
Bulletin  of Faculty of Science ,Zagazig University (BFSZU) 2023 

        Bulletin of Faculty of Science, Zagazig University (BFSZU))) 
e-ISSN: 1110-1555   

  Volume-2023, Issue-2, pp: 6-22 

  https://bfszu.journals.ekb.eg/journal 
Research Paper                                                                 DOI: 10.21608/bfszu.2021.105949.1098 

================================================================ 

 
h t t p s : / / b f s z u . j o u r n a l s . e k b . e g / j o u r n a l  Page 6 

 

On the Location of The Lagrangian Collinear Points In The Photo-

Gravitational Relativistic Restricted 3-Body Problem  

Ph./ Nadiah Mosleh Al-jerfaly 

Taibah University, Faculty of Applied Science, Department: Applied Mathematics 

 

ABSTRACT : we outlined the history of the restricted three body problem, beginning 

from the early works due to the brilliant scientist Lagrange, Euler, Jacobi, Poincare etc. we 

also continued to the up to date references. We formulated the basic scientific materials 

relevant to our work, e.g., the restricted three body problem, the Equation of motion in the 

rotating frame. We addressed the Lagrangian point, computations of their locations. We 

explained the curves of zero velocity and the permissible motions. In the field of the restricted 

three body problem. We obtained the locations of the three collinear points of the photo-

gravitation relativistic restricted three body problem. 
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I. INTRODUCTION  

 The history of the restricted problem began with Euler and Lagrange continues with Jacobi  (1836), Hill     

( 1878) , Poincare'  (1892-1899),   and Birkhoff (1915 ).  In 1772 , Euler   first   introduced   a  synodic  ( 

rotating) coordinate  system ,  the use of  which led to an  integral of  the equations of motion, known today as 

the Jacobian integral. Euler himself did not discover the Jacobian integral which was first given by 

Jacobi(1836)who, as Wintner remarks ,''rediscovered "the synodic system. The actual situation is somewhat 

complex since  Jacobi published  his  integral  in a  sideral  (fixed)  system in which its significance is definitely 

less than I the synodic system. Hill (1878) used this integral to show that  the  Earth -Moon  distance  remains  

bounded from above for all time (assuming his model for the Sun-Earth-Moon system is valid),  and  Brown 

(1896)  gave the most precise lunar theory of his time. Poincare' (1892-1899),  published  his  monumental  

(Mēthodes Nouvelles). Emphasizing qualitative aspects of   celestial  mechanics,  including  modern concepts  

such  at phase space surfaces of section . Birkhoff  (1915)  further developed these qualitative methods. The 

important problem of regularization was considered by  Levi-Civita (1903) ;  Burrrau (1906),  Sündman  (1912) 

and  Birkhoff  (1915)  proved  that  all  singularities  are  collisions for n = 3. Sündman  (1912)  found a  

uniformly  convergent  infinite  series  involving known function that ''solves'' the restricted three-body problem 

in the whole plane ( once singularities are removed through the process of regularization). Since such global 

regularization's are available for this problem ,the restricted problem of three bodies can be considered to be 

complete ''solved'' . However, this ''solution'' does not address issues of stability, allowed regions of motion, and  

so  on,  and  so  is  of  limited  practical utility  ( Szebehely 1967, p. 42 ). Furthermore, an unreasonably large 

number of terms  ( of order 108,000,000) of Sundman's series are required to attain anything like the accuracy 

required for astronomical observations.  Lagrange  ( 1867-1892)   showed that the three- body problem has five 

relative equilibrium configurations. The circular restricted three problems is reviewed. The restricted three body 

problem equations of motion in the synodic frame of reference are derived. The Jacobi integral is obtained. The 

Lagrange points are highlighted. The curves of zero relative velocity are shown. The locations of the collinear 

points are computed. We consider the collinear equilibrium points of the relativistic ( RTBP). We determine 

approximate positions of the collinear points by series expansions in  and   2
1

c
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1.2 The Circular Restricted Three- Body Problem 

 In an effort to obtain insight into the possible types of motions Poincaré, Hill, and others coined the so-

called circular restricted three-body problem (RTBP). Suppose two massive bodies move in circular orbits about 

their common center of mass called the primaries and attract (but are not attracted by) a third particle of 

infinitesimal mass. The problem of motion of the third body is called the circular restricted three-body problem, 

henceforth referred to as the CRTBP. If we further restrict the motion of the third body to be in the orbital plane 

of the other two bodies, the problem is called the planar circular restricted three-body problem, or the PCRTBP, 

the problem is to determine the possible types of motions of the third particle given the coordinates and 

velocities of the system at some epoch. The (RTBP) is a classical problem of celestial mechanics. Attempts for 

its solution led to the foundation for dynamical systems theory and alerted Poincare' to the existence of 

deterministic chaos within Newtonian mechanics (Poincare' [1892- 1899] .  

 Given an isolated system of two bodies with initial conditions, the equations of motion allow one to 

predict the position and velocity of either body at any later time. However, the difficulties that arise when a third 

body is introduced to a two-body system change the dynamical equations so much that there is no closed form 

solution. For nearly a century now, astrodynamists, physicists and mathematicians are developing methods of 

approximation to best predict the motion, yet they perform these calculations under basic assumptions that 

otherwise would make them impossible to solve. One of the most promising solutions is that produced by the 

(RTBP) where an infinitesimal body moves about 3-dimensional space under the gravitational influence of two 

finite bodies whose rotation with respect to one another defines a plane. 

1.2.1 The Equations of Motion in Synodic Frame 

 In this section, we familiarize the reader with some of the terminology of the (RTBP) and the all 

important concepts of viewing the motion in the rotating frame. We consider the motion of a small particle of 

negligible mass moving under the gravitational influence of two masses 
1m  and 

2m . We assume that the two 

masses have circular orbits about their common center of mass and that they exert a force on the particle 

although the particles cannot affect the two masses. The system is made non dimensional by the following 

choice of units: the unit of mass is taken to be   
21 mm    ; the unit of length is chosen to be the constant 

separation between 
1m  and 

2m  (e.g., the distance between the centers of the sun and planet); the unit of time is 

chosen such that the orbital period of 1m  and 2m about their center of mass is 2π. The universal constant of 

gravitation then becomes 1G  . It then follows that the common mean motion, n, of the primaries is also 

unity. We will refer to this system of units as non dimensional or normalized units throughout the thesis. We 

will use the normalized units for nearly all the discussions in this thesis. When appropriate, we can convert to 

dimensional units (e.g., km, km/s, s) to scale a problem. The conversion from units of distance, velocity, and 

time in the unprimed, normalized system to the primed, dimensionalized system is where L  is the distance 

between the centers of  1m  and 2m while V  is the orbital velocity of 1m but T is the orbital period of  1m  and 

2m
. 

Distance = Ld , 

Velocity =Vs , 

Time        =  2

T
t

  

The only parameter of the system is the mass parameter, 

2

1 2

m

m m
 


 

If we assume that  21 mm    , then the masses of 1m  and 2m  in this system of units are, respectively, 

1

2

1 ,

.

m

m





 


 

http://scienceworld.wolfram.com/biography/Poincare.html
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  (1.1)        

Now the mean angular velocity (or mean motion) of the two bodies is the unity, i.e.,                            

                                                 
2 3

1 2( )n a G m m 
. 

 Consider a set of axes ),,( ZYX  in the inertial frame (non-rotating frame) referred to the center of 

mass of the two finite bodies, see Fig. 1. If the coordinates of the masses 1  and   are ),,( 1111 zyxP  

and ),,( 2222 zyxP  respectively, and the coordinates of the test particle are ),,( zyxP . The equations of 

motion of this particle are 
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Figure 1.1 Inertial and rotating frames. 

 

 

 

Where, from Fig. 1.1,  
2
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1 )()()( zzyyxxr 
,                                                                                                 (1.4) 
2

2

2

2

2

2

2

2 )()()( zzyyxxr 
.                                                                                                 (1.5) 

 Where 1r  and 2r  are the distances of the infinitesimal mass  and the two massive primaries 

respectively, and stands for  
dt

d 2

 . 

 Note that these equations are also valid in the general three-body problem since they do not require any 

assumptions about the paths of the two masses. 

If the Z axis perpendicular to the plane of rotation of the two massive particles, 021  zz . 

 Now we introduce a coordinates system ),,(   rotating about Z  axis with constant angular 

velocity (unity), and having the same origin as before. The direction of  -axis can be chosen such that the two 

massive particles 1  and   always lie on it. This is usually called synodic frame of reference. 

(1.3) 
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The coordinates of the masses ( 1 ) and   are )0,0,( 11 P  and )0,0,( 22 P  respectively, such that 

112    . 

In addition, in the units chosen, 

                                          
.1

,

2

1








                                                                     (1.6) 

 Hence           

2 2 2 2 2 2 2
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2 2 2 2 2 2 2
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(1.7)
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The coordinates of the test particle ),,( zyx  in terms of the rotating frame is given by 
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Differentiating (1.8) twice, and substituting the resulting equations into equation (1.1)-(1.3), we have 
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where  

                                                   .
1

)(
2

1
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rr
U


 


                                           (1.10) 

 In this equation the term )(
2

1 22    is the centrifugal potential while the terms 

1

1

r


 and  

2r


 are 

the gravitational potentials of the massive primaries.  

Note also that U  is not true potential and it is best referred to as a scalar function from which some (but not all) 

of the accelerations experienced by the particle in the rotating frame can be derived. U  is called a (Pseudo-

Potential)  

 

1.2.2 Jacobi's Integral  

Equations (1.9) can be specifically solved in closed algebraic form if the 1st equation of (1.9) is 

multiplied by   , the 2nd equation is multiplied by 


  and the 3rd equation is multiplied by


 . Then adding 

together yields  
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






UUU                                                (1.11) 

The R.H.S. represents the total differentiation of U , since it does not depend implicitly on the time , but is a 

function of ),,(    only. 

 Integrating (1.11) , we therefore obtain 

http://mintaka.sdsu.edu/faculty/quyen/node18.html#eq:rtb1
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CU  2

222

                                                    (1.12) 

where C  is a constant of integration , and 

                                                    
2222   V     

is the square of the velocity of the infinitesimal mass in the rotating frame, we have 

                                                                CUV  22
                                                                    (1.13) 

or, using equation (1.10), 

                                        C
rr





21

22222 2)1(2 
                                     (1.14)                                                                         

 Equation (1.13) or (1.14) is the Jacobi integral, sometimes called the integral of relative energy. It is 

important to note that this is not energy integral because in the restricted problem neither energy nor angular 

momentum is conserved. 

 

1.3   Lagrange Points          

          the Lagrangian points are the five stationary solutions of the circular restricted three-body problem, i.e. 

given two massive bodies in circular orbits around their common center of mass, there are five positions in 

space where a third body, of negligible mass, could be placed which would then maintain its position relative to 

the two massive bodies. 

Example: The Sun-Earth 
4L and 5L  points lie 60° ahead of and 60° behind the Earth in its orbit around the 

Sun. The three libration points L1, L2 and L3 are collinear libration with the primary masses, see Fig. 1.2 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: A diagram showing the five Lagrangian points in a two-body system. 

 (e.g., the Sun and the Earth) 

 However, not all of the five Lagrange points are stable. For example, with respect to the Earth-Sun 

Lagrange system, there exist three unstable collinear libration points 321 ,, LLL  (aligned on the Earth-Sun 

vector and located one each on the opposite side of the Sun, the Earth, and in between). An object placed at any 

of these points will not stay there indefinitely; a small perturbation will cause the object to leave the libration 

point.  

 

1.4 The Surface of Zero Relative Velocity 

 The Jacobi integral (1.14) is a relation between the square velocity of the infinitesimal body and its 

coordinates relative to the rotating ( Synodic ) frame. If C is known from the initial condition (1.14) determines 

the velocity of the infinitesimal body. Conversely, equation (1.14) determines the loci of given velocities. In 

particular if we put 0V , it determines the surface on which the velocity will be zero. Then 
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                                  C
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                                      (1.15) 

 Equation (1.15) defines for a given value of G the boundaries of regions in which the particles must be 

found, these regions are those for which 
2 ,U C

 since otherwise 
2V  would be negative, giving imaginary 

values for the velocity. Equation (1.15) is called Hills limiting surface, dose not tell us anything about the orbits 

of the particle within the volumes of space available to it. Before proceeding further, we first consider the 

following theorem. 

1.5 Permissible Motions and Equation of the Surfaces 

 The above theorem implies that on one side of the surfaces of zero velocity, the velocity will be real 

and on the other side is imaginary. In other words, it is possible for the body to move on one side and impossible 

to move on the other. Recalling equation (1.15), 
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1.6 The particular Solution of Lagrange 

As shown previously, the equations of motion of the restricted problem are. 
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where                                 )
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 The planer problem is satisfied by constant values  
11,    if the L.H.S of the 1st two 

equations of (1.17) are zero. In view of equation (1.18) these may be written as: 
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 Before going further, we note that. 

(1) Since 11,  
   

)0(   
  then if the infinitesimal body placed at one of the resulting 

points will remain there forever. 

(2) Since 0











UU
 the resulting points correspond to the double points of the function U. They clearly 

lie on the  -plane. 

1.7.1   The Equilateral Solutions 

 The last equations are satisfied by the trivial solution, 
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which by using (1.18) give the equilateral solutions representing by the points   L4  and L5 for which  

121  rr
. 

1.7.2   The Straight Line Solution 

 Other solutions are obtained from  
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for these solutions   = 0, they therefore lie on the   - axis and the values of    must satisfy the condition, 
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To investigate the location of the roots of this equation we have )0(  , 
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from (1.18) it follows that   
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The equation for  
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 is small, this equation has a root in the vicinity of 2r   where   
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Then α can be written as. 
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Then successive approximation yields 
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(b)  The solution L2 

 It lies beyond the smaller mass. Here 
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The equation for  
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   becomes. 
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Again 



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 is small. This equation has a root in the vicinity of 2r , expanded in power of 2r  
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( c )   The Solution L3 

 It lies beyond the larger mass. Here 
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The equation1.35 for  


U
 becomes 

.
1

2

2

2

1

2

1

rr

rr






 







 

Put                                                                       








2

,1

2

1

r

r

 

Expressing in  β  we get 
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Finally 1.35 will becomes 

                                  

2
2

7 23 7
2 1 ( ) .

12 84 12
r  

 
   

 
                               

 

2.2 Libration Points Location  

As we go through the previous sections in which it becomes clear that the equilibirum solution only 

exists when the relative rotating frame exists and also the partial derivatives of the pseudopotential function 

),,(  UUU are all zero , i.e., U = const. These points correspond to the positions in the rotating frame at 

which the gravitational forces and the centrifugal force associated with the rotation of the synodic frame all 

cancel , with the result that a particle located at one of these points appears stationary in synodic frame.  

Where U is the potential which can be written as composed of two components, namely the potential of 

the classical (RTBP) photo-gravitational potential phU  and the relativistic correction rphU  

 

U =   Uph   + Urph                                           (2.1)      

Where phU and    rphU are given by   

                                                        

2
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U ph
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The liberation point are obtained from equations of motion after setting  
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2.3 Location of collinear Libration Points 

 (a) Location of L1 
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( see Fig.  2.2 )  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig . 2.1 : show the location of L1 

    Substituting from ( 2,7) into ( 2,6) we get (2,8)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which can be-written as a function of 1r , 2r as equation 2 

Then it may be reasonable in our case to assume that positions of the equilibrium points L1   are the same as 

given by classical ( RTBP) but perturbed due to the inclusion of the relativistic correction by quantities  
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Where 
1a  and 

1b  are unperturbed positions of 
1r  and 

2r  respectively, and 
1b  is given after some successive 

approximation by the relation. 

 

 

 

 

Substituting from equation ( 2,10) into equation ( 2,11)                

 

  

 

 

 

 

 

 

Retaining the terms up to the first order in the small quantities     , we get 2.13 
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Equation (2,13) can be solved for        to yield equation 2.14 

                                                                                                                       

Which can be assumed as composed of two parts, as                           

                                      
112 RCr                                      (2,15)                                                                    

where  C1  represents the position of  r2  as obtained from the potential of the photo-gravitational RTBP  Uph   , 

and    R1  is the relativistic contribution to 

 the problem Urph , thus ,   C1   and  R1  are function of  µ 

The location of L1 is given by ; 2,0 1
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Location of 
2L  and 3L We can proceed similarly to evaluate the locations of 

2L  and 3L  

Conclusion  

 In the present work , the effect of the gravitational attraction of two bigger primaries and the post 

Newtonian perturbation on the location of collinear points in the restricted three body problem is carried out. 

The two primaries are considered also to be radiant sources . These effects appear as additional terms in the 

classical potential. 

 New formulas for the locations of the collinear points are obtained , and can be used for further 

investectigation . Taking these effects into consideration causes a shift in the location of the collinear points.In a 

forthcoming work these results can be used to investigate the stability of the Points. 
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