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Abstract 

Generative adversarial networks (GANs) are a powerful deep learning model for synthesizing realistic images; however, 
they can be difficult to train and are prone to instability and mode collapse. This paper presents a modified deep learning 
model called Identity Generative Adversarial Network (IGAN) to address the challenges of training and instability faced 
by generative adversarial models in synthesizing realistic images. The IGAN model includes three modifications to 
improve the performance of DCGAN: a non-linear identity block to ease complex data fitting and reduce training time; 
a modified loss function with label smoothing to smooth the standard GAN loss function; and minibatch training to use 
other examples from the same minibatch as side information for better quality and variety of generated images. The 
effectiveness of IGAN was evaluated and compared with other state-of-the-art generative models using the inception 
score (IS) and Fréchet inception distance (FID) on CelebA and stacked MNIST datasets. The experiments demonstrated 
that IGAN outperformed the other models in terms of convergence speed, stability, and diversity of results. Specifically, 
in 200 epochs, IGAN achieved an IS of 13.6 and an FID of 46.2. Furthermore, the IGAN collapsed modes were compared 
with other generative models using a stacked MNIST dataset, showing the superiority of IGAN in producing all the 
modes while the other models failed to do so. These results demonstrate that the modifications implemented in IGAN 
can significantly enhance the performance of GANs in synthesizing realistic images, providing a more stable, high-
quality, and diverse output. 
 
Keywords: Generative adversarial network;deep learning;mode collapse;label smoothing;identity block. 

1. Introduction 
 

    Generative adversarial networks, which were introduced by Goodfellow [1], are at the vanguard of efforts to 
generate high-fidelity and diversified images. In recent years, models learned directly from data have 
significantly advanced the state of generative image modeling, including in biomedical imaging [2, 3] and 
robotics [4, 5]. The GAN network contains two parts: generator (G) and discriminator (D) networks. The first 
network, G, maps a random noise vector to a data distribution to generate fake data. The second network, D, is 
used to differentiate between the real and the originated data by the generator network. 

 
The zero-sum non-cooperative game is the foundation of GAN. The other loses if one wins, to put it briefly. 

Another name for a zero-sum game is minimax. Your actions aim to reduce those of your opponent, who strives 
to increase them. The GAN model converges in game theory when the Nash equilibrium is reached by the 
discriminator and the generator. Nash equilibrium happens when one player will not change its action regardless 
of what the opponent may do [6-9]. 
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An explicit use of convolutional and convolutional-transpose layers in the discriminator and generator, 
respectively, makes a DCGAN [10] a straightforward extension of the GAN discussed above. The DCGAN 
training is dynamic and sensitive to almost all setup factors, including optimization, hyperparameters, and the 
architecture you choose for the model. Depending on the details of the application, the interaction between the 
generator and discriminator may be seen as either a cooperative or competitive game. For example, where D 
and G are collaborative to help improve performance, it is in data augmentation [11]. In this scenario, the 
generator’s objective is to sample from a given data distribution by extracting important characteristics that can 
then be utilized to generate new data samples. The discriminator’s objective is to make the generator match the 
real data distribution by providing useful feedback. In the context of healthcare applications, the GANs are 
employed to develop novel medications. In this scenario, the generator’s objective is to come up with the 
ingredients for new medicines, either to improve existing treatments or to treat diseases that can’t be cured. The 
discriminator’s objective is to assist the generator in designing more effective drugs by analyzing their efficacy. 
Nevertheless, most of those architectures suffered in some way from model collapse while training [12, 13]. In 
another context, like generating passwords to crack bank account passwords, D and G are adversarial, as G 
plays the role of a hacker and D plays the role of a system firewall. 

 
The mode collapse problem has been observed in GAN training. The mode collapse problem causes the 

generator to stick to some distributions' modes of the real data. These modes are the samples of data that the 
discriminator keeps recognizing as real distributions. The collapsed discriminator in this case sends back to the 
generator completely pointless weights. Because of these weights, the generator will keep generating the same 
data distributions (modes). As a result, only a small portion of the real data is sampled by the generator, and the 
GAN collapses to those distributions. The mode collapse is frequently sacrificed for more realistic individual 
samples. This trade-off of mode collapse for high-quality, realistic samples can lead to a biased model that 
produces a racial or gender-biased image. Another problem with giving up on preventing mode collapse to get 
a small, high-quality sample is that the model can be unstable and take a long time to train [14-17]. 

 
The contributions of the paper are as follows: 
 
1) The paper introduces a promising version of the GAN architecture that can be expanded to generate a 
high-resolution image with high accuracy compared with other available versions of GANs. 
2) The modified model can improve the fidelity and diversity of GAN’s generated images. 
3) The model is the first to use label smoothing in the loss function and minibatch training to reduce mode 
collapse and stabilize the training. 
4) The model reduces the number of trainable parameters and therefore reduces the training time of GAN 
using identity blocks. 
 
This paper is organized as follows: Section 2 provides an overview of related works, Section 3 introduces 

the proposed model of the IGAN, Section 4 introduces the experimental results and Section 5 introduces the 
conclusion and future work. 

2. Related work 
 

This section provides the latest research about solving the mode collapse problem during the GAN training 
process and also discusses the problem of improving the quality of the images with regard to the stability of the 
model. This section also discusses the limitations of the previous work. A major challenge in training generative 
adversarial networks is mode collapse. Several recent researches have incorporated novel target functions, 
network designs, or alternate training methods to relieve mode collapse. However, they frequently sacrifice 
image quality in order to attain their goals. 
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Duhyeon et al. [18] introduced Manifold-guided generative adversarial network (MGGAN) encourages the 

generator to learn the general modes of a data distribution by using a guidance network on an existing GAN 
architecture. A learnt manifold space, which is an effective representation of the coverage of the overall modes, 
is created from a picture by the guiding network. This guidance network's properties aid in penalizing mode 
imbalance. The experimental comparisons utilizing different baseline GANs revealed that MGGAN can be 
simply extended to existing GANs and address mode collapse without degrading the quality of the images. 

 
Jinzhen et al. [19] presented a model instead of a single scalar, the idea of realness was expressed as a realness 

distribution. In order to give the generator more detailed instructions, the associated discriminator analyses the 
realness of an input sample from several perspectives. To modify the min-max game, they specifically included 
the realness measure objectives as mutation procedures that develop many persons. After that, they used a fresh 
least-squares fitness method to gauge how well the produced people performed. The measurement findings act 
as a crucial guide for us to keep only the efficient generators and get rid of the others [20]. 

 
StyleGAN [37] and ProGAN [38] are two popular GAN architectures for generating high-quality images. 

StyleGAN excels at producing highly realistic and diverse images with fine-grained control over the generated 
output, but has a larger computational complexity. ProGAN’s progressive training approach enables faster 
convergence and more stable training but may produce higher FID scores, indicating that the generated images 
are less similar to real images. The IGAN, on the other hand, reduces the computational complexity using an 
identity block and a fully convolutional network design; it also solves the FID score problem in ProGAN uses 
a modified loss function to reduce the mode collapse, stabilize the training, and give fine control over diversity 
and fidelity. 

3. Proposed work 
 

This section presents the architecture of the IGAN as well as the improvements made to enhance and stabilize 
the GAN’s training while boosting training speed. Firstly, the generator takes random noise, reshapes it into a 
100-dimensional vector, and feeds this noise vector forward into the generator. Blocks 1 and 2 in the generator 
sample the noise vector to match the shape of the real image. Identity blocks in the generator help the activation 
bypass one or more layers and be added to the final activation. This helps mitigate the vanishing gradient 
problem, reduce the number of parameters, increase the training speed, and improve the accuracy of the model. 
The fake image from the generator is then passed to the discriminator. Secondly, the model trains the 
discriminator to maximize LD with both real and generated (fake) data, labeled 0.9 and 0.1, respectively, to 
reduce mode collapses. The discriminator uses a mini-batch layer in block 3, which enables it to use the other 
mini-batch examples as extra information. Lastly, the model trains the generator to minimize LG. The 
generator’s loss LG is different from the standard generator's loss function. The IGAN generator loss LG 
produces non-saturating gradients, making training easier by using a decent rather than ascending optimizer. 
Fig. 1 shows the block diagram of the proposed model. 

 

https://ieeexplore.ieee.org/author/37089156719
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Fig. 1 Block diagram of IGAN architecture 

   3.1 The Proposed Modifications 
 
    The GANs models are designed to reach Nash equilibrium as shown in Formula (1). Where    𝑧𝑧 ∈ 𝑅𝑅𝑑𝑑𝑧𝑧   is a 
latent variable sampled from distribution    𝑝𝑝(𝑧𝑧)  ~ 𝒩𝒩(0, 𝐼𝐼).The zero indicates that the mean of the normal 
distribution is zero and 𝐼𝐼 represents the identity matrix, indicating that the variance is one in all dimensions. 

 
min
𝐺𝐺

max
𝐷𝐷

𝐸𝐸𝑥𝑥∼𝑞𝑞data (𝑥𝑥) [log𝐷𝐷 (𝑥𝑥)] + 𝐸𝐸𝑧𝑧∼𝑝𝑝(𝑧𝑧) �log �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)���.                     (1) 
 

    The modified model estimates the proximity of every pair of samples in a single minibatch. Then, the overall 
summary of a single data point is computed by adding its proximity to other samples in the same batch 𝑜𝑜(𝑥𝑥𝑖𝑖) =
∑  𝑐𝑐(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑗𝑗 . Finally, 𝑜𝑜(𝑥𝑥𝑖𝑖) is explicitly added to the model. The discriminator is still required to output a single 
number for each example. This number indicates the likelihood of the example originating from the training 
data. The single output of the discriminator with minibatch training is allowed to use other examples in the 
minibatch as side information.  

 
The mode collapse occurs when the discriminator returns 1 or 0 as the classification result for the real and 

fake images. The gradients at both ends will be close to 0 and 1, and the discriminator will be unable to provide 
useful feedback, which will lead to a vanishing gradient problem. Therefore, this paper modifies the loss 
function of GAN shown in formula (1) by adding label smoothing, where instead of providing 1 and 0 labels 
for real and fake data while training the discriminator, we used softened values of 0.9 and 0.1, respectively. The 
loss function used in this paper is expressed in Equations. (2), (3), (4), and (5). 

 

 

                               

 
 

𝐿𝐿𝐺𝐺 = − 1
𝑚𝑚
∑ �log𝐷𝐷 �𝐺𝐺(𝑧𝑧i)��𝑚𝑚
𝑖𝑖=1                                                            𝐿𝐿𝐷𝐷 = 1

𝑚𝑚
∑ �log𝐷𝐷 (𝑥𝑥 i) + log �1 − 𝐷𝐷 �𝐺𝐺(𝑧𝑧i)���𝑚𝑚
𝑖𝑖=1  
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                               𝐿𝐿(𝐺𝐺,𝐷𝐷) = min(𝐿𝐿𝐺𝐺) + max(𝐿𝐿𝐷𝐷)                         (2) 
  

    𝐿𝐿𝐺𝐺 = − 1
𝑚𝑚
∑ �log𝐷𝐷 �𝐺𝐺(𝑧𝑧𝑖𝑖)��𝑚𝑚
𝑖𝑖=1                       (3)

                   
   𝐿𝐿𝐷𝐷 = 1

𝑚𝑚
∑ �log𝐷𝐷 (𝑥𝑥𝑖𝑖) + log �1 − 𝐷𝐷 �𝐺𝐺(𝑧𝑧𝑖𝑖)���𝑚𝑚
𝑖𝑖=1                                                 (4) 

 
 

𝐷𝐷(𝑥𝑥) = � 0.9           𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0.5
 0.1           𝑖𝑖𝑖𝑖 𝑥𝑥 < 0.5                                                                    (5) 

         
The third modification includes using learning rate decay, which we found to be very effective with the 

Adam optimizer and improves the speed of training when used with minibatch learning. This modification 
improves the model’s stability (oscillation in losses) as well as the FID and Inception Score when compared to 
DCGAN without this modification. Also, using identity block [22] in our architecture shows an increasing 
ability of the IGAN to model much more complex distributions, even in the early stages of learning, which led 
to an increase in the fidelity of images compared to the DCGAN. 

 
Because GAN training is data-intensive, using datasets with fewer images per class, such as CIFAR100 or 

CIFAR10, makes it more difficult for the model to produce high-quality images. This has an impact on 
measuring mode collapse. As a result, this paper uses the CelebA [23] dataset. The properties and 
hyperparameters of the neural networks used to model the generator and discriminator are detailed in Table 1, 
Fig. 2, and Table 2, Fig. 3, respectively. Although the generator and discriminator designs can be tweaked 
through hyperparameter optimization, this is outside the scope of this work. The objective of this paper is to 
boost the performance of GANs with a fixed architecture. Thus, this paper introduces promising modifications 
to DCGAN and compares the new architecture modifications with DCGAN on the CelebA dataset. 

Table 1. IGAN Generator architecture 

 
 
Fig. 2. IGAN Generator Architecture. 
 
 
 

 Generator 
Layer Conv.Type In. Dim Out. Dim Kernel size Strid Padding 

1 ConvTranspose2d 100 1024 4 1 0 
 BatchNorm2d (1024, eps=1e-5 momentum=0.1) 
 Relu (Inplace=True) 

2 ConvTranspose2d 1024 512 4 2 1 
 BatchNorm2d (512, eps=1e-5 momentum=0.1) 
 Relu (Inplace=True) 

3 ConvTranspose2d 512 256 4 2 1 
 BatchNorm2d (256, eps=1e-5 momentum=0.1) 
 Relu (Inplace=True) 

4 ConvTranspose2d 256 256 1 1 0 
 BatchNorm2d (256, eps=1e-5 momentum=0.1) 
 Relu (Inplace=True) 

5 ConvTranspose2d 256 128 4 2 1 
 BatchNorm2d (128, eps=1e-5 momentum=0.1) 
 Relu (Inplace=True) 

6 ConvTranspose2d 128 3 4 2 1 
 Tanh () 
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Table. 2.  IGAN Discriminator architecture 

 Discriminator 

Layer Conv.Type In. Dim Out. Dim Kernel size Strid padding 
1 Conv2d 3 64 4 2 1 
 BatchNorm2d (64, eps=1e-5 momentum=0.1) 
 LeakyReLU(negative_slope=0.2) 
2 Conv2d 64 128 4 2 1 
 BatchNorm2d (128, eps=1e-5 momentum=0.1) 
 LeakyReLU(negative_slope=0.2) 
3 Conv2d 128 256 4 2 1 
 BatchNorm2d (256, eps=1e-5 momentum=0.1) 
 LeakyReLU(negative_slope=0.2) 
4 Conv2d 256 512 4 2 1 
 BatchNorm2d (512, eps=1e-5 momentum=0.1) 
 LeakyReLU(negative_slope=0.2) 
5 Conv2d 512 1 4 2 0 

 Sigmoid Activation function with Label smoothing  0 ≅ 0.1 𝑎𝑎𝑎𝑎𝑎𝑎   1 ≅ 0.9 
 

 
 

 
Fig. 3. IGAN Discriminator Architecture. 

We named this new architecture IGAN since we used identity blocks to reduce the time needed to train it, as 
shown in layers 3 and 4 in Table 1. Using the identity block, we were able to reduce training time by reducing 
the number of trainable parameters without affecting performance. The number of parameters was reduced by 
200K with each identity block we added. The improved architecture can then be utilized as a foundation for any 
cutting-edge GAN models that need to overcome the mode collapse problem. This is possible despite limited 
computing power. 

 
The Adam optimizer is used for IGAN training in both the generator and discriminator networks, with a total 

of 200 epochs, a learning rate initialization of 2E-3, and learning rate decay. The comparison between DCGAN 
and IGAN is performed on a quantitative level by measuring the IS and FID. The IS takes a set of images and 
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outputs a floating-point value. The value indicates how realistic the output of a GAN is. The inception score is 
an automated alternative to having individuals rate image quality. 

   3.2 Dataset  
 
    This paper uses the CelebA dataset [23]. CelebA contains different face characteristics collections with 
over 200K celebrity photos, each with 40 attribute annotations. This dataset contains images with a wide 
range of pose variants and background clutter, including 10,177 identities, 202,599 face images, and 5 
landmark locations, with 40 binary attribute annotations per image. Additionally, this paper measured the 
mode collapses of multiple models on the Stacked MNIST dataset following [24]. 

   3.3 Hardware d Software Specifications  
 
    The numerical experiments are carried out with an Intel® Core i7-10750H CPU running at 2.60 GHz on the 
10th and a NVIDIA GeForce RTX 3050Ti laptop. Table 3 shows the hardware and software specifications that 
have been used during the training process. 
 
 

Table 3:  Hardware and software Specification 

Device Description 

Processors Intel(R) Core (TM) i7-10750H CPU @ 2.60GHz 

Random Access Memory 
(RAM) 

16.0 GB 

Graphical Processing 
Unit (GPU) 

NVIDIA GeForce RTX 3050Ti 

Space Samsung SSD 970 EVO Plus 2TB 

Programming language  Python  

 

   3.4 Evaluation metric 
It is challenging to assess the effectiveness of generative models (e.g., GAN). The most effective method for 

assessing the visual quality of samples is to ask humans to determine the quality of the samples intuitively and 
reliably. This requires sufficient participants, and we did not have that. Also, we opt to use the inception score 
[25], a numerical assessment method, for quantitative evaluation calculated by Equation 6. 𝑥𝑥 stands for one 
generated sample sampled from the generator, and 𝑦𝑦 is the label predicted by the inception model [26]. 
 

 𝐼𝐼 =  𝑒𝑒𝑒𝑒𝑒𝑒(𝐸𝐸𝑥𝑥~𝑝𝑝𝑔𝑔𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑦𝑦|𝑥𝑥)|| 𝑝𝑝(𝑦𝑦))).     (6) 
 

The idea behind this metric is that good models should generate high-diversity and high-fidelity images. 
Therefore, the divergence between the marginal distribution (real images) and the conditional distribution 
(generated images) should be large. This means the entropy of the conditional probability distribution is low, 
finding relevant objects and features, while the marginal probability distribution is high, finding a diverse set 
of features. We also adopt the widely used Fréchet Inception Distance (FID) [27].  
 

𝐹𝐹𝐹𝐹𝐹𝐹 = ||𝜇𝜇𝑟𝑟 − 𝜇𝜇𝑔𝑔||2 + 𝑇𝑇𝑇𝑇(𝛴𝛴𝛴𝛴 + 𝛴𝛴𝛴𝛴 − 2(𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴)1/2).         (7) 
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FID is based on measuring the image’s feature distance using a pre-trained Inception v3 network. This model 

is a pre-trained classifier that was trained on the ImageNet dataset. We used this model as a feature extractor. 
Those features are used to compare samples that are generated from the generator with the real data sample 
distributions, a feature-wise comparison. A lower FID shows that the generated images are closer to a realistic 
image distribution. 

5. Experimental results and discussion   
 

This section presents the results of the IGAN and also provides a comparison between the proposed model 
and other baseline GAN architectures like DCGAN, ProGAN, and StyleGAN. 
 
   5.1 Results after one and three epochs  
 

Fig.4 provides a visual comparison of the images produced by DCGAN and IGAN in the first epoch. IGAN 
images show a more accurate representation of the facial structure with no mode collapse, as shown in Fig.4a 
when compared with Fig.4b. In terms of facial features, IGAN images are significantly easier to identify than 
those the DCGAN tries to sample. In the first stage of training, IGAN outputs outperform DCGAN outputs. 
Because the generator can now mimic more complex non-linear functions thanks to the identity block upgrade.  

 
                 Figure (a)             Figure (b)                             

Fig.4. First epoch output Results. Figure (a) Proposed Model IGAN and Figure (b) DCGAN Model. 

Fig.5 and Fig.6 show the visual output of the IGAN and DCGAN for the first three epochs, respectively. The 
mode collapse is obvious in the DCGAN output. IGAN output shows no sign of mode collapse at all. The output 
images from the IGAN show high diversity and high fidelity, even in the early stages of the training. Because 
mode collapse is difficult to detect in the advanced stages of training. We present results at an early stage of 
training. 
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Fig. 5. visual output of the DCGAN for the first 3 epochs. 
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Fig. 6. visual output of the IGAN for the first 3 epochs. 

   5.2 Nash equilibrium results 
 

Figure 7 (a) shows improved equilibrium between G and D during training in IGAN. Compared to DCGAN 
in Figure 7 (b), the G and D losses each have a different range of values. If the loss of the G is way higher than 
the loss of the D, this means the G will not be able to deceive the D. It will be hard to converge by then. In other 
words, if the discriminator loss is way lower than the generator loss, the discriminator will return 0 for all 
generated images, causing the generator to become stuck with low-quality images. Also, if the G loss is way 
lower than the discriminator, this means the D will return 1 for all the generated images. Hence, the generator 
will not improve. As a result, better GAN architecture must keep the D and G losses. 
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           (a)                  (b)  

Fig. 7. Figures (a) and (b) show the generator and discriminator (critical) losses for the IGAN and DCGAN models, respectively. 

   5.3 Results of generated images  
 

Table. 4 presents the quantitative comparison of fidelity and diversity between the DCGAN, ProGAN, 
StyleGAN, and IGAN models during training by displaying both the FID and the IS score. The results show 
that IGAN architecture outperformed the other architectures after 200 epochs. The IGAN shows better capture 
of contours and distribution of the training dataset, maintaining stable training, reducing the time of training, 
and therefore reducing mode collapse. Figure 8 shows a graphical representation of the FID and IS scores of 
the IGAN model and the other state-of-the-art GAN models.  

Table 4: Inception score and Fréchet results  

 
 

 

 
 
 
 
 

 

Fig. 8. Comparison chart of generated images between GAN architectures 
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   5.4 Result of mitigation mode collapse 
 

The result of comparing IGAN with other relative studies using the MNIST dataset is shown in Table 5. The 
MNIST dataset is consider simple, so this paper uses a set of transformation to create datasets with different 
level of complexity. The Transformation applied to MNIST dataset provide flexibility in generating datasets 
with varying degree of distribution complexity. Selecting 𝑔𝑔(𝑧𝑧) , with progressively more complex 
transformation, can generate more demanding and complex synthetic datasets. The first five datasets are 
classified as levels 1-5, depending on their complexity. The levels are produced using simple transforms such 
as identity constant mapping (1 and z), small multi-layer perceptron (MLP), and well-conditioned linear 
transforms (A). This benchmark investigates mode collapse on several GANs models using two optimizers, 
SGD and ADAM, as shown in table 5. The results show that most of GAN model were robust to mode collapse 
until level 4 except for DCGAN. Only the IGAN and ProGAN made it to level 5 complexity. 

Table 5: T means that all of the data modes is learned by the generator, whereas F indicates the generator suffer from mode collapse. The 
results are shown with the SGD (left) and ADAM (right) optimizers. MNIST results using the ADAM optimizer are given as a reference. 
The MNIST is a relatively simple dataset, with a complexity level between Levels 1 and 5. 

 
   5.5 Distribution of the generated data vs real data 
 

Fig. 8 illustrates the visualization of the pairwise multivariate distributions of the inception features for three 
different images. The images are a random selection of real vs. fake IGAN output. The features, which are 
nearly identical, are shown along the diagonal. This shows how the generated image feature distribution from 
IGAN is almost identical to the real data distribution. 

 

 
Fig. 9. pairwise multivariate distributions of the inception features generated from IGAN 

g(z)= 1 A392x2 z MLP MLP, A392x2  

Model Name Level 1 Level 2 Level 3 Level 4 Level 5 

DCGAN F T F T F F F F F F 

ProGAN T T T T T T T T T T 

StyleGAN T T T T T T T T F F 

IGAN T T T T T T T T T T 



78     Mohamed Fathallah, Mohamed Sakr, Sherif Eletriby 

 
6. Conclusion  
 

This paper presents a novel, modified version of the GAN training architecture that includes an identity 
block. The model has been modified in three different ways: Modifications to the loss function and 
hyperparameters by using label smoothing and mini-batch training are employed to stabilize the model. The 
model has achieved better results in stability, generated image quality, and diversity compared to other state-
of-the-art GAN models. A higher IS score and a lower FID score validate our findings. Although the model has 
performed well in terms of avoiding mode collapse, it still has some limitations when dealing with higher-
resolution images. In the future, we plan to use IGAN to reduce mode collapse in settings for high-resolution 
image generation. 
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