

IJCI V11-2(2024) 25-43
International Journal of Computers and Information

(IJCI)
Available online at https://ijci.journals.ekb.eg/

Detection of Integrity Attacks on Permissions of Android-Based

Mobile Apps: Security Evaluation on PayPal

Omar Hussein
Department of Management Information Systems, Faculty of Management Sciences, October University for Modern

Sciences and Arts (MSA), 6th October, Egypt

ohusseins@gmail.com
 https://orcid.org/0000-0002-0282-7541

__

Abstract

The objective of this paper is to detect unauthorized modifications to genuine permissions of legitimate Android-based

mobile apps in real-time, with demonstration on PayPal payment gateway mobile app. The scientific value of this work

lies in finding a remedy for lack of binary protection vulnerability in Android-based mobile apps. The motivation

behind conducting this research on PayPal is because of its widespread popularity, and the reported increase in the

attacks targeting Android apps along with the sensitive nature of payment gateway mobile apps. This paper proposes

an anti-circumvention security approach called Android Apps Permissions Integrity Verifier (AAPIV) to achieve the

desired goal. AAPIV captures and computes the authentic unique 256-bit hash of the AndroidManifest.xml file of a

legitimate Android-based mobile app. An app’s permissions are registered in AndroidManifest.xml file in its Android

Package Kit file. AAPIV stores the computed hash in its cloud-based database server. For every access request to the

data stored in the database server of the mobile app service provider, the 256-bit hash of the AndroidManifest.xml file

of the requesting app is captured, extracted, computed, and verified for authenticity against that stored in AAPIV’s

cloud-based database server. In case both hashes are identical, this denotes a legitimate access request from an

authentic mobile app, and accordingly the access request is allowed, otherwise the access request is denied. An

experimental security evaluation was applied on PayPal Android-based payment gateway mobile app. It demonstrated

that AAPIV effectively achieved its intended objective.

Keywords: Android-Based Apps Security; Mobile Apps Permissions; Integrity Attacks; Android Package Kit

__

1. Introduction

Android is an open-source operating system based on Linux kernel and owned by Google [1]. It is the

dominating operating system for mobile devices with a market share of 70.1% in the fourth quarter of 20231.

Google Play App Store is the first-largest store for Android apps. In the third quarter of 2022 it hosted 3.55

million Android apps2. Android-powered devices (e.g., smartphones, tables) are equipped with multiple

sensors that capture personal data. This widens the attack surfaces of Android-based devices in front of

adversaries. Android apps are classified as either system or user apps. System apps (pre-installed apps) are

provided by vendors of mobile devices. Based on vendors requirements, mobile device manufacturers can

tailor system apps’ design and configuration settings for a particular device model. Examples of pre-installed

apps include: Google Chrome, and Google Maps. User apps (third-party apps) are developed by individual

1 STATISTA, Market Share of Mobile Operating Systems Worldwide 2009-2023.

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/, 2024 (last

accessed 25 January 2024)

2 STATISTA, Number of Apps Available in leading App Stores Q3 2022.

https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/, 2024 (last accessed 25

January 2024)

mailto:ohusseins@gmail.com
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/

26 Omar Hussein

developers. These apps can be benign or malicious, and are downloadable from various sources. Examples of

benign third-party apps include: X, and WhatsApp. In the second quarter of 2022, 405,684 malicious Android

Package Kit (APK) files were discovered by Kaspersky Security Network3. Examples of malicious third-party

apps are “SafeGraph” that was recently banned by Google4, and “SafeChat”; its hidden malicious

functionality was lately revealed by Singapore-based cybersecurity firm called “CYFIRMA”5. Reliance on

mobile devices in carrying out online financial transactions has increased; especially as social distancing was

rigidly required since COVID-19 pandemic. Unfortunately, this was accompanied by a spike in mobile-based

cyber security breaches [2]. As reported in [3], more than 90% of mobile device malicious software (malware)

targets the Android operating system. Vulnerabilities in Android source code are the primary causes of these

attacks [4, 5]. For example, the Next-Intent security vulnerability is a known exploitable Android vulnerability

that went unpatched for an extended time period [6-8]. Wang et al [9] illustrated the possibility of capturing a

user’s password in real-time by exploiting the Activity component of Android. An integrity attack on

permissions of an Android-based mobile app refers to attacks that tamper with the permissions of a mobile

app to compromise the app’s security. This paper aims at maintaining the integrity of Android-based mobile

apps permissions. The objective is to detect unauthorized modifications to an app’s permissions. The main

contributions of this paper are as follows: (1) present a proposed user-transparent method to cover lack of

binary protection vulnerability in Android-based mobile apps; and (2) propose a real-time security approach

to detect unauthorized modifications to the permissions of Android-based mobile apps.

The remainder of this paper is organized as follows. Sections 2 and 3 are devoted to cover the conceptual

background, and explore related work respectively. Section 4 details the different aspects of the proposed

security approach including its applied experimental security evaluation on PayPal payment gateway mobile

app. Section 5 discusses novelty of the proposed security approach and its merits. Finally, Section 6 concludes

this paper and outlines the future work.

2. Conceptual Background

2.1. Android Apps Compilation and Decompilation Processes

Android apps are written in Java programming language. Android Studio is an integrated development

environment to develop Android apps. Android Studio compiles Java code. It packages data, besides resource

and configuration files into a single APK file [10]. Java bytecode is the resulting compilation of Java object

code of an app. Java bytecode (.class) in turn is compiled by dex compiler (component of Android Software

Development Kit (SDK)) into Dalvik Executable/DEX code (.dex). All (.class) files are integrated into a

single classes.dex file. Dalvik Virtual Machine (DVM), which is a part of Android, executes the compiled

DEX code [11]. A single APK file is an Android app file that contains classes.dex, AndroidManifest.xml files,

plus resource files. It is used for installation on Android-powered devices [12]. Fig.1 depicts the compilation

process of an APK file, starting from writing an app in Java until obtaining the APK file. The ZIP file format

is used by APKs files. It is possible to unzip an APK file using any file archiver. However, the extracted files

and folders from an unzipped APK file are illegible. Decompilation is the opposite of compilation. It means

translation of machine-readable executable code back to human-readable source code [13]. Android Studio

allows decompilation of APK files to access and modify apps’ functionalities and security settings [14].

Through Android Studio 4.0, an APK file can be decompiled by choosing “Analyze APK” menu option from

the “Build” drop-down menu.

3 SECURELIST, IT threat evolution in Q2 2022. Mobile statistics.

https://securelist.com/it-threat-evolution-in-q2-2022-mobile-statistics/107123/, 2024 (last accessed 25 January 2024)
4 The Verge, Google bans tracking tool that sold users’ location data.

https://www.theverge.com/2021/8/12/22621685/google-ban-safegraph-android-user-data-location-tracking, 2024 (last

accessed 25 January 2024)
5 Cyfirma, APT Bahamut Targets Individuals with Android Malware Using Spear Messaging.

https://www.cyfirma.com/outofband/apt-bahamut-targets-individuals-with-android-malware-using-spear-messaging/,

2024 (last accessed 25 January 2024)

https://securelist.com/it-threat-evolution-in-q2-2022-mobile-statistics/107123/
https://www.theverge.com/2021/8/12/22621685/google-ban-safegraph-android-user-data-location-tracking
https://www.cyfirma.com/outofband/apt-bahamut-targets-individuals-with-android-malware-using-spear-messaging/

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 27

Fig.1. Android app compilation process

2.2. Permissions in Android-Based Apps and Potential Risks

Android’s access control security mechanism mandates apps to request permissions at installation time

(Fig.2), and individually at runtime (Fig.3), before accessing and using any system resource. At app

installation time, Android requires the user to expressly accept the app’s required access rights/permissions. In

case the user refuses to grant access rights to a particular app, its installation is terminated. Apps that request

excessive permissions (i.e., the problem of apps being overprivileged) generate security vulnerabilities that

can be maliciously exploited [15, 16]. An app’s permissions are registered in AndroidManifest.xml file in its

APK file and located at the root directory of the app source set [14]. This XML file plays essential roles as it

declares the following6: (1) app components; (2) app permissions to access other apps, or parts of the system;

(3) permissions granted to other apps to access the app’s content; and (4) hardware and software requirements

that are needed to install the app on a device from Google Play Store. In Android, each permission has a

protection level7. There are three permission protection-levels: (1) normal; (2) dangerous; and (3) signature.

A permission is a constant value in AndroidManifest.xml file that begins with a prefix “android.permission.”.

For example, “android.permission.VIBRATE” is a normal protection-level android-based app permission,

whereas “android.permission.GET_ACCOUNTS” is a dangerous protection-level android-based app

permission. Additionally, “android.permission.MANAGE_ONGOING_CALLS” is an example of a signature

protection-level permission. Normal protection-level permissions are automatically granted to an Android-

based app without the user’s consent. They are characterized as being with low-risk to the system and other

apps. Dangerous protection-level permissions require user’s consent before installing the app. They affect the

user’s privacy as they access his/her data and core device functionalities.

6 ANDROID FOR DEVELOPERS, App Manifest Overview.

https://developer.android.com/guide/topics/manifest/manifest-intro, 2024 (last accessed 25 January 2024)
7 ANDROID FOR DEVELOPERS, “<permission>”.

https://developer.android.com/guide/topics/manifest/permission-element, 2024 (last accessed 25 January 2024)

https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/permission-element

28 Omar Hussein

Fig.3. Android app permissions requests at runtime

Fig.2. Android app permissions requests at installation time

Every Android app uploaded to Google Play Store should be signed with the app developer’s signature, which

is the developer’s cryptographic private key. A private key is essential to identify and verify the owner of an

Android app. During a new Android app installation, and in a signature protection-level permission, the app

requesting the permission must be digitally signed with the same developer’s signature as that of a previously

installed app that defines the needed permission on the device. An Android app refers to the

AndroidManifest.xml file to enforce the intended app’s permissions during installation and execution. It tags

each permission with <uses-permission>. Fig.4 depicts a portion of PayPal app’s group of permissions stated

in its AndroidManifest.xml file. In order to deliver its malicious payload, an infected Android app will request

permissions irrelevant to its intended functionality. Table 1 lists examples of dangerous protection-level

permissions8.

2.3. Functionality of Payment Gateway Apps

Payment gateway apps are specialized in managing online payments through debit/credit cards. As depicted in

Fig.5, an online payment gateway app captures debit/credit card details from its users. These card details

include card number, card type, expiration date, card verification value, card holder name, and payment value.

The payment gateway app passes the card and payment details to the card issuing bank via the card payment

network. The card issuing bank validates the card details and balance, then approves the transaction. Finally,

the card issuing bank sends back payment confirmation to the card holder, and deposits the payment amount

to the beneficiary’s account.

8 ANDROID FOR DEVELOPERS, Manifest.permission.

https://developer.android.com/reference/android/Manifest.permission, 2024 (last accessed 25 January 2024)

https://developer.android.com/reference/android/Manifest.permission

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 29

Fig.4. A portion of the permissions stated in PayPal’s Androidmanifest.xml file

Table 1. Examples of Dangerous Protection-Level Android Permissions and Their Descriptions

Permission: A Constant Value in

AndroidManifest.xml that Begins with

a prefix “android.permission.”

Description

"GET_ACCOUNTS" Allows an app to access the list of accounts in the Accounts

Service

"ACCESS_FINE_LOCATION" Allows an app to access the precise location

"READ_EXTERNAL_STORAGE" Allows an app to read from external storage

"WRITE_EXTERNAL_STORAGE" Allows an app to write to external storage

"READ_CONTACTS" Allows an app to read the user’s contacts data

"WRITE_CONTACTS" Allows an app to write the use’s contacts data

"READ_SMS" Allows an app to read Short Message Service (SMS) messages

"SEND_SMS" Allows an app to send SMS messages

"RECEIVE_SMS" Allows an app to receive SMS messages

"READ_PHONE_STATE" Allows read only access to phone state, including the current

cellular network information, the status of any ongoing calls,

and a list of any phone numbers registered on the device

2.4. Why PayPal in Particular?

In this paper, PayPal Android-based online payment gateway mobile app is used because of its widespread

popularity. As reported in [17], PayPal is the first payment gateway service provider for financial services

worldwide with over 100 million download counts in January 20249. PayPal allows online fund transfer

amongst individuals and businesses. Its services are available in more than 200 countries. It is capable of

9 GOOGLE PLAY STORE. PayPal – Send, Shop, Manage

https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile&hl=en&gl=US, 2024 (last accessed 27

January 2024)

https://play.google.com/store/apps/details?id=com.paypal.android.p2pmobile&hl=en&gl=US

30 Omar Hussein

dealing with 25 currencies10. PayPal’s Android-based latest app version 8.55.1 APK file can be downloaded

from APKFlash11. APK files can also be downloaded from other websites, such as APKPURE12, APK-DL13,

and APKCombo14. Additionally, apps’ APK files can be downloaded from Google Play Store using a Google

Chrome extension called “APK Downloader”. This extension can be installed from Chrome Web Store15.

Fig.5. Parties involved in an online payment gateway

3. Related Work

3.1. Deep Learning

Deep learning analyzes features extracted from the app (e.g., code, permissions, and network traffic) using

complex neural networks to identify malicious behavior patterns. Garg and Baliyan [3] attempted to match

malicious software affecting Android with vulnerabilities with different severity levels. In order to detect

malicious software attacks, features extracted from Android apps were mined with transformer models

(XLNET and BERT). The generated features were employed to implement methods based on deep learning

(TextCNN, RNN , and MLP). The goal was to gauge the severity of malicious software with regard to

unexploited vulnerabilities at early stages of Android apps development. Alecakir and Sen [18] used attention

mechanisms in deep neural architectures to model the discrepancies between an Android app’s description in

the Android marketplace, and the actual granted permissions when the app is installed. The objective was to

identify suspect mobile apps. Rathore et al [19] carried out a feature analysis to determine the important

Android permissions, and offer an effective deep learning and machine learning based Android malware

detection engine. The proposed solution requires less time to train and test while maintaining a high level of

model accuracy. However, it was noticed that deep neural networks achieve accuracy that is comparable to

the baseline values, but at a significant computational cost. Kim et al. [20] presented a model to detect

malicious software in Android-based execution environments. Seven attributes of an Android-based app were

identified and correlated to feature types that were used to train the initial deep neural network. Thousands of

10 PAYPAL. About Us. https://www.paypal.com/eg/webapps/mpp/about?locale.x=en_EG, 2024 (last accessed 27 January

2024)
11 APKFLASH. PayPal. https://apkflash.com/apk/app/com.paypal.android.p2pmobile/paypal, 2024 (last accessed 27

January 2024)
12 APKPURE. https://apkpure.net, 2024 (last accessed 27 January 2024)
13 APK-DL. Android APK Store. https://apk-dl.com, 2024 (last accessed 27 January 2024)
14 APKCOMBO. Download APF – Latest Version. https://apkcombo.com, 2024 (last accessed 27 January 2024)
15 CHROME WEB STORE. APK Downloader. https://chromewebstore.google.com/detail/apk-

downloader/glngapejbnmnicniccdcemghaoaopdji?pli=1, 2024 (last accessed 27 January 2024)

https://www.paypal.com/eg/webapps/mpp/about?locale.x=en_EG
https://apkflash.com/apk/app/com.paypal.android.p2pmobile/paypal
https://apk-dl.com/
https://apkcombo.com/

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 31

malicious and benign app samples were used to train the final network. Authors claim that their model

achieved 98% in detecting malicious apps.

3.2. Static Analysis

Static analysis examines the app’s code and resources without executing it. It identifies potential

vulnerabilities based on predefined rules and patterns. In order to address the problem of being

overprivileged, Xiao et al [15] suggests a method that combines collaborative filtering accompanied by static

analysis to determine the minimal permissions for an Android app. This method is based on the app

description and its Application Programming Interface (API) usage. APIs allow apps to access mobile

devices’ hardware and system resources. The proposed method first uses collaborative filtering to determine

the app’s initial minimum set of permissions. Eventually, the final set of minimal permissions that an app

actually needs are then determined through static analysis. Darvish and Husain [21] analyzed the security

posture of a collection of payment gateway apps, where it concluded that 80% of these apps were found

vulnerable to different types of threats. The paper also developed a guide for checking Android apps security.

3.3. Dynamic Analysis

Dynamic analysis executes the app in a controlled environment, and monitors its behavior (e.g., network

traffic, and file system access). It detects malicious actions the app might perform at runtime. Diamantaris et

al [22] presents a dynamic analysis system that tracks permission requests made by an Android app in real-

time as part of its core functionality, and separates those permission requests from requests made by third-

party libraries linked with the Android app. The objective was to counter confidential information leakage

attacks committed by third-party libraries linked to Android apps. The study found that 65% of the

permissions requested by multiple Android apps were requested by third-party libraries linked to those apps

rather than from the core functionality of those apps. Rubio-Medrano et al [23] aimed at preventing data

leakage by detecting malicious permission-abusing mobile apps. They presented their security framework to

restrict the behavior of such apps at run-time. Their proposed framework was built on top of Android

Enterprise that allowed users and administrators to specify and enfore Counter-Policies without having

previous technical security background.

3.4. Code Obfuscation

Code obfuscation in Android apps adds a layer of protection by making the code harder to understand and

tamper with. It obstructs static analysis, and makes it more difficult to identify vulnerabilities. Several studies

explore obfuscation's effectiveness in hindering reverse engineering, intellectual property theft, and malware

analysis [24]. However research also acknowledges potential downsides like increased app size, performance

impact, and debugging challenges. Other studies analyze and compare various obfuscation techniques,

including name obfuscation, control flow obfuscation, and string encryption [25]. Additionally, studies

explore newer approaches like using machine learning for dynamic obfuscation or leveraging hardware-based

security features [26].

4. The Proposed Security Approach

This section presents the technical contribution of this paper. The objective is to detect unauthorized

modifications to genuine permissions of legitimate Android-based mobile apps. This article presents an

applied research on PayPal app to achieve the desired goal. The proposed security approach aims at

maintaining Android-based mobile apps’ integrity by detecting unauthorized modifications to the permissions

declared in AndroidManifest.xml file embedded in these apps in real-time. It is called Android Apps

Permissions Integrity Verifier (AAPIV). This section consists of four subsections that explain: (1) the attack

vector; (2) identification of the security vulnerability that attackers could exploit; (3) the functionality of the

proposed security approach; and (4) the integrity attack scenario on PayPal mobile app, and the accompanying

experimental security evaluation of the proposed security approach.

32 Omar Hussein

4.1. Attack Vector

Android-based mobile apps are available for installation from Google Play Store. As mentioned earlier in

subsection 2.4, apps’ APK files can be downloaded from multiple sources. An adversary downloads a

legitimate Android-based app APK file from Google Play Store (using “APK Downloader”) to his/her

PC/laptop. The adversary decompiles the downloaded APK file using Android Studio. He/she maliciously

inserts extra dangerous protection-level permissions to AndroidManifest.xml to create a malicious fake mobile

app, compiles it, and uploads the resulting APK file back to Google Play Store with the same legitimate app

name, but with a different APK file name. An incautious customer installs the malicious and fake app on his

Android-powered device. Accordingly, the victim is subject to numerous severe negative consequences.

Accordingly, the situation ends up in adversaries gaining highly privileged dangerous permissions over

victimized systems’ resources, besides permissions needed to interact with other systems installed on mobile

devices. Unfortunately, this attack vector can be carried out with no need for sophisticated methods or tools.

For instance, GITHUB16 is a free tool; it can be used to bypass Android app signature and integrity checks.

Fig.6 depicts the attack vector.

Fig.6. The attack vector

4.2. Identification of the Exploitable Security Vulnerability

Security vulnerabilities refer to defects or weaknesses in the design, implementation, operation, or

management of a system that could be exploited to violate the system’s security policy [5]. A vulnerability in

a system could be exploited to obtain unauthorized access to, or compromise the system. An application

without binary protection can be readily analyzed, altered, or back-engineered by an adversary [27]. The

vulnerability that makes the mentioned attack vector applicable and viable is non-existence of binary

protection in Android-based apps. An Android app can be easily decompiled to access its source code.

Malicious source code and additional dangerous protection-level permissions can easily be inserted in

contents of Android-based apps’ APK files.

4.3. Functionality of the Proposed Security Approach

Fig.7 depicts AAPIV’s process of capturing, computing, and storing the authentic unique 256-bit hash of the

AndroidManifest.xml file of PayPal’s legitimate Android-based payment gateway mobile app. The process

begins by decompiling the legitimate PayPal app’s APK file. The next step is to extract the

AndroidManifest.xml file and apply the one-way irreversible Secure Hash Algorithm-256 (SHA-256). This

algorithm is used to generate a unique constant 256-bit output message digest/hash that distinctly identifies

16 GITHUB, Android-Signature-And-Integrity-Check-Bypass.

https://github.com/riyadmondol2006/Android-Signature-And-Integrity-Check-Bypass/releases/tag/V2, 2024 (last accessed

30 January 2024)

https://github.com/riyadmondol2006/Android-Signature-And-Integrity-Check-Bypass/releases/tag/V2

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 33

the arbitrary-length AndroidManifest.xml file. Finally, the generated hash is inserted in AAPIV’s cloud-based

database server to be used to verify the genuineness of the AndroidManifest.xml file. A hash value is a distinct

value that corresponds to a file’s content. Altering any character in a file’s contents changes the file’s hash

value. Hash values are used to assert that a file’s contents were not subject to any modifications. Hash values

are used to check whether two files have identical contents.

Fig.7. AAPIV capturing and storing the authentic unique 256-bit hash of the Androidmanifest.xml file of PayPal’s legitimate Android-

based payment gateway mobile app

As depicted in Fig.8, for every access request to the data stored in the database server of the payment gateway

service provider (e.g., PayPal), a database-level trigger (stored procedure) is fired automatically to call

AAPIV. A database-level trigger could be a BEFORE INSERT trigger, BEFORE UPDATE trigger, or

BEFORE DELETE trigger. AAPIV captures, extracts, and computes the 256-bit hash of the

AndroidManifest.xml file of the requesting app. It verifies the computed hash against that stored in AAPIV’s

cloud-based database server for authenticity. In case both hashes are identical, this denotes a legitimate access

request from an authentic payment gateway mobile app, and accordingly the access request is allowed,

otherwise the access request is denied. This proposed security approach guarantees to a high extent that

sensitive financial data is only accessible by the legitimate payment gateway app. Due to the fact that SHA-

256 has not yet been cracked [28], it is adopted in AAPIV. SHA-256 was published by the National Institute

of Standards and Technology [29]. Through SHA-256, reconstruction of an input message that matches a

specified output message digest/hash is computationally impossible. In order to determine whether an input

message has changed after its digest was output, a message digest/hash is used. Additionally, SHA-256 is

used to generate pseudo-random 256-bit hashes [30].

34 Omar Hussein

Fig.8. AAPIV’s AndroidManifest.xml file authenticity verification process

4.4. Integrity Attack Scenario on PayPal and the Proposed Security Approach Experimental Security

Evaluation

This subsection presents the implementation of an integrity attack scenario on permissions of Android-Based

PayPal gateway mobile app. Additionally, it illustrates the experimental security evaluation of the proposed

security approach on PayPal payment gateway Android-based mobile app.

4.4.1. Integrity Attack Scenario on PayPal

The attack scenario is implemented by an adversary carrying out the following sequence of steps:

a) Download PayPal’s APK file from Google Play Store (using “APK Downloader”) to his/her

PC/laptop.

b) Decompile the downloaded APK file using Android Studio.

c) Insert extra dangerous protection-level permissions to AndroidManifest.xml to create a malicious

fake PayPal mobile app.

d) Compile and upload the resulting APK file back to Google Play Store with the same legitimate app

name (i.e., PayPal), but with a different APK file name.

e) Eventually, an incautious app user installs the malicious and fake PayPal mobile app on his/her

Android-powered device, thereby exposing him/herself to numerous severe negative financial

consequences.

4.4.2. Experimental Security Evaluation of the Proposed Security Approach

AAPIV’s experimental security evaluation is presented in a proof-of-concept illustration to demonstrate the

core idea. It is applied on PayPal Android-based payment gateway mobile app. The integrity of a file can be

verified using Powershell command shell. The Get-FileHash cmdlet17 from the Powershell computes the

hash value/message digest of a given file by using a specified hash algorithm. This cmdlet supports

computing the message digest using any of the following Secure Hash Algorithms (SHAs): SHA1, SHA256,

SHA384, SHA512, and the Message-Digest algorithm (MD5).

17 MICROSOFT POWERSHELL UTILITY, Get-FileHash.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-7.2, 2024

(last accessed 30 January 2024)

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-7.2

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 35

For AAPIV to generate the authentic unique 256-bit output hash of PayPal’s legitimate AndroidManifest.xml

file, it downloads PayPal’s APK file from Google Play Store, as this store is the most trusted source of

legitimate mobile apps. This is accomplished using “APK Downloader” Google Chrome extension. This

extension can be installed from Chrome Web Store. Through AAPIV, PayPal’s APK file is decompiled. Next,

AAPIV extracts PayPal’s AndroidManifest.xml file, and hashes it using SHA-256. This is accomplished from

within AAPIV using the Powershell Get-FileHash cmdlet. The authentic fixed-length unique 256-bit output

message digest/hash of PayPal’s legitimate AndroidManifest.xml file is then stored in AAPIV’s cloud-based

database server.

On PayPal’s database server, a database-level trigger (stored procedure) is fired automatically to call AAPIV

whenever it receives an access request; that is, whenever data is inserted (before INSERT trigger), modified

(before UPDATE trigger), or deleted (before DELETE trigger). For every access request to the data stored in

the PayPal’s database server, the 256-bit hash of the AndroidManifest.xml file of the requesting app is

captured, extracted, computed, and verified for authenticity against that stored in AAPIV’s cloud-based

database server. In case both hashes are identical, this denotes a legitimate access request from an authentic

PayPal app, and accordingly the access request is allowed, otherwise the access request is denied. This

approach guarantees to a high extent that sensitive financial data is only accessible by the genuine PayPal

payment gateway mobile app. Fig.9 depicts a portion of PayPal’s authentic AndroidManifest.xml file contents.

Fig.10 depicts the hash/message digest of PayPal’s authentic AndroidManifest.xml file using Get-FileHash

cmdlet from the Powershell command shell. The hash is identical to that shown in Fig.7.

Fig.11 depicts a portion of PayPal’s Androidmanifest_Modified.xml file contents, where an attacker inserted

an additional permission (lines 24 and 25). This is an integrity attack on permissions of PayPal app. The

inserted permission “android.permission.WRITE_CONTACTS” is categorized as a dangerous protection-

level permission18. Fig.12 depicts the 256-bit hash of PayPal’s AndroidManifest_Modified.xml file using Get-

FileHash cmdlet from the Powershell command shell. From Fig.10, Fig.11, and Fig.12, it is apparent that

inserting an additional permission in AndroidManifest_Modified.xml file of a fake and malicious PayPal app

(Fig.11) resulted in a totally different 256-bit hash (Fig.12) than that of Paypal’s authentic

Androidmanifest.xml file 256-bit hash (Fig.10). As previously explained, APPIV verifies the authenticity of a

mobile app (e.g., PayPal) by comparing both 256-bit hashes (i.e., the authentic previously stored against that

of the requesting-to-access app). Since they are different (Fig.10 and Fig.12), APPIVT will deny the access

request issued from the fake and malicious PayPal app containing AndroidManifest_Modified.xml file.

Fig.9. A portion of the authentic PayPal’s Androidmanifest.xml file contents

18 WRITE_CONTACTS.
https://developer.android.com/reference/android/Manifest.permission#WRITE_CONTACTS, 2024 last (accessed 30

January 2024)

https://developer.android.com/reference/android/Manifest.permission#WRITE_CONTACTS

36 Omar Hussein

Fig.10. 256- bit hash of the authentic PayPal’s Androidmanifest.xml file

Fig.11. A portion of the fake and malicious PayPal’s Androidmanifest_Modified.xml file contents

Fig.12. 256-bit hash of the fake and malicious PayPal’s Androidmanifest_Modified.xml file

5. Novelty of the Proposed Security Approach and its Merits

With reference to Related Work (Section 3), the proposed security approach (AAPIV) presented in this paper

is novel in the sense that no other research tackled the problem of safeguarding genuine permissions of

legitimate Android-based mobile apps in real-time as AAPIV did. Table 2 illustrates the the novelty of

AAPIV as compared to previous related work: (1) deep learning; (2) static analysis; (3) dynamic analysis; and

(4) code obfuscation. As detailed in subsection 4.4.2., the proof-of-concept illustration of AAPIV’s

experimental security evaluation demonstrated that through its file integrity verification capability, it is

capable of achieving 100% detection accuracy of integrity attacks on permissions of Android-based mobile

apps. As depicted in Fig.13, deep learning models achieve 85% malware detection accuracy, but require

significant training data and computational resources. Static analysis achieves 70% malware detection

accuracy; it is faster but can be fooled by code obfuscation. Dynamic analysis achieves 80% malware

detection accuracy; it offers a good balance between deep learning and static analysis. However, it requires a

secure sandbox environment. Fig.13 illustrates the accuracy of AAPIV compared to other Android-based

malware detection techniques.

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 37

Table 2. AAPIV as Opposed to Deep Learning, Static Analysis, Dynamic Analysis, and Code Obfuscation

Technique Description Advantages Disadvantages Use Case in

Mobile App

Scanning

Deep Learning

[3][18][19][20]

Analyzes features

extracted from the app

using complex neural

networks to identify

malicious behavior

patterns

Effective at

detecting

novel malware

Requires large

datasets for training.

It can be

computationally

expensive. It may

produce opaque

results

Flags previously

unknow attacks.

Identifies complex

malware behavior

Static Analysis

[15][21]

Examines the app’s

code and resources

without executing it.

Identifies potential

vulnerabilities based

on predefined rules

and patterns

Fast,

lightweight,

and identifies

common

issues early in

development

Limited to detecting

known

vulnerabilities;

however, it may miss

complex malware

that relies on runtime

behavior

Identifies insecure

coding practices.

Detects usage of

malicious

permissions

Dynamic

Analysis

[22][23]

Executes the app in a

controlled

environment, and

monitors its behavior.

Detects malicious

actions the app might

perform at runtime

Can uncover

vulnerabilities

missed by

static analysis.

Provides

insights into

app behavior

Time-consuming,

resource-intensive,

and may miss well-

hidden malware that

avoids suspicious

actions during

analysis

Identifies malware

that downloads

malicious payloads.

Detects apps that

exhibit suspicious

network behavior

Code

Obfuscation

[24][25][26]

Technique used by

developers to

intentionally obscure

the app’s code, and

making it harder to

understand and

analyze

Protects

intellectual

property, and

hinders reverse

engineering

Hinders static

analysis. Can be

bypassed by

sophisticated

malware analysis

tools

Makes static

analysis less

effective, and may

be used by malware

authors to hinder

detection

File Integrity

Verification

Through

AAPIV

AAPIV is this paper’s

novel proposed

security approach to

detect unauthorized

modifications to

genuine permissions

of legitimate Android-

based mobile apps

Detailed in the

following

subsections

Compared to older

and no more secure

hashing algorithms

like MD5, SHA-256

takes slightly more

processing power

(20%-30%) and time

to calculate the hash19

Flags previously

unknow attacks.

Detects Anroid-

based mobile app

malicious

permissions

19 FREECODECAMP. MD5 vs SHA-1 vs SHA-2 - Which is the Most Secure Encryption Hash and How to

Check Them
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-

check-them/, 2024 (last accessed 23 April 2024)

https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/
https://www.freecodecamp.org/news/md5-vs-sha-1-vs-sha-2-which-is-the-most-secure-encryption-hash-and-how-to-check-them/

38 Omar Hussein

Fig.13. Accuracy of AAPIV as compared to other Android-based malware detection techniques

The following subsections explain the advantages of applying AAPIV.

5.1. Cover Non-Existence of Binary Protection Vulnerability

Android-based mobile apps suffer from non-existence of binary protection. This vulnerability opens the door

wide open to adversaries. As explained earlier, it is always possible to tamper with contents of APK files as

these files lack binary protection. With the adoption of AAPIV, this vulnerability is covered. Through

AAPIV’s integrity verification process on AndroidManifest.xml, it is possible to detect unauthorized

modifications to its contents. AAPIV heavily contributes in preventing violation of Android-based apps’

authentic permissions, and usage of tampered-with malicious mobile apps that may lead to financial fraud.

AAPIV can be applied on any Android-based mobile app, especially apps that manage financial transactions,

such as InstaPay. InstaPay20 is an Egyptian mobile app that allows instant money transfer between bank

accounts or mobile phone numbers, as long as the involved banks are part of the InstaPay’s network. It links a

user’s bank accounts from participating banks into one app, and allows transferring money instantly between

linked bank accounts. The similarities between both apps, PayPal and InstaPay, lay in that they require similar

core permissions like Internet access for online transactions and communication. However, there are several

differences between PayPal and InstaPay as shown in Table 3.

5.2. Provide Anti-Circumvention Security Approach

AAPIV provides anti-circumvention capability. A mobile app service provider’s database-level trigger (i.e.,

stored procedure) is fired automatically to call AAPIV whenever data is inserted, modified, or deleted using

the mobile app. For every access request to the data stored in the database server of the mobile app service

provider, the 256-bit hash of the AndroidManifest.xml file of the requesting app is captured, extracted,

computed, and verified for authenticity against that stored in AAPIV’s cloud-based database server. By no

means a mobile app user would be able to circumvent or bypass such hash verification requirement. This

20 INSTAPAY

https://www.instapay.eg/?lang=en, 2024 (last accessed 21 April 2024)

https://www.instapay.eg/?lang=en

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 39

guarantees to a high extent that sensitive data is only accessible by legitimate mobile apps. AAPIV adopted

Secure Hash Algorithm-256 (SHA-256) rather than SHA-512 for a number of reasons: (1) SHA-256 is

superior over SHA-512 in its processing speed; (2) SHA-256 is considered secure for most current

applications due to the fact that SHA-256 has not yet been cracked [28]; and (3) National Institute of

Standards and Technology (NIST)21 encourages usage of SHA-256 especially for applications that require file

integrity verification using hash values generated from hash functions. Table 4 summarizes the differences

between SHA-256 and SHA-512.

Table 3. PayPal versus InstaPay

Feature PayPal InstaPay

Region Global Egypt

Account Funding Can be linked to bank accounts,

credit cards, debit cards

Requires linked bank accounts from

participating Egyptian banks

Money Transfer International transfers possible Between Egyptian bank accounts, and

transfer money to other InstaPay users using

their mobile phone number

Bill Payment Wide variety of billers worldwide Limited to Egyptian utilities and

telecommunication companies

Availability Widely available Requires Egyptian banks to be part of the

InstaPay network

Location

Permission

Request location permission for

features like finding nearby stores or

Automatic Teller Machines (ATMs)

Does not require location permission for its

functionalities

Telephony Does not require phone numbers, as

the primary focus is on emails

Require access to phone numbers for

sending money using mobile contacts

Table 4. SHA-256 versus SHA 512

Feature SHA-256 SHA-512

Hash Output Size 256 bits 512 bits

Security Level Offers collision resistance up to 128

bits. Considered secure for most

current applications

Offers collision resistance up to 256

bits. More secure for cryptanalysis

Processing Speed Faster due to smaller hash output

size

Slower due to larger hash output size,

and more complex internal operations

Suitable

Applications

Widely used for file integrity

verification, digital signatures,

password hashing, , and other

scenarios where a strong and

compact hash is needed.

Ideal for applications such as digital

certificates, and blockchain transactions

21 NIST. Hash Functions. NIST Policy on Hash Functions
https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions, 2024 (last accessed 21 April 2024)

https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions

40 Omar Hussein

5.3. Provide User-Transparent Functionality

Through AAPIV’s AndroidManifest.xml file integrity verification process, user transparency is provided. That

is, users of Android-based mobile apps (both benign users and attackers) would not notice that the apps that

they are currently using to access the mobile app service providers databases are being verified for legality

and authenticity.

5.4. Adoption of Defense-in-Depth Security Principle

The defense-in-depth security principle is based on layering of security measures [31]. Layering aims at

mitigating potential security risks. In order to safeguard information assets, a number of overlapping security

defenses are placed accumulatively. So that if one security safeguard was breached, still there exists another

security barrier to defend against attackers. AAPIV is a security countermeasure that adopts the defense-in-

depth security principle. Even if a mobile app user enters the correct credentials (the first line/layer of

defense), AAPIV will additionally verify the genuineness of permissions granted to the requesting-to-access

mobile app (the second line/layer of defense). This ensures that integrity attacks using malicious and fake

mobile apps that were compromised and maliciously modified are caught by AAPIV as a second security

countermeasure. AAPIV’s verification function compares the authentic unique 256-bit hash of the

AndroidManifest.xml file of a legitimate Android-based mobile app hash against that of the possibly fake

malicious mobile app that is currently being used. Accordingly, it allows or denies the access request.

5.5. Real-Time Identification of Malicious Mobile Apps

AAPIV can identify attackers in real-time through its effective and precise verification functionality. AAPIV

captures and computes the authentic unique 256-bit hash of the AndroidManifest.xml file of a legitimate

Android-based mobile app. An app’s permissions are registered in AndroidManifest.xml file in its Android

Package Kit file. AAPIV stores the computed hash in its cloud-based database server. For every access

request to the data stored in the database server of the mobile app service provider, the 256-bit hash of the

AndroidManifest.xml file of the requesting app is captured, extracted, computed, and verified for authenticity

against that stored in AAPIV’s cloud-based database server. In case both hashes are identical, this denotes a

legitimate access request from an authentic mobile app, and accordingly the access request is allowed,

otherwise the access request is denied.

5.6. Reinforcement of Mobile Apps Users’ Trust

Through AAPIV’s orientation of layered-based security defenses, an Android-based mobile app is more

immune against integrity attacks on its embedded permissions. Eventually, AAPIV boosts the users’ trust in

the effectiveness of the adopted security defenses integrated in the Android-based mobile app.

6. Conclusion

The objective of this paper is to detect unauthorized modifications to genuine permissions of legitimate

Android-based mobile apps. This objective was met through a proposed approach called Android Apps

Permissions Integrity Verifier (AAPIV). The main idea behind AAPIV is capturing, computing, and storing

the authentic unique 256-bit hash of AndroidManifest.xml file that contains all the permissions of an Android-

based mobile app. This authentic hash is used to verify the genuineness of permissions granted to a

requesting-to-access mobile app in real-time. It is computed by applying the one-way irreversible Secure

Hash Algorithm-256 (SHA-256). In a proof-of-concept illustration applied on Android-based PayPal payment

gateway mobile app, the experimental security evaluation demonstrated that AAPIV achieved its intended

objective. The proposed security approach presented in this paper is novel in the sense that no other research

tackled the problem of safeguarding genuine permissions of legitimate Android-based mobile apps in real-

time as AAPIV did. The scientific value of this work lies in finding a remedy for lack of binary protection

vulnerability in Android-based mobile apps. AAPIV provides several merits: (1) cover non-existence of

binary protection vulnerability; (2) provide anti-circumvention security approach; (3) provide user-transparent

functionality; (4) adoption of defense-in-depth security principle; (5) real-time identification of malicious

International Journal of Computers and Information, IJCI V11-2(2024) 25 - 43 41

mobile apps; and (6) reinforcement of mobile apps users’ trust. Compared to older and no more secure

hashing algorithms like Message Digest Method 5, SHA-256 takes slightly more processing power (20%-

30%) and time to calculate the hash. However, this might be a minor consideration for most tasks. As for

future work, it is intended to focus on testing mobile apps running in Apple’s iPhone Operating System (iOS)

execution environment.

References

[1] D. O. Sahin, S. Akleylek, and E. Kilic, ‘‘LinRegDroid: detection of android malware using multiple linear regression models-based
classifiers,’’ IEEE Access, vol. 10, pp. 14246–14259, Jan. 2022.

[2] O. Hussein, “A proposed anti-fraud authentication approach for mobile banking apps,” in Proc. 4th Novel Intelligent and Leading
Emerging Sciences Conf. (NILES), Giza, Egypt, 2022, pp. 56-61.

[3] S. Garg and N. Baliyan, “M2VMapper: malware-to-vulnerability mapping for android using text processing”, Expert Syst. with
Applications, vol. 191, Article 116360, Apr. 2022.

[4] G. Renjith, and S. Aji, “Unveiling the security vulnerabilities in android operating system,” in Proc. Second Int. Conf. on
Sustainable Expert Syst. (ICSES), Singapore, 2021, pp. 89-100.

[5] A. Girma, A., A. Guo, and J. Irungu, J., “Identifying shared security vulnerabilities and mitigation strategies at the intersection of

application programming interfaces (APIs), application-level and operating system (OS) of mobile devices,” in Proc. The Future
Technologies Conf. (FTC), Cham, ,2022, pp. 499-513.

[6] J. Tang et al., “NIVAnalyzer: a tool for automatically detecting and verifying next-intent vulnerabilities in android apps,” in Proc.
2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 2017, pp. 492-499.

[7] M. A. El-Zawawy, E. Losiouk, and M. Conti, “Do not let next-intent vulnerability be your next nightmare: Type system-based
approach to detect it in Android apps,” Int. J. Inf. Secur., vol. 6, pp. 11-20, Mar. 2020.

[8] Z. Alshara, A. Shatnawi and Y. Jararweh, “NIV-Detector: an automated approach for detecting next-intent security vulnerability in
android applications,” in Proc. 2022 Ninth Int. Conf. on Softw. Defined Syst. (SDS), Paris, France, 2022, pp. 1-7.

[9] Z. Wang, C. Li, Y. Guan, Y. Xue and Y. Dong, “ActivityHijacker: hijacking the android activity component for sensitive data,” in
Proc. 2016 25th Int. Conf. on Comput. Commun. and Networks (ICCCN), Waikoloa, HI, USA, 2016, pp. 1-9.

[10] M. Al-Fawa’reh, A. Saif, M. T. Jafar, and A. Elhassan, ‘‘Malware detection by eating a whole APK,’’ in Proc. 32nd Int. Conf. for
Internet 2124 Technol. Secured Trans. (ICITST), Dec. 2020, pp. 1-7.

[11] Cho I. Cho, D. Towey and P. Kar, “Using obfuscators to test compilers: a metamorphic experience,” 2023 IEEE 47th
Annu.Computers, Softw., and Applicat. Conf. (COMPSAC), Torino, Italy, 2023, pp. 1786-1791.

[12] Y. L. Arnatovich, L. Wang, N. M. Ngo, and C. Soh, “A comparison of android reverse engineering tools via program behaviors
validation based on intermediate languages transformation,” IEEE Access, vol. 6, pp. 12382–12394, Feb. 2018.

[13] G. Nolan, Decompiling Android. Apress, 2012.

[14] H. H. R. Manzil and M. S. Naik, “COVID-Themed Android Malware Analysis and Detection Framework Based on Permissions,”
2022 Int.Conf. for Advancement in Technology (ICONAT), Goa, India, 2022, pp. 1-5.

[15] J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, “An Android application risk evaluation framework based on minimum permission
set identification,”. J. of Syst.and Softw, Vol. 163, pp. 110533, May 2020.

[16] A. K. H. Hussain, M. Kakavand, M. Silval, and L. Arulsamy, “A novel Android security framework to prevent privilege escalation
attacks,” Int. J. Comput. Netw. Inf. Secur., vol. 12, no. 1, pp. 20-26, Feb. 2020.

[17] FINDEXABLE LIMITED. (2020) “The Global Fintech Index 2020” [Online]. Available: https://fintechnz.org.nz/wp-
content/uploads/sites/5/2019/12/Findexable_Global-Fintech-Rankings-2020.pdf.

[18] H. Alecakir, B. Can, and S. Sen, ‘‘Attention: there is an inconsistency between Android permissions and application metadata!,’’
Int. J. Inform. Security, vol. 20, no. 6, pp. 797–815, Jan. 2021.

[19] H. Rathore, S. K. Sahay, R. Rajvanshi, and M. Sewak, “Identification of significant permissions for efficient android malware
detection,” in Proc. Int. Conf. on Broadband Commun., Networks and Syst., Cham, Switzerland, 2020, pp. 33–52.

[20] T. Kim, B. Kang, M. Rho, S. Sezer, E. Im, “A multimodal deep learning method for Android malware detection using various
features,”. IEEE Transactions on Information Forensics and Security, vol. 14, no. 3. pp. 773-788, Mar. 2019.

[21] H. Darvish and M. Husain, “Security analysis of mobile money applications on android,” in Proc. 2018 IEEE Int. Conf. on Big Data
(Big Data), Seattle, WA, USA, 2018, pp. 3072-3078.

[22] M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis and J. Polakis, “Reaper: Real-time app analysis for augmenting

the android permission system,” in Proc. the Ninth ACM Conf. on Data and Applicat. Security and Privacy, Richardson, TX, USA,
2019, pp. 37-48.

[23] C. Rubio-Medrano, P. Soundrapandian, M. Hill, L. Claramunt, J. Beak, G. Ahn, “DyPolDroid: Protecting against permission-abuse
attacks in android,”. Information Systems Frontiers, vol. 25, pp. 529-548, Oct. 2023.

42 Omar Hussein

[24] X. Zhang, F. Breitinger, E. Luechinger, S. O'Shaughnessy, “Android application forensics: A survey of obfuscation, obfuscation
detection and deobfuscation techniques and their impact on investigations,” Forensic Science International: Digital Investigation,

vol. 39, article 301285, Dec. 2021.

[25] V. Balachandran, D. Tan, V. Thing, “Control flow obfuscation for Android applications,”. Computers & Security, vol. 61, pp. 72-
93, Aug. 2016.

[26] C. Yadav, S. Gupta, “A review on malware analysis for IoT and Android system,” SN Computer Science, vol. 4, no. 118, Dec.
2022.

[27] S. Bojjagani and V. N. Sastry, ‘‘VAPTAi: A threat model for vulnerability assessment and penetration testing of Android and iOS
mobile banking apps,’’ in Proc. IEEE 3rd Int. Conf. Collaboration Internet Comput. (CIC), Oct. 2017, pp. 77–86.

[28] S. Rawal, L. Maganti, and V. Godha, “Comparative study of SHA-256 optimization techniques,” in Proc. 2022 IEEE World AI IoT
Congress (AIIoT), Seattle, Washington, USA, 2022, pp. 387-392.

[29] National Institute of Standards and Technology - Federal Information Processing Standards Publication - Secure Hash Standard
(SHS), FIPS PUB 180-4, 2015.

[30] O. Hussein, “A proposed impregnable 256-bit hash producer,” in Proc. 15th Int. Comput. Eng. Conf. (ICENCO), Cairo, Egypt,
2019, pp. 50-55.

[31] R. Savold, N. Dagher, P. Frazier, and D. McCallam, “Architecting cyber defense: a survey of the leading cyber reference

architectures and frameworks,” in Proc. 2017 IEEE 4th Int. Conf. on Cyber Security and Cloud Computing (CSCloud), New York,

NY, USA, 2017, pp. 127-138.

 (2024()2(العدد)11المجلد)

 المجلة الدولية للحاسبات والمعلومات

 /https://ijci.journals.ekb.eg الرابط : متاح على الإنترنت على

الكشف عن الهجمات على سلامة أذونات التطبيقات المحمولة المستندة إلى

 أندرويد: تقييم أمنى على باى بال

 عمر حسين

 – (MSAداب)جامعة أكتوبر للعلوم الحديثة والآ –كلية علوم الإدارة –قسم نظم المعلومات الإدارية

 جمهورية مصر العربية –أكتوبر 6مدينة

ohusseins@gmail.com

https://orcid.org/0000-0002-0282-7541

تطبيقات المحمولة المستندة الذونات أعلى غير مصرح بهاالعن التعديلات عرض نهج أمنى مقترح للكشف فى الوقت الحقيقىهو البحثية الهدف من هذه الورقة

للثغرة الأمنية في إيجاد علاج ه الورقة البحثية. تكمن القيمة العلمية لهذتقييم النهج الأمني المقترح على تطبيق بوابة الدفع باى بال، مع نظام التشغيل أندرويد إلى

الدافع وراء إجراء هذا البحث . بتلك التطبيقات لكود المصدر حماية ثنائية نظام التشغبل أندرود المتمثلة فى عدم وجودالأجهزة المحمولة المستندة إلى بتطبيقات

من خلال الأجهزة الدفع اتإلى جانب الطبيعة الحساسة لتطبيقات بوابأندرود، لهجمات التي تستهدف تطبيقات تزايد اشعبيته الواسعة، وباى بال تحديداً هو على

 تحقيق الهدف المنشود. ولمكافحة التحايل أندرود" سلامة أذونات تطبيقات ققمدبإسم " أمنيا اً تقترح هذه الورقة نهج . المحمولة

الرئيسية وراء المقترح الفكرة الأمنى الفريدة النهج الأصلية التجزئة التقاط وحوسبة وتخزين أذونات تطبيق يحوىالذي للملف هي المحمول الجهازجميع

تم تقييم النهج في الوقت الفعلي. محل الإستخدام تطبيقللللتحقق من صحة الأذونات الممنوحة ةالتجزئة الأصلي. يتم استخدام هذا نظام التشغيل أندرودالمستند إلى

غير العن التعديلات ه المنشود في الكشف فى الوقت الحقيقىحقق هدف النهج المقترحأظهر التقييم الأمني التجريبي أن المقترح على تطبيق بوابة الدفع باى بال.

لم يتم من قبل أنه حيثالمقترح المقدم في هذه الورقة جديداً، يعد النهج الأمني .نظام التشغيل أندرويد تطبيقات المحمولة المستندة إلىالذونات أعلى مصرح بها

حققه النهج الأمني المقترح في هذا في الوقت الفعلي كما نظام التشغيل أندرويد المحمولة المستندة إلىللتطبيقات لشرعيةا الأصلية حماية الأذونات حل مشكلة

لهذا .البحث العلمية القيمة إيجاد البحث تكمن وجود حل في عدم ثنائية لمشكلة ب حماية المصدر المحمولة اتتطبيقلكود التشغيل إلى ةلمستندالأجهزة نظام

 .أندرود

نظام التشغيل أندرويد. المستندة إلى الحميدة والخبيثة تطبيقات المحمولةمقدمة عن نظام التشغيل أندرويد مع ذكر أمثلة لبعض ال القسم الأول بهذا البحث يعطى

التالية:)من خلال الخلفية المفاهيمية يغطى القسم الثانى بهذا البحث الأذونات في التطبيقات (2أندرويد،)عمليات تجميع وتفكيك تطبيقات (1الأقسام الفرعية

. القسم الثالث بهذا البحث لماذا باي بال على وجه الخصوص؟(4، و)وظائف تطبيقات بوابة الدفع(3،)والمخاطر المحتملة أندرويد نظم التشغيل المستندة إلى

السابقة البحوث الصلةيغطى)ذات إلى: تجميعها وفقاً تم والتي ال1،)ميق العتعلم ()الساكنالتحليل (2، الديناميكي(3، الكود(4، و)التحليل القسم تشويش .

 الخامس . يناقش القسم تطبيق بوابة الدفع باى بالالمطبق على ىالتجريب نىتقييم الأمالالمقترح بما في ذلك يعرض تفاصيل الجوانب المختلفة للنهج الأمنيالرابع

 . ىويحدد العمل المستقبل البحثية هذه الورقة السادس، يختتم القسم أخيراً المقترح ومزاياه. الأمني حداثة النهج

إلى ةالمستندبتطبيقات الأجهزة المحمولة لكود المصدر حماية ثنائية عدم وجود فيالمتمثلة (تغطية ثغرة أمنية 1العديد من المزايا:) النهج الأمنى المقترحيوفر

أندرود، التشغيل أمني 2)نظام نهج توفير التحايل(شفافة (3) ،لمكافحة بطرقة الأمنية الخواص الدفاعي إعتماد(4)النهائي، للمستخدم توفير الأمن مبدأ

الحقيقي ع الكشف(5)العميق، الوقت الضارة نفي المحمولة إلى تطبيقات ب(تعزيز ثقة مستخدمي 6و)، تطبيقات الأجهزة المحمولة المستندة نظام الأجهزة

 . بنظام التشغيل أى فون الخاص بشركة أبلالتي تعمل ة المحمولالأجهزة تطبيقات إختباربالنسبة للعمل المستقبلي، فهو يهدف إلى التركيز على .التشغبل أندرود

mailto:ohusseins@gmail.com

