
 
 

 

Meta-Heuristics optimization for mobile sink in 
WSNs based smart grid 

Duaa Gomaa a, Osama Abdelraouf b, Nancy A. El-Hefnawy c, Ahmed Kafafy d  

a Data Science Dept, Faculty of Artificial Intelligence, Menoufia university, Egypt. 

b Machine Intelligence Dept, Faculty of Artificial Intelligence, Menoufia University, Egypt.  
c Information systems Dept, Faculty of Computers and Information, Tanta University, Egypt. 
d Operations Research & Decision Support Dept, Faculty of Computers and Information, Menoufia University, Egypt.  

 

Abstract  

Wireless Sensor Network (WSN) is made up of many battery-powered sensor nodes that are utilized for information 

gathering and transmission to sink in Smart grid (SG). The harsh channel conditions that characterise SG environment 

provide an important obstacle to WSN deployment in SG applications. While WSN sensors near the sink convey data to 

distant sensors, their energy is rapidly exhausted. So, energy holes are known as hotspot problems. In this paper, meta-

Heuristics optimization algorithms are used to develop WSN-based SG. Particle swarm optimization, firefly algorithm and 

imperialist competitive algorithm, which are computationally efficient to handle WSN issues, have been studied. Single and 

multiple sinks, either static or mobile, offer greater flexibility and adaptability in monitoring and collecting data. Mobility 

is used to improve overall network coverage, help overcome network failures by moving to cover gaps, enhance connectivity, 

and even redistribute energy consumption in the network by allowing the workload to be shifted from one sensor to another. 

Particle Swarm Optimization enables fine-tuning of the resulting density to increase network lifetime and achieve better 

result. mobility is employed to help hotspot problem by balancing the energy consumption across the network, thereby 

extending the overall network lifetime with 1.6 months.   
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I. Introduction   

A wireless sensor network (WSN) is made up of nodes, each of which is linked to a sensor that detects physical 

or environmental parameters such as temperature, pressure, humidity, and so on. The nodes are connected in 

smart grid (SG) environments [1]by wireless channels which enable data obtained from monitoring, detecting, 

and recording the smart grid environments to be sent between them. SG is an electrical network that can 

intelligently integrate the different associated producers, transmitters, distributors, and consumers to deliver 

efficient, dependable energy services. Multi-hop communication will be used to transfer the acquired data to 

the sink. The sensor nodes are operated with limited energy. The energy is the most resource constrain in a 

WSN, because each node has battery to work independently. Limited energy may induce node isolation, 

resulting in network separation, often known as the hotspot problem. Mobile sinks that travel between nodes 

help to avoid node isolation [2]. By collecting data from isolated sensor nodes and decreasing hotspots on WSNs 

[3], saving network energy helps to enhance the lifetime of networks. Tmote Sky platforms apply a realistic 

WSN model under SG conditions with high path loss, low signal to noise ratio (SNR), and high bit error rate 

(BER) values to optimize transmission power level and data packet size[4].  
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Several WSN problems are expressed as optimization problems utilising artificial intelligence meta-heuristic 

approaches. Nature-inspired intelligence approaches are unaffected by problem volume or nonlinearity. Particle 

Swarm Optimization (PSO) is used to handle WSN problems such as optimum deployment and node location 

[5]. PSO is a popular solution for addressing optimization issues in WSNs. It is frequently utilised due to its 

simplicity, high-quality replies, quick convergence, and low computing expenses [6]. Another solution for 

optimization problems that takes inspiration from nature is the firefly algorithm (FA). FA enhances sensor node 

location information to estimate convergence and accuracy. When interacting in a multi-hop environment, FA 

requires less location information exchange between the sensor node and the sink node [7]. The imperialist 

competitive algorithm (ICA)[8] is a complicated problem-solving evolutionary algorithm. To deliver the needed 

coverage while retaining WSN connectivity [9], ICA has developed a new deployment technique.  

This paper's main contributions are summarized concisely as follows: 

• Mobile sinks solve hotspot problems in WSN-based SG by roaming the network, allowing sensor nodes to 

send data over shorter distances, saving energy and, eventually, extending the network's lifetime. 

• Employing meta-heuristic algorithms in WSN-based smart grids enables efficient and adaptive solutions to 

optimization challenges, contributing to the development of reliable and sustainable SG infrastructures. 

• SG optimizes network lifetime using realistic channel and energy models (log-normal shadowing, MIP model) 

for industrial applications and analyzing the effect of mobility or multiple sinks. MIP model enhance network 

lifetime by energy dissipation models. 

This paper is structured as follows. In Section 2, the problem definition is described in more detail. In Section 

3, the mathematical programming model for maximizing the network lifetime of WSNs with mobile BS is 

developed. In Section 4, metaheuristic algorithms have been employed to optimize smart grids. In Section 5, 

numerical results are discussed. In Section 6, we describe the study's conclusions.  

II. Related Work  

The lifetime of WSN is extended by optimizing energy consumption, enhancing network efficiency, and 

prolonging the operational duration of sensor nodes[10]. The applications that tolerate some delay in delivering 

data to the sink [11] are extended the lifetime of wireless sensor networks (WSNs) by utilizing a mobile sink. 

hotspot problems can be solved by mobile sink that is travelling the network and allowing sensor nodes to 

communicate data over shorter distances, therefore reducing energy consumption and, eventually, extending the 

network's lifetime [6].  

The optimization problems in WSNs can be represented using Mixed Integer Programming (MIP), which can 

be addressed through the General Algebraic Modeling System (GAMS)[12] or meta-heuristic algorithms. There 

are several studies using GAMS to solve WSN applications. For instance, data packet optimization examines 

real energy consumption through a MIP framework, which accounts for the entire link layer handshake cycle. 

Consequently, the maximum allowable packet length is utilized to enhance the network's lifetime [13]. The 

energy model on the Mica2 motes’ energy dissipation characteristics is used to maximize WSN lifetime by 

varying both transmission power and data packet size. The maximum network lifetime is achieved for the 

maximum packet size with limited signal range [14]. Metaheuristic algorithms can be challenging due to the 

complexity and combinatorial nature of the optimization problems. The complexity and scalability of 

deployments, environmental issues, and constraints on energy, capacity, connections, and processing resources 

are some of the difficulties that WSN developers must overcome.  PSO is a popular approach to solve WSN 

optimization issues. PSO is ideal for issues that can only be resolved once on a sink, such as permanent 

installation and position. PSO and LEACH collaborate with each other to improve the number of active nodes 
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in each iteration and packet transmitted to the sink and to find optimum cluster head [15][16]. The firefly 

localization algorithm is essential for improving the WSN's dependability and performance [17][18]. ICA can 

balance the energy consumption of various sensor nodes in the network by decreasing network energy 

consumption and improving network lifetime [7][8].  

WSN performance is examined by systematic exploration of the parameter set for various SG environments and 

combined as MIP optimization model of transmission power level and data packet size in [4]. WSN based-SG 

model was solved by GAMS, but SG operates within a range of environmental challenges, including extreme 

weather conditions, temperature fluctuations, electromagnetic interference, and physical obstacles, among 

others. To guarantee dependable and efficient operation, SG systems must be engineered for lasting and 

adjusting to these harsh conditions. SG optimization challenges generally involve uncertain variables. Meta-

heuristic algorithms may efficiently handle complicated objective functions resulting from SG [19]. Mobility is 

utilised with WSN based-SG model to increase network lifetime.  

III. Problem Definition  

WSN, which is deployed for SG applications, is built using Tmote Sky mote platforms [20]. The WSN is 

represented as a directed graph (G = (V,C), where V is a collection of 81 sensor nodes, including a sink in the 

center, and C is a collection of arcs signifying wireless connectivity. V that contains every node aside from the 

sink is referred to as set S. Data is never transmitted over cyclic arcs. Tmote Sky mote platforms used a log-

normal shadowing channel model to calculate propagation loss for WSN. The path loss signal receives inside 

buildings or heavily populated regions over a distance is predicted by the model of radio propagation. As a 

result of the transmission from node i with power level Pl, the signal-to-noise ratio ( Ɛ in dBm) at receiving 

node j may be computed as follows:  

     Ɛ𝑖𝑗(𝑃𝑙) = 
 𝜌𝑡𝑥

𝑎𝑛𝑡(𝑃𝑙) − (𝛽0 + 10𝑡𝑙𝑜𝑔10 (
𝐷𝑖𝑗

𝐷0
) + 𝛿) − 𝜌𝑛.                                                                     (1) 

Since  𝜌𝑡𝑥
𝑎𝑛𝑡(𝑃𝑙) is the antenna's transmit power at level Pl determined in Table 1, 𝛽0 is path loss reference, t is 

exponent path loss, The shadowing is handled using the Gaussian random variable 𝛿 , 𝜌𝑛 is the power of noise.  

O-QPSK modulation is employed to Tmote Sky motes. After taking account for processing gain costs, the 

probability that a Ω-byte data packet would be successfully received at node j because of node i's transmission 

at power level 𝑃𝑙 is computed as follows: 

               𝑝𝑖𝑗
𝑠𝑢𝑐(𝑃𝑙. Ω) = (1 − 𝑄(√16Ɛ𝑖𝑗(𝑃𝑙)))

8Ω

.                                                                                    (2) 

and the probability of failure is 

                             𝑝𝑖𝑗
𝑓𝑎𝑖𝑙(𝑃𝑙. Ω) = 1 − 𝑝𝑖𝑗

𝑠𝑢𝑐(𝑃𝑙. Ω) .                                                                                        (3) 

When both packets are successfully received by their intended receivers, a handshake is considered successful. 

The probability of handshake may be computed as in (4) to guarantee effective communication. 

  𝑝𝑖𝑗
𝐻𝑆.𝑠(𝑃𝑙. 𝑃𝑘) = 𝑝𝑖𝑗

𝑠𝑢𝑐(𝑃𝑙.𝑀𝑃) ∗ 𝑝𝑗𝑖
𝑠𝑢𝑐(𝑃𝑘.𝑀𝐴)                                                                                  (4) 

Table 1 Output antenna power (𝜌𝑡𝑥
𝑎𝑛𝑡(𝑃𝑙) in dBm) for different power level (𝑃𝑙) 

Power Level (𝑃𝑙) 𝜌𝑡𝑥
𝑎𝑛𝑡(𝑃𝑙) Power Level (𝑃𝑙) 𝜌𝑡𝑥

𝑎𝑛𝑡(𝑃𝑙) 

3 25.5 19 41.7 

7 29.7 23 45.6 

11 33.6 27 49.5 

15 37.5 31 52.2 
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The data rate of the Tmote Sky platforms is 250 kbps, with 𝑀𝑃 equaling 128 bytes, 𝑀𝐴  equaling 12 bytes. The 

expected sent packets rate is described as 𝛼 = 1 (𝑝𝑖𝑗
𝐻𝑆.𝑠(𝑃𝑙. 𝑃𝑘))⁄ . These platforms require 𝑃𝑟𝑥

𝑐𝑜𝑛 = 69 𝑚𝑊 of 

power to receive data. Energy packet processing, or 𝐸𝑃𝑃 = 12.66 𝜇J , is a single time calculation for  𝑀𝑝 =

 120 Bytes. Power consumption transmission 𝜌𝑡𝑥
𝑐𝑜𝑛(𝑃𝑙) for power levels (𝑃𝑙) for the CC2420 radio platform is 

explained in [20]. The dissipated energy during packet processing and transmission, as well as any 

retransmissions necessary because of packet failures, is expressed in (5).  

        𝐸𝑡𝑥.𝑖𝑗
𝐷𝑠 (𝑃𝑙. 𝑃𝑘) = 𝐸𝑃𝑃 + 𝛼𝑖𝑗(𝑃𝑙. 𝑃𝑘) ∗ ([𝑃𝑡𝑥

𝑐𝑜𝑛(𝑃𝑙) ∗ 𝑇𝑡𝑥(𝑀𝑃)] + 𝑃𝑟𝑥
𝑐𝑜𝑛(𝑇𝑠𝑙𝑡 − 𝑇𝑡𝑥(𝑀𝑃)))                         (5) 

As a result, the overall receiving node j's dissipated energy for a single slot is calculated as in (6). A timeslot is 

allocated by time division multiple access (TDMA)-based Medium Access Control (MAC) layer to minimize 

interference between active links 4.78 milliseconds are used as the slot time (𝑇𝑠𝑙𝑡). 

𝐸𝑟𝑥.𝑗𝑖
𝐷𝑠 (𝑃𝑙. 𝑃𝑘) = 𝐸𝑃𝑃 + 𝛼𝑖𝑗(𝑃𝑙. 𝑃𝑘)

∗

[
 
 
 
 𝑝𝑖𝑗

𝐻𝑆.𝑠 ∗ (𝐸𝑡𝑥
𝐴 (𝑃𝐾.𝑀𝐴) +  𝑃𝑟𝑥

𝑐𝑜𝑛(𝑇𝑠𝑙𝑡 − 𝑇𝑡𝑥(𝑀𝐴)))
 

 

+𝑝𝑖𝑗
𝑠𝑢𝑐(𝑙.𝑀𝑃) ∗ 𝑝𝑖𝑗

𝑓𝑎𝑖𝑙(𝑘.𝑀𝐴) ∗ (𝐸𝑡𝑥
𝐴 (𝑃𝐾.𝑀𝐴) +  𝑃𝑟𝑥

𝑐𝑜𝑛(𝑇𝑠𝑙𝑡 − 𝑇𝑡𝑥(𝑀𝐴)))

+𝑝𝑖𝑗
𝑓𝑎𝑖𝑙(𝑘.𝑀𝐴) ∗ (𝑃𝑟𝑥

𝑐𝑜𝑛 . 𝑇𝑠𝑙𝑡) ]
 
 
 
 

                      (6) 

Various topologies, such as grid and spiral, are used to construct network topologies. In a grid topology, sensors 

are placed with a fixed distance between nearby sensors in the same row or the same column [9]. The topology 

assures complete coverage of the area. In spiral topologies, the network's center is denser, and its edge is sparser. 

Spiral topology is generated by 𝑌(ḭ) = 𝑒(ḭ∗ᵴ) ∗ cos(ḭ) and 𝑋(ḭ) = 𝑒(ḭ∗ᵴ) ∗ sin(ḭ) Where the value of density (ḭ) 

is computed exactly to fit into the area. scaling factor (ᵴ) is tuned with density which is chosen as 0.03. 

IV. Proposed Model   

Mobility in Wireless Sensor Networks has a major influence on a variety of critical network characteristics. 

Sensor nodes are reduced lifetime due to WSN battery issues. Sensor nodes can link to any other sensor by 

tuning its transmission power at a sufficient level to harvest data and transmit it to mobile BS[21]. The network 

lifetime is extended at the mobile sink through changing its locations (i.e. positions) when gathering information 

from the sensor nodes. ɭ represents a list of possible sink positions visited by mobile sink to cover the overall 

network area. Various areas in ɭ may see sink positions. Like in past articles, it is anticipated that the sink moves 

between different locations in a very little period[11]. Therefore, the energy consumption of the mobile sink is 

neglected. Thus, researchers focus on the energy efficiency of the sensor nodes in the WSN. This article 

concerns how to incorporate ɭ (i.e possible sink position) into the MIP model. 

The objective function in Mobile model is the sum of overall rounds number from the starting of network 

operation to the point at which the sink consumes all of battery power travelling by each location ɭ in (7). 

Nomenclature is represented in Table 2. The following provides an explanation of the model's constraints: 

• Equation (8) depicts the balance for data flow received and sent for all nodes, while the sink is at ɭ. 

• Equation (9) illustrates a conflict-free TDMA result is limited to a total bandwidth that is less than or equal 

to the bandwidth needed for sending and receiving, and all nodes at location ɭ . 

• Equation (10) explains overall working time for each sensor includes time spent transmitting, receiving, 

and acquisiting data, sometimes retransmissions at each location ɭ. Furthermore, interfering flows are also 

prevented. 
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• Equation (11) justifies the quantity of energy required for working time by each sensor node for data The 

transmission, receiving, acquisition, and sleeping (𝑇𝑠𝑙𝑝.𝑖 = 𝑅𝑛𝑑 ∗ 𝑇𝑛𝑑 − 𝑇𝑤𝑟𝑘.𝑖 ), that is restricted to the 

initial battery of each node at location ɭ. 

Table 2. NOMENCLATURE 

Variable Description 

𝑅𝑛𝑑
ɭ

 Sum of rounds number at each location ɭ 

𝑇𝑛𝑑 Round time 

𝑋𝑖𝑗
ɭ Num of packets sent from node i to node j at each location ɭ 

𝛼𝑗𝑖 Sent packets rate 

𝑃𝑆𝑖 Packet size 

𝛽 Battery limit 

𝑇𝑠𝑙𝑡 Slot time 

𝑇𝑤𝑟𝑘.𝑖 Working time for each sensor 

𝑇𝑠𝑙𝑝.𝑖 Sleeping time  

𝑇𝐷𝐴𝑐 Data acquisition and processing time 

𝐸𝑡𝑥.𝑖𝑗
𝐷𝑠  Dissipated energy during packet processing and transmission, 

𝐸𝑟𝑥.𝑖𝑗
𝐷𝑠  overall receiving node j's dissipated energy for a single slot 

𝐼𝑛𝑗𝑛 Interference function 

⍴𝑠𝑛 Average receiver sensitivity 

𝑃𝑙 Power level for transmission 

𝑃𝑘 Power level for Acknowledgment 

 

        𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 σ 𝑅𝑛𝑑
ɭ

ɭ                                                                          (7) 

   𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

   σ 𝑋𝑖𝑗
ɭ −𝑖.𝑗∈𝑆 σ 𝑋𝑗𝑖

ɭ
𝑖.𝑗∈𝑆 = 𝑅𝑛𝑑

ɭ
𝑃𝑆𝑖      ∀𝑖 ∈S                                                               

(8) 

𝑇𝑠𝑙𝑡 ቎෍ 𝛼𝑖𝑗(𝑃𝑙. 𝑃𝑘) ∗ 𝑋𝑖𝑗
ɭ +

𝑖.𝑗∈𝑆

෍ 𝛼𝑗𝑖(𝑃𝑙. 𝑃𝑘) ∗ 𝑋𝑗𝑖
ɭ +

𝑖.𝑗∈𝑆

෍ 𝛼𝑗𝑛(𝑃𝑙. 𝑃𝑘) ∗ 𝑋𝑗𝑛 ∗ 𝐼𝑛𝑗𝑛(𝑃𝑙. 𝑃𝑘)

𝑖.𝑗∈𝑆

቏ ≤ 𝑅𝑛𝑑
ɭ

𝑇𝑛𝑑     (9) 

 

𝑇𝑤𝑟𝑘 = 𝑇𝑠𝑙𝑡ൣσ 𝛼𝑖𝑗(𝑃𝑙. 𝑃𝑘) ∗ 𝑋𝑖𝑗
ɭ +𝑖.𝑗∈𝑆 σ 𝛼𝑗𝑖(𝑃𝑙. 𝑃𝑘) ∗ 𝑋𝑗𝑖

ɭ
𝑖.𝑗∈𝑆 ൧ + 𝑅𝑛𝑑

ɭ
∗ 𝑇𝐷𝐴𝑐  ∀𝑖 ∈S                                 (10)   

 

σ 𝐸𝑡𝑥.𝑖𝑗
𝐷𝑠

𝑖.𝑗∈𝑆  

 
(𝑃𝑙. 𝑃𝑘)𝑋𝑖𝑗

ɭ + 𝑃𝑠𝑙𝑝 ∗ 𝑇𝑠𝑙𝑝.𝑖 + σ 𝐸𝑟𝑥.𝑖𝑗
𝐷𝑠

𝑖.𝑗∈𝑆  

 
(𝑃𝑙. 𝑃𝑘)𝑋𝑗𝑖

ɭ + 𝑅𝑛𝑑
ɭ

∗ 𝐸𝐷𝐴𝑐 ≤ 𝛽    ∀𝑖 ∈S                    (11) 

 

𝑅𝑛𝑑
ɭ

 . 𝑋𝑖𝑗
ɭ ≥ 0 ∀ 𝑖. 𝑗𝜖𝑆                                               (12) 

Fig. 1 MIP model for mobile sink 
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• Equation 12 is a non-negativity restriction. 

• more power level is increased, the more energy is consumed, and the more interference there is, and vice 

versa. So, the value of the interference function, represented in (13), is unity if transmitter node-i at power 

level- 𝑃𝑙  is interfered by the handshake to the receiver node-𝑗  or node-𝑛  ACKing at power level- 𝑃𝑘 

otherwise the 

value is zero. Since ⍴𝑠𝑛 stands for -90dBm[4], the t-mote sky's reception sensitivity. 

𝐼𝑛𝑗𝑛
𝑖

 
(𝑃𝑙. 𝑃𝑘) = {

1              𝑖𝑓 𝜌𝑟𝑥.𝑗𝑖
𝑎𝑛𝑡 (𝑃𝑙) ≥ ⍴𝑠𝑛       𝑜𝑟    𝜌𝑟𝑥.𝑛𝑖

𝑎𝑛𝑡 (𝑃𝑘) ≥ ⍴𝑠𝑛

 
0                                                                      𝑜. 𝑤.                  

                                   (13( 

Each node battery (β) in the network is given a starting energy of 25KJ [13], the equivalent of two AA batteries, 

at the beginning of operation.  

V. Experimental Work 

Meta-heuristic algorithms effectively deal with complicated problems in SG to deal with accurate computational 

complexity and problem handling (i.e. discrete variables, uncertainty, constraints, and so on). The employed 

meta-heuristic algorithms are Modified Particle Swarm Optimisation, Firefly Algorithm, and Imperialist 

competitive algorithm. The algorithms are implemented using a mutation operator, which causes the position to 

be recovered from the local minimum and shifted outside of it. The meta-heuristic parameters are presented in 

Table 3. 

Several models are used for these topologies to guarantee that the maximum power level is used to decrease 

packet errors. The topologies are applied to the following suggested algorithms PSO, FA and ICA. In a wireless 

sensor network with a central static sink, the PSO, FA, and ICA were compared. When a sink arrives at a certain 

location in the mobile instance, it sends a notification message telling sensors where to begin broadcasting 

aggregated data in accordance with prior topologies. After round trip time, the sink depart towards the next 

location. Figure 2 depicts network diagram for mobile sink with grid and spiral topologies [6]. For sparse 

networks, these earlier topologies employ a variety of transmission power levels. The maximum transmission 

power level is used in both topologies to decrease packet errors and improve network lifetime. 

Table 3. Meta-heuristic Parameter settings 

 PSO FA ICA 

Population No. 30 30 30 

 

𝑪𝟏 0.7   𝛼 0.5 
𝛼  

𝛼 
1 

𝑪𝟐 1 𝛽0 2 𝛽 1.5 

𝝎 0.2  ᵞ 1 ᵹ 0.2 

Iterations No. 10 10 10 

Mutation Rate 0.1 0.1 0.1 

 

A. Modified Particle Swarm Optimisation 

 PSO is a meta-heuristic technique [18] that is affected by behavior for grouping of fish or birds. They move in 

groups to avoid collisions while searching for food, water, and shelter with minimum effort. The MPSO 

algorithm goes through the steps in Alg.1. A particle swarm is randomly initialized. The velocity 𝑣𝑖  , location 

𝑥𝑖   are evaluated as in (14) and (15) to allow each particle i to move over space region a 400 by 400-meter. 
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𝑣𝑖(𝑡 + 1) =  𝑤(𝑡)𝑣𝑖(𝑡)  + 𝐶1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝐶2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡))                    (14) 

     𝑥𝑖(𝑡 + 1) = 𝑐𝑥𝑖(𝑡) + 𝑑𝑣𝑖(𝑡 + 1)                                                        (15) 

Where 𝐶1and 𝐶2 define accelerating Factors, 𝑟1 , 𝑟2. 𝑐 𝑎𝑛𝑑 𝑑 are random values. 

         𝑤 =  𝔯 𝑒
−

gbest

σ 𝑝𝑏𝑒𝑠𝑡𝑖𝑖                                                             (16) 

The inertia weight (w) is calculated in (16) to compute each particle's velocity based on network lifetime 

maximization to overcome premature convergence and accomplish exploration and exploitation in search space 

[22], where r is a random value, pbest for each iteration and gbest for all previous iterations. Two "best" values 

(pbest and gbest ) are determined for each particle to maximize the network lifetime (fitness function), that is 

calculated in seconds (via 𝑅𝑛𝑑 ∗ 𝑇𝑛𝑑). All the pbest values are compared while the particles are attempting to 

optimize yields a global solution (gbest). Particle position and velocity are being updated. Local Search based 

on Mutation is applied. the model's goal is to determine where a particle should be placed in order to increase 

network lifetime with low energy usage or reach the max number of iterations. The objective of WSN 

optimization [23] is to identify the particles that maximize network lifetime (i.e. optimize the fitness function 

value). The particle is assessed using Pbest and Gbest for each particle in accordance with the fitness function 

to obtain the maximum rounds for each update [16]. 

Alg.1: MPSO   

Begin: 

1. Initialize population of particles with random positions and velocities 

2. Set initial global best position and fitness 

3. Set parameters: inertia weight (w). accelerating Factors(c1. c2). mutation_rate. max_iter  

4. For each iteration t = 1 to max_iter do 

5.      For each particle i do 

6.           Update velocity and position of particle i // as Eq.14 , Eq.15  

7.           Evaluate fitness of particle i 

8.           Update pbest: 

9.           If fitness_i < pbest_i then: 

10.                pbest_i = 𝑥𝑖(𝑡 + 1) 

11.                Update pbest_fitness_i 

12.           Update global best: 

13.           If fitness_i < gbest_fitness then: 

14.                 gbest = 𝑥𝑖(𝑡 + 1) 

15.           Update inertia weight (w) // as Eq. 16 

16.       End For 

17.       Apply mutation: 

18.           For each particle: 

19.              If random() < mutation_rate then: 

20.                   Mutate particle's position randomly within the search space. 

21.        Update gbest_fitness 

22. End For 

Return gbest

 
B. Firefly algorithm  

FA algorithm is a meta-heuristic stimulated by the behavior of fireflies, which attract other fireflies for mating 

by flashing their lights [17]. FA algorithm is represented by the following steps in Alg.2. Firstly, the firefly is 

Initialized. After determining the intensity of each firefly (through𝑅𝑛𝑑 ∗ 𝑇𝑛𝑑) to get the fireflies' brightness, 

attractiveness process moves from the 𝑖𝑡ℎ firefly to the brighter 𝑗𝑡ℎ firefly as in (17). 

   𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼 ∗ 𝑟𝑎𝑛𝑑                                       (17) 
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Where   𝑟𝑖𝑗is the distance between two nodes 𝑥𝑖 and 𝑥𝑗, light intensity 𝛽0 is related to attraction in 𝑟 = 0 , Light 

attraction factor (𝛾) 𝑎𝑛𝑑 𝛼 ∈ [0.1]. The attraction of the brightest firefly from the current firefly is used to 

measure the distance between fireflies. After moving to brighter fireflies, rank the fireflies to get the global best 

based on fitness function (through 𝑅𝑛𝑑 ∗ 𝑇𝑛𝑑). Mutation is applied to inject diversity into the population and 

help escape local optima. This cycle is repeated until the brightest firefly maximizes network lifetime (the 

number of rounds) or reaches the max number of iterations. The objective function for nodes with the highest 

attraction is calculated to maximize rounds[24]. Nodes with the highest fitness (objective) function are selected 

for sending information and collecting data for transfer to BS. 

Alg.2: FA   

Begin: 

1. Initialize population of fireflies with random positions and brightness (fitness). 

2. Define parameters: light absorption coefficient(𝛼). attractiveness coefficient(𝛽0). mutation rate(𝛾) 

3. For each iteration t = 1 to max_iter do 

4.       For each firefly i: 

5.             For each firefly j (where j != i): 

6.                   If the brightness of firefly j > the brightness of firefly I then: 

7.                           Move firefly i towards firefly j:  //as Eq. 17 

8.                  Move towards the direction of firefly j to the attractiveness and distance. 

9.                  Update the position of firefly i. 

10.        //Apply mutation: 

11.        If random() < gamma then: 

12.              Mutate the position of firefly i randomly within the search space. 

13.        Evaluate the brightness (fitness) of the new position. 

14.        Sort fireflies based on brightness (best fireflies come first). 

15.        Update the light intensity of each firefly based on its position in the sorted list. 

16. Return the best firefly found. 

 
 

C. Imperialist competitive algorithm 

 

ICA is a zone of evolutionary computing based on human sociopolitical progress[8]. The following ICA 

algorithm steps are represented in Alg.3. Firstly, the empires are initialized with some initial random solutions. 

Then, the colonies moved toward their relevant imperialist. Based on their authority, each imperialist encloses 

colonies. The more powerful imperialists will have more colonies than the weaker ones.  The positions are 

exchanged for that imperialist and the colony if there is a colony in an empire with more energy than the 

Fig. 2 Network Design for Mobility in (a)Grid and (b)spiral topology 
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imperialist.  The network lifetime of the empire is measured by (𝑅𝑛𝑑 ∗ 𝑇𝑛𝑑) then, apply mutation. The weakest 

colony is picked from the weakest empire and joined one of the stronger empires at the maximum lifetime. the 

powerless empires are eliminated. This cycle is repeated until there is only one empire, or a predefined finish 

condition is satisfied. ICA's objective is to direct the search process towards powerful imperialist or optimal 

locations based on their power[8]. The empire's imperialists ultimately fell and joined the other empires. With 

the absorption policy, imperialist powers absorb their colonies. Based on their might, the stronger empire will 

have a better chance of beating the colony. 

Alg.3: ICA   

Begin: 

1. Initialize population of countries (imperialists) and colonies with random positions and fitness 

2. For each iteration t = 1 to max_iter : 

3.      Sort countries based on fitness (descending order) 

4.       For each country (imperialist) i in the population: 

5.             For each colony j of imperialist i: 

6.                   If fitness of colony j is better than fitness of imperialist i then: 

7.                           Replace imperialist i with colony j 

8.                           Set colony j to a random position. 

9.        //Apply mutation: 

10.        For each country (imperialist) i except the strongest one: 

11.              Perform mutation on imperialist i: 

12.         Perturb its position based on a mutation strategy. 

13.                      Evaluate the fitness of the mutated imperialist. 

14.        Update population based on movements and mutations. 

15. Return the final country’s position found. 

 
VI. Results and Discussion 

The performance of the algorithms (PSO, FA, and ICA) in this study computes overall energy consumption and 

network lifetime based on grid and spiral topologies with static, multiple, and mobile sinks. The multiple sinks 

were shortening the communication path between them and the various sensor nodes. The mobile sink moved 

throughout the sensing field and landed at the predetermined rest locations. All three algorithm runs utilize 

identical communication and coverage parameters. There were 20 simulation runs for each algorithm. The 

algorithms' performance is evaluated using their average (Avg) and standard deviation (STD) values for 

maximum network lifetime in months. Table 4 depicts comparison between network lifetime for indoor line-of-

sight SG environment with static sink[4]and proposed meta-heuristic algorithms. Meta-heuristic algorithms are 

employed to compare Avg   and STD values for mobile sink or multiple sinks in grid and spiral topologies as 

shown in Table 5. While MPSO performs similarly to previous work on grid topology, it offers competitive 

results compared to other algorithms. On spiral topology, ICA gives slightly better performance than FA and 

PSO. 

 

Table 4 Network lifetime for grid-based WSNs in months. 

Algorithm Lifetime 
GAMS[4] 33.2 

Proposed MPSO 33.16172204 

Proposed ICA 33.12064162 

Proposed FA 29.2533196 
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Multiple sinks are made up of four static sinks distributed in the center of quarters. Network lifetime values for 

multiple sinks are better than static sink values in both grid and spiral topology for three meta-heuristic 

algorithms. Under similar settings, MPSO outperforms FA and ICA in grid topology. ICA outperforms MPSO 

in spiral topology somewhat. The mobile sink travelled over the sensing field to collect data. On grid topology 

with Mobile BS, MPSO give better performance than others, but on spiral topology, MPSO slightly surpasses 

ICA. 

 

Table 5. Network lifetime results for multiple & mobile sinks in months. 

Topology Algorithm Static Multiple Mobile 

Grid 

MPSO 
Avg 33.16172204 33.45587123 34.79402953 

STD 3.626812082 2.626874588 3.394121371 

FA 
Avg 29.2533196 30.19767334 30.73254953 

STD 2.574128509 3.614216258 2.731821512 

ICA 
Avg 33.12064162 33.29254527 34.11945332 

STD 2.914664988 2.854657034 3.867722158 

Spiral 

PSO 
Avg 32.59735638 33.20810535 33.92409235 

STD 2.250548061 2.429418454 2.594240581 

FA 
Avg 29.41216285 29.99273489 30.16231078 

STD 5.181712784 5.022944619 5.153542488 

ICA 
Avg 32.65823237 33.285951235 33.3901109 

STD 2.358645212 2.901161964 2.369255641 

 

VII. Conclusion 

A network's lifetime is a key component for a WSN-based SG. Optimizing WSNs for smart grid applications is 

crucial to maximize network lifetime and handle resource constraints. Optimizing protocols used for sensor 

communication to minimize energy consumption while maintaining proper data transfer. Optimization 

algorithms may handle more difficult WSN challenges. Three optimization algorithms (PSO, FA, and ICA) 

were used to examine the effectiveness of the best methodology. The model is constructed using a path-loss 

model with log-normal shadowing to investigate the influence of grid or spiral topology deployment, as well as 

mobile or multiple sinks. The longest network lifetime for a static sink is accomplished using grid mobility. 

Grid topology is characterized by high coverage and high connectivity. According to the results, the lowest 

performance improvements are achieved by FA algorithm. MPSO calculated a longer network lifetime than the 

ICA and FA. The multiple sinks were successful in extending the network lifetime slightly by limiting the impact 

of the hotspot problem marginally. MPSO enables fine-tuning of to increase network lifetime and achieve better 

results that is near solution to the previous work. Mobility enables to extend network lifetime and get better 

results with respect to static model. The hotspot problem was mostly overcomed when the mobile sink went 

through the sensing field. 
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متنقلة  حطة بملشبكة اللاسلكية ل تحسين الشبكة الذكية باستخدام الاستدلال التجريبي 

تجميع البيانات  ل  
 دعاء جمعة أ، أسامة عبد الرؤوف ب ، نانسي الحفناوي ج، أحمد كفافي د

 

 أ قسم علوم البيانات - كلية الذكاء الاصطناعي - جامعة المنوفية 

 ب قسم ذكاء الآلة – كلية الذكاء الاصطناعي - جامعة المنوفية 

 ج قسم نظم المعلومات – كلية الحاسبات والمعلومات -جامعة طنطا 

 د قسم بحوث العمليات ودعم القرار - كلية الحاسبات والمعلومات  – جامعة المنوفية
 

  توفر  . في الشبكة الذكية  للتحكمالتي تعمل بالبطارية والتي يتم استخدامها لجمع المعلومات ونقلها    المستشعراتمن العديد من   تتكون شبكة الاستشعار اللاسلكية

 اللاسلكيةالشبكة   في حين أن أجهزة استشعار  .الشبكة الذكية في تطبيقات  اللاسلكية الشبكة عقبة مهمة أمام نشر تشكل التي  ،وظروف القاسية  حل لل اللاسلكيةالشبكة  

ثقوب الطاقة بمشاكل النقاط الساخنة. في هذا البحث، تم هذه القريبة من الحوض تنقل البيانات إلى أجهزة استشعار بعيدة، فإن طاقتها تستنفذ بسرعة. لذلك، تعُرف 

تمت دراسة تحسين سرب الجسيمات، وخوارزمية اليراع،   .اللاسلكيةالشبكة   علىة  القائم الشبكة الذكية لتطوير  التجريبيةاستخدام خوارزميات تحسين الاستدلالات  

الفردية والمتعددة، سواء الثابتة   المحطات الاساسيةتوفر  .اللاسلكيةالشبكة   والخوارزمية التنافسية الإمبريالية، والتي تتميز بالكفاءة الحسابية للتعامل مع مشكلات

ة للشبكة، والمساعدة في التغلب  أو المتنقلة، قدرًا أكبر من المرونة والقدرة على التكيف في مراقبة البيانات وجمعها. تسُتخدم إمكانية التنقل لتحسين التغطية الشامل

إعادة توزيع استهلاك الطاقة في الشبكة من خلال السماح بنقل عبء العمل من    على أعطال الشبكة من خلال التحرك لتغطية الفجوات، وتعزيز الاتصال، وحتى

للمساعدة في حل مشكلة  مستشعر إلى آخر. يتيح تحسين سرب الجسيمات الضبط الدقيق للكثافة الناتجة لزيادة عمر الشبكة وتحقيق نتيجة أفضل. يتم استخدام التنقل  

 شهرًا.  1.6لطاقة عبر الشبكة، وبالتالي إطالة عمر الشبكة الإجمالي بمقدار النقاط الساخنة من خلال موازنة استهلاك ا 
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