-based mobile app. An app’s permissions are registered in AndroidManifest.xml file in its Android
Package Kit file. AAPIV stores the computed hash in its cloud-based database server. For every access
request to the data stored in the database server of the mobile app service provider, the 256-bit hash of the
AndroidManifest.xml file of the requesting app is captured, extracted, computed, and verified for authenticity
against that stored in AAPIV’s cloud-based database server. In case both hashes are identical, this denotes a
legitimate access request from an authentic mobile app, and accordingly the access request is allowed,
otherwise the access request is denied.

5.6. Reinforcement of Mobile Apps Users’ Trust

Through AAPIV’s orientation of layered-based security defenses, an Android-based mobile app is more
immune against integrity attacks on its embedded permissions. Eventually, AAPIV boosts the users’ trust in
the effectiveness of the adopted security defenses integrated in the Android-based mobile app.

6. Conclusion

The objective of this paper is to detect unauthorized modifications to genuine permissions of legitimate
Android-based mobile apps. This objective was met through a proposed approach called Android Apps
Permissions Integrity Verifier (AAPIV). The main idea behind AAPIV is capturing, computing, and storing
the authentic unique 256-bit hash of AndroidManifest.xml file that contains all the permissions of an Android-
based mobile app. This authentic hash is used to verify the genuineness of permissions granted to a
requesting-to-access mobile app in real-time. It is computed by applying the one-way irreversible Secure
Hash Algorithm-256 (SHA-256). In a proof-of-concept illustration applied on Android-based PayPal payment
gateway mobile app, the experimental security evaluation demonstrated that AAPIV achieved its intended
objective. The proposed security approach presented in this paper is novel in the sense that no other research
tackled the problem of safeguarding genuine permissions of legitimate Android-based mobile apps in real-
time as AAPIV did. The scientific value of this work lies in finding a remedy for lack of binary protection
vulnerability in Android-based mobile apps. AAPIV provides several merits: (1) cover non-existence of
binary protection vulnerability; (2) provide anti-circumvention security approach; (3) provide user-transparent
functionality; (4) adoption of defense-in-depth security principle; (5) real-time identification of malicious

International Journal of Computers and Information, 1JCI V11-2(2024) 25 - 43 41

mobile apps; and (6) reinforcement of mobile apps users’ trust. Compared to older and no more secure
hashing algorithms like Message Digest Method 5, SHA-256 takes slightly more processing power (20%-
30%) and time to calculate the hash. However, this might be a minor consideration for most tasks. As for
future work, it is intended to focus on testing mobile apps running in Apple’s iPhone Operating System (i0OS)
execution environment.

References

[1]
[2]
(3]
(4]
[5]

[6]
(7
(8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

[23]

D. O. Sahin, S. Akleylek, and E. Kilic, ‘‘LinRegDroid: detection of android malware using multiple linear regression models-based
classifiers,”” IEEE Access, vol. 10, pp. 14246-14259, Jan. 2022.

O. Hussein, “A proposed anti-fraud authentication approach for mobile banking apps,” in Proc. 4th Novel Intelligent and Leading
Emerging Sciences Conf. (NILES), Giza, Egypt, 2022, pp. 56-61.

S. Garg and N. Baliyan, “M2VMapper: malware-to-vulnerability mapping for android using text processing”, Expert Syst. with
Applications, vol. 191, Article 116360, Apr. 2022.

G. Renjith, and S. Aji, “Unveiling the security vulnerabilities in android operating system,” in Proc. Second Int. Conf. on
Sustainable Expert Syst. (ICSES), Singapore, 2021, pp. 89-100.

A. Girma, A., A. Guo, and J. Trungu, J., “Identifying shared security vulnerabilities and mitigation strategies at the intersection of
application programming interfaces (APIs), application-level and operating system (OS) of mobile devices,” in Proc. The Future
Technologies Conf. (FTC), Cham, ,2022, pp. 499-513.

J. Tang et al., “NIVAnalyzer: a tool for automatically detecting and verifying next-intent vulnerabilities in android apps,” in Proc.
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 2017, pp. 492-499.

M. A. El-Zawawy, E. Losiouk, and M. Conti, “Do not let next-intent vulnerability be your next nightmare: Type system-based
approach to detect it in Android apps,” Int. J. Inf. Secur., vol. 6, pp. 11-20, Mar. 2020.

Z. Alshara, A. Shatnawi and Y. Jararweh, “NIV-Detector: an automated approach for detecting next-intent security vulnerability in
android applications,” in Proc. 2022 Ninth Int. Conf. on Softw. Defined Syst. (SDS), Paris, France, 2022, pp. 1-7.

Z. Wang, C. Li, Y. Guan, Y. Xue and Y. Dong, “ActivityHijacker: hijacking the android activity component for sensitive data,” in
Proc. 2016 25th Int. Conf. on Comput. Commun. and Networks (ICCCN), Waikoloa, HI, USA, 2016, pp. 1-9.

M. Al-Fawa’reh, A. Saif, M. T. Jafar, and A. Elhassan, ‘‘Malware detection by eating a whole APK,”” in Proc. 32nd Int. Conf. for
Internet 2124 Technol. Secured Trans. (ICITST), Dec. 2020, pp. 1-7.

Cho L Cho, D. Towey and P. Kar, “Using obfuscators to test compilers: a metamorphic experience,” 2023 |EEE 47th
Annu.Computers, Softw., and Applicat. Conf. (COMPSAC), Torino, Italy, 2023, pp. 1786-1791.

Y. L. Amatovich, L. Wang, N. M. Ngo, and C. Soh, “A comparison of android reverse engineering tools via program behaviors
validation based on intermediate languages transformation,” IEEE Access, vol. 6, pp. 12382-12394, Feb. 2018.

G. Nolan, Decompiling Android. Apress, 2012.

H. H. R. Manzil and M. S. Naik, “COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions,”
2022 Int.Conf. for Advancement in Technology (ICONAT), Goa, India, 2022, pp. 1-5.

J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, “An Android application risk evaluation framework based on minimum permission
set identification,”. J. of Syst.and Softw, Vol. 163, pp. 110533, May 2020.

A. K. H. Hussain, M. Kakavand, M. Silval, and L. Arulsamy, “A novel Android security framework to prevent privilege escalation
attacks,” Int. J. Comput. Netw. Inf. Secur., vol. 12, no. 1, pp. 20-26, Feb. 2020.

FINDEXABLE LIMITED. (2020) “The Global Fintech Index 2020” [Online]. Available: https:/fintechnz.org.nz/wp-
content/uploads/sites/5/2019/12/Findexable_Global-Fintech-Rankings-2020.pdf.

H. Alecakir, B. Can, and S. Sen, ‘‘Attention: there is an inconsistency between Android permissions and application metadata!,”
Int. J. Inform. Security, vol. 20, no. 6, pp. 797-815, Jan. 2021.

H. Rathore, S. K. Sahay, R. Rajvanshi, and M. Sewak, “Identification of significant permissions for efficient android malware
detection,” in Proc. Int. Conf. on Broadband Commun., Networks and Syst., Cham, Switzerland, 2020, pp. 33-52.

T. Kim, B. Kang, M. Rho, S. Sezer, E. Im, “A multimodal deep learning method for Android malware detection using various
features,”. IEEE Transactions on Information Forensics and Security, vol. 14, no. 3. pp. 773-788, Mar. 2019.

H. Darvish and M. Husain, “Security analysis of mobile money applications on android,” in Proc. 2018 IEEE Int. Conf. on Big Data
(Big Data), Seattle, WA, USA, 2018, pp. 3072-3078.

M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis and J. Polakis, “Reaper: Real-time app analysis for augmenting
the android permission system,” in Proc. the Ninth ACM Conf. on Data and Applicat. Security and Privacy, Richardson, TX, USA,
2019, pp. 37-48.

C. Rubio-Medrano, P. Soundrapandian, M. Hill, L. Claramunt, J. Beak, G. Ahn, “DyPolDroid: Protecting against permission-abuse
attacks in android,”. Information Systems Frontiers, vol. 25, pp. 529-548, Oct. 2023.

42

[24]

[25]
[26]
[27]
[28]
[29]
[30]

[31]

Omar Hussein

X. Zhang, F. Breitinger, E. Luechinger, S. O'Shaughnessy, “Android application forensics: A survey of obfuscation, obfuscation
detection and deobfuscation techniques and their impact on investigations,” Forensic Science International: Digital Investigation,
vol. 39, article 301285, Dec. 2021.

V. Balachandran, D. Tan, V. Thing, “Control flow obfuscation for Android applications,”. Computers & Security, vol. 61, pp. 72-
93, Aug. 2016.

C. Yadav, S. Gupta, “A review on malware analysis for loT and Android system,” SN Computer Science, vol. 4, no. 118, Dec.
2022.

S. Bojjagani and V. N. Sastry, ““VAPTAI: A threat model for vulnerability assessment and penetration testing of Android and iOS
mobile banking apps,”” in Proc. IEEE 3rd Int. Conf. Collaboration Internet Comput. (CIC), Oct. 2017, pp. 77-86.

S. Rawal, L. Maganti, and V. Godha, “Comparative study of SHA-256 optimization techniques,” in Proc. 2022 IEEE World Al loT
Congress (AlloT), Seattle, Washington, USA, 2022, pp. 387-392.

National Institute of Standards and Technology - Federal Information Processing Standards Publication - Secure Hash Standard
(SHS), FIPS PUB 180-4, 2015.

O. Hussein, “A proposed impregnable 256-bit hash producer,” in Proc. 15th Int. Comput. Eng. Conf. (ICENCO), Cairo, Egypt,
2019, pp. 50-55.

R. Savold, N. Dagher, P. Frazier, and D. McCallam, “Architecting cyber defense: a survey of the leading cyber reference
architectures and frameworks,” in Proc. 2017 IEEE 4th Int. Conf. on Cyber Security and Cloud Computing (CSCloud), New York,
NY, USA, 2017, pp. 127-138.

(YY£) () 20l (1)) alaal
7 - -
(245 e staall o bl 340 ool Aladll

Egypfian Knowledge Bank
https:/fijci.journals.ekb.eg/ : Jl il e < iyl e #lia 6ol 4800l el

(o) Batieal) A gasall cilidail) il pdf dadw Jo cilaagd) (o aASY)
b s Ao Al Al 1oy g i

— (MSA) ¥ s aall a slall 5 581 drala — 5100 & le 23S — 4 HlaY) il slaall alas and
Lpall eme iy) seen — o1 T Al
ohusseins@gmail.com
https://orcid.org/0000-0002-0282-7541

M\Mw\uw\uh}.ﬁiécL@C)m}d\u)uw\uc&ﬁﬂ\uﬂ}ngmﬂcjmgmic@uafﬁm\aﬁjﬁ‘bhﬁswu.\é\
A1 8l e Sl A Al 8)51 3] Aalall il S5 s (51 al) ket o el e el s e el Qo pllas)
Gl 138 el ja) el g adlall Sldplatl) elliy juadl A)SH_uLuA_‘Luajaje.\c @M\ 29y Jaaoil) em,g*w\u,mxwpy\ ity
c)@.;\]\ J/\;w@.ﬂ\ Gl g laphatl duliad) dapall Gila cJJJ.\J\ Cilaphy Caagius Exﬂ Gilaagd) 2 39 Aasl Il Ainds o \A.m;: du sl e

aM\g_m@Jld.;s;_aJJg_L;_d\m&d"qjjm\uuﬁhub}a\u)udaa"?.u}gtg.u\\l.;@u)}ilamsc)m Al gasal)

el Jleall Gab @l gaen sy @A) Calall 2y i) 3ha¥) &8 5l 0 5a0y Apsa s B & 7 sall e zgil) e)5 Ayl 5 Sl
el i o3 edll 8) 8 alaat) Jae Badaill da giaal) il Y Aaia (g G@iall ALY & 3all 138 aladiud o o paif Jaandill slas) sl
o) el e Al B 8 ikl 8 il 483 Bis sl el of asadll) sl jelal U sl adall Al 5y Gadad e # il
d.\su‘\?.u?l&.\iQA&\SJJ;KBJ}“A‘AAGJ:?M\C)M“SAA{}“G@J\M gl Qe aUas) M\uwmuuumujsishwcw
‘M@CM‘@Y‘C@J‘W&L&SM‘M&J‘@M})M‘M‘f&dé“@‘df&d‘MM%ﬂ‘ Ll) les A Ja
ol ol) i A penall 3 3gal) cliphty jaeadl 060 A Alaa dsa 5 aae ASAL Ja dlagl 8 anll 13g] Apalall Gl (S5 Candl

gyl

Aol Gl ol) satid) Zpall s sapead) A seaal) it aed Al S5 e 2y gl Qi) QUi (e Fadia dary Cand) 13 J5Y) andill
il & @l gd) (V) ey sl il Gl 5 aaand cillee (V) A e) ALaY) IS (e Dpasalial) LAl Canl) 13 SE andll Jaiy
Canll gy CAIBl ansll § s gundll dn g e Jb sl 13 (£) 5 caiall 4l g0 cliadas il g () elainall lalacall g oy gl Jrdill alas) sasisall
vl 3 oS (95 (£) 5 eoSpalipal) Qb (7) eoSLadl Jalail () (pandl alaill (V) 1) G5 Lgnand a3 15 cdlall <l A8 Cpadl laty
el) sl (28 Jb (sl @il 0 ki e adaall (o pal i) a3 b Ly 5l YD el Abiall il gal) Jauslit m jay gl)

csbiinall Janll sy s Afinll 38) o 038 ol vl iy ol oll e s 2 yiall e gl las

) Batiuall dﬁ;d\a)@.a‘}“u\.sujanjw\ J}ﬂ@bb&;dﬁ)emsﬂw\m\oﬂm(\) U‘)Jlunm.\ﬂ\c).ﬂd\su\.!\cg_\l\ e
‘5.:1.34” u.a‘}“ \AAA Alaic (i) ‘GJ\.G_J\ ?Aa_\.-.mﬂ PR 3.3).1:4 WY\ alsall g (V) el dsslsal Ls.u\e@.n‘)ﬁ}.\ (Y) ‘JJJAJ Juail) ?Ucu
?U:u‘sj\ M\dw\apyl u@hwmw}ﬁ(‘kb sa)wlﬂ}n;d\a)&;Y\umchAﬂﬂl t_lajs\‘sﬁa_unﬁ\ (0) Gzl

d;\AS)uuuaM\u)sdlMﬂ\em@g\d)@\a)gAY\umLa)Lu;\éc).\S)ﬂ\é|u.\@_|xﬁ ¢ il Jaall dunailly A})AJ\J.\MJ\

mailto:ohusseins@gmail.com

