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ABSTRACT 
The aging of civil infrastructure and aerospace structures has led to an increased need to 
monitor the overall structural health. If growing damage not identified on time, it may has 
serious consequences, both safety related and economic. However, the complexity of large 
structures and the difficulty in accessing them makes the use of commonly existing 
conventional Non Destructive Evaluation (NDE) methods such as visual inspection and 
instrumental evaluation methods, impractical. An effective alternative in Structural Health 
Monitoring (SHM) is the use of methods that depend on Vibration-Based Damage 
Identification (VBDI) techniques. These methods use limited instrumentation to detect the 
changes in the measured modal characteristics of the structure, that is, its frequencies and 
mode shapes. These characteristics change with the physical properties of the structure 
(stiffness, mass and damping matrices) and can be used to help find the location and extent of 
damage. Optimal matrix update method is one of the VBDI algorithms that depends on finite 
element modelling (FEM) of the structure and is therefore referred to as model-based damage 
identification algorithm. The FRF differences method is also one of the VBDI techniques that 
depends on the directly measured frequency response functions data and is therefore referred 
to as non model-based or modal- based damage identification algorithm. However, VBDI  
algorithms still faces a number of challenges that have not been fully resolved. Some of these 
challenges are highlighted through modal tests designed to provide estimates of damage in a 
3D eight-bay free-free frame. Details of tests on a healthy structure as well as on a structure 
in which predetermined damage has been introduced are presented. A proposed algorithm 
combining the aforementioned model-based and non-model based methods is introduced to 
improve the reliability of damage detection. The algorithm is first tested through numerical 
simulation to predicting damage on the basis of modal test data and the predictions are 
compared with the known damage.   
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NOMENCLATURE 
 
K          System stiffness matrix. 
M         System mass matrix. 
δK        Perturbations to the system stiffness matrix. 
ϕi         The ith mass-orthonormal mode shape 
λi         The ith eigenvalue (squared frequency). 
δϕi       The change in the ith mode shape. 
δλi       The change in the ith eigenvalue. 
ϕdi        The ith mode shape of damaged structure 
FRF     Frequency response functions 
 
INTRODUCTION 
 
Health monitoring of structures and the detection of damage at the earliest possible stage 
have become important issues in almost all areas of application, ranging from aerospace to 
civil engineering. Early detection of damage to civil engineering structures has assumed a 
special importance because of the aging infrastructure, increased demand, complexity and 
size of some of the modern structures, and lack of long-term experience with innovative 
materials and structural shapes that may be incorporated in a structure. 
The traditional methods of damage detection include visual inspection and non-destructive 
instrumental evaluation. These methods require that all portions of the structure are 
accessible. This may be impractical, particularly when the structure is complex and/or large 
in size. Certain types of damage, for example, internal delamination and fibre fracture in a 
composite, and fracture of prestressing strands in a prestressed concrete girder cannot be 
detected by visual inspection. Several non-destructive damage detection techniques have 
been developed to detect damage that may not be visible to the naked eye. Such techniques 
include, for example, acoustic methods, magnetic field methods, radiography, and eddy 
current methods. Application of such methods requires prior knowledge of the possible 
damage sites and access to such sites. Also, the results of instrumental evaluation are often 
inconclusive or difficult to evaluate. 
A comparatively recent development in the health monitoring of civil engineering structures 
is vibration-based damage detection. Vibration characteristics of a structure, that is, its 
frequencies, mode shapes, and damping are directly affected by the physical characteristics of 
the structure including its mass and stiffness. Damage reduces the stiffness of the structure 
and alters its vibration characteristics. Therefore, measured changes in the vibration 
characteristics can be used as indicators of the overall integrity of the structure and means of 
finding the location and extent of damage. 
Vibration based assessment offers several advantages, one of which is that the location of 
damage need not be known in advance. Also, the sensors required to measure the vibration 
characteristics need not be located in the vicinity of the damage. In addition, a limited 
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number of sensors can at times provide sufficient information to locate the damage and assess 
its severity, even in a large and complex structure. However, in practice there are a number of 
limitations associated with vibration-based damage assessment. Some of them are 
summarized in the following paragraphs. 
Vibration-based damage identification technique (VBDI) would be successful only if damage 
results in a degradation of the stiffness of the structure. There are, however, instances where 
damage may not cause a change in stiffness. For example, failure of strands in prestressed 
concrete elements may still leave the section uncracked with no change in stiffness.  
Vibration characteristics are global properties of the structure, and although they are affected 
by local damage, they may not be very sensitive to such damage. In particular the changes in 
the lower frequencies and mode shapes caused by local damage are often insignificant. The 
effect of damage on higher modes may be more substantial, but such modes are difficult to 
measure with accuracy. 
It is impractical to measure the mode shape components along all of the independent degree 
of freedom (d.o.f.) of a large structure. The measured mode shapes are thus incomplete. The 
identification of a possible damage site and severity of damage on the basis of a change in 
global properties derived from measurements at a limited number of sensor locations is a 
problem that has a non-unique solution. Sophisticated and complex mathematical techniques 
including non-linear programming need to be employed to obtain the most probable solution. 
The optimal matrix update method is one of the VBDI algorithms that depend on finite 
element modeling (FEM) of the structure in which a constrained non linear optimization 
problem is solved and is therefore referred to as model-based damage identification 
algorithm. Among the identification algorithms that independent on the FEM is the FRF 
differences method. This method depends on the directly measured frequency response 
functions data and is therefore referred to as non model-based or modal- based damage 
identification algorithm. 
 
The detection methods that are currently available cannot deal with situations where the 
damage introduces nonlinearity in the structure. Such nonlinearity may, for example result 
from the presence of cracks or from slippage along connections.  
Global vibration characteristics are often affected by phenomena other than damage, 
including environmental effects, such as change of mass caused by water waves and snow 
accumulation, and thermal effects caused by temperature variation. The boundary conditions 
in a structure can have a significant effect on its stiffness, and if these boundary conditions 
are prone to change with the age of the structure, they may lead to a change in the vibration 
characteristics even when there is no damage in the structure. 
 
 A large number of research studies on VBDI have been reported in the literature [1]. A new 
damage identification algorithm is introduced to predict the location and severity of damage 
and the predicted values are assessed for their accuracy. The present study focuses on the 
evaluation of that algorithm which combine the aforementioned model-based and non-model 
based methods meant to improve the reliability of damage detection. To account for the 
complexity of structures that is common between aerospace and civil application, vibration-
based damage detection procedures were carried out on a 3D aluminium frame. The frame is 
first tested to obtain the baseline vibration characteristics of the undamaged structure. A finite 
element model of the structure is constructed and refined so that the analytical properties 
derived from the model match the measured properties. Damage of specified severity is now 
introduced in the specimen at predetermined locations. Next, the altered vibration 
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characteristics are measured. Complete details of the testing have been presented by Amin 
[2]. 
 
The present paper reports in brief on the first part of the study, which is related to a computer 
simulation meant to test the reliability of the proposed algorithm to predicting damage on the 
basis of modal test data and the predictions are compared with the known damage. Details of 
the test specimen are provided. A 3D eight-bay free-free frame model is used to obtain the 
first few non-rigid-body modes shapes and corresponding frequencies of the structure, also 
the frequency response functions are analytically generated at several degrees of freedom. 
Specified damage is introduced in the model where the mode shapes and frequencies of the 
damaged model are computed as well as the FRF's. The damaged vibration characteristics are 
then used to predict the damage.   
 
 
THEORETICAL BACKGROUND FOR THE PROPOSED ALGORITHM 
 
Optimal Matrix Update Method 
 
The theoretical basis for the optimal matrix update methods has been extensively covered in 
the literature [1, 3 &4]. A brief description is presented here for the sake of completeness. 
 
Vibration-based damage detection algorithms use the basic eigenvalue equation, which for 
the healthy structure is given by 
 

iφiλiφ MK =                                                            (1) 

Damage in the structure is assumed not to cause any changes in the system mass matrix, but 
alters the stiffness matrix. A change in the stiffness would also change the frequencies and 
the mode shapes. The eigenvalue equation for the damaged structure is thus given by 
 

( )[ ] [ ] 0ΜδΚΚ =++−+ iiii δφφδλλ                     (2) 
 
On multiplying Equation 2 by ϕiT, using Equation 1 and its transpose and rearranging terms 
we get 
 

di
T
iidi

T
i δλ ϕϕϕϕ MδK =                                             (3) 

 
The changes in stiffness matrix δK can be expressed as the weighted sum of the stiffness 
matrices of the damaged elements. The weighting factors, which are the unknown in the 
problem, define the severity of damage in the affected elements. If the reduction in the 
stiffness of element j is expressed as βjkj, we have  
 

∑−=
j

jβ jkδK                                                        (4) 

 
Substitution of Equation 4 in Equation 3 gives 
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di
T
iijdi

n

1j

T
i δλβ ϕϕϕϕ Mk j −=∑

=

                                 (5) 

or 
                                         

δλβ −=D                                                                (6) 
Where n is the number of elements, D is an m by n matrix whose elements 
are di

T
idi

T
iij /d ϕϕϕϕ Mk j= , β is the n-vector of the unknown changes in elemental stiffness 

matrices, δλ is the m-vector of measured eigenvalue changes, and m is the number of 
measured modes. In general m will be less than n so that the problem defined by Equation 6 
is underdetermined and has an infinite number of solutions. In order to obtain a unique 
solution an optimization problem needs to be solved, in which a selected objective function is 
minimized subjected to a specified set of constraints. In matrix update algorithms the 
quadratic norm of the stiffness changes given by J = βTβ is minimized. Equation (6) defines 
one set of constraints on the problem. For the damaged structure the following additional 
constraints must be placed on the stiffness changes 
 
                                       10 ≤≤ β                                                          (7) 
 
The problem defined above is a nonlinear optimization problem. In the present work the 
problem is solved by using an algorithm available in computer software MATLAB. The 
optimization routine used is based on a sequential quadratic programming method. 
 
The number of measured modes, m, would usually be much smaller than the number of 
elements, n. In addition in a modal test it is often impractical to measure the response at all of 
the DOF included in a finite element model. One way to compare the analytical and 
experimental data is to reduce the DOFs in the analytical model or to expand the measured 
mode shapes to match the FEM DOFs.  Reduction of DOFs in the analytical model can be 
carried out by using one of the standard methods, such as Guyan reduction, dynamic 
condensation, and system equivalent reduction expansion process (SEREP) [5].  The SEREP 
technique was used in the present work. 
 
 
Frequency Response Function Differences 
 
 Many non model-based identification methods have been proposed to identify damage 
location and extent. These Methods can be divided into two main categories: Modal-data 
based Methods, and FRF-data based Methods. Modal-data based Methods have some 
shortcomings [6]. Because the modal data are indirectly measured test data, they could be 
contaminated by measurement errors and modal extraction errors. In addition, complete 
modal data cannot be obtained, practically, in most cases because this often requires a large 
number of sensors. In contrast with the modal data, the FRF-data will not be contaminated by 
modal extraction errors because the FRF-data are directly measured test data. Furthermore, 
the FRF-data can provide much more damage information in a desired frequency range than 
modal data because modal data are extracted mainly from a very limited number of FRF data 
around resonance [7]. Due to the apparent advantages of FRF-data over the modal data, it 
seems to be very promising to use measured FRF-data for identifying damages within a 
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structure. Thus, motivated from the advantages of FRF-data, in the present study a Damage 
Detection Index DDI that interprets the differences between the FRF's measured for the 
healthy structure and the FRF's of the damaged structure can be used to detect the damaged 
region. Napolitano et al [8] have used DDI to localize damage in a typical aeronautical 
structure where five response points were included. The DDI is given by the following 
expression 
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Where FIi and FDi are the amplitude of the FRFs of the healthy and damaged structure 
respectively, N is the number of the intervals the sweep rang is divided into, and n is the 
number of the points in each interval FRFs are sampled in. In the present study the DDI is 
modified to include the whole frequency band of interest from which the N = 1. that 
modification insures that all the FRF' data is included, consequently the modified DDI is 
reduced to the form: 
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This non-model-based technique is characterized by its simplicity and speed in data 
acquisition and elaboration since it is free from modal analysis, and is able to perform a real-
time monitoring of in-service structures. For numerical simulation purposes to validate the 
ability of the DDI, it was crucial to analytically synthesize the FRF's of both healthy and 
damaged structures, the theoretical basis for creating the analytical FRF's can be found in 
Maia et al [9] or [10]. This method is derived from the equation of motion of the forced 
undamped multi-degree of freedom system, which is represented by: 

 
( ){ } { } titi eFeXMK ωω =ω− 00

2             (10) 
 
canceling the tie ω  term and solving for the response vector { }0X  we get; 
 

{ } ( )[ ] { }0
1

0 FZX −ω=                                (11) 
 

where ( )MK)(Z 2ω−=ω  is an nxn matrix, called the mechanical impedance. Thus given the 
stiffness matrix K and mass matrix M for any structural system, the vector of nodal 
displacements can be obtained as  
 

{ } ( )[ ]{ }00 FX ωα=                            (12) 
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where [ ])(ωα  is called receptance frequency response function (FRF), and it relates the 
output (displacement in this case) per unit of input (excitation force in this case) at each 
frequencyω .  
 
 
 
DESCRIPTION OF THE TEST STRUCTURE 
 
The test specimen used in this study is an erectable aluminium space frame made from 
commercially available hardware (Meroform M12). The hardware consists of standardized 
aluminium nodes and aluminium tube members of several different sizes. Fig. 1 shows details 
of the nodes and the tube. The design of the joint node allows the frame to be assembled into 
numerous configurations in any of three orthogonal directions, thereby providing structures 
with varying complexity. The members have threaded solid steel end connectors, which when 
tightened into the node also clamp the tube by means of an internal compression fitting. This 
feature allows any of the frame members to be replaced by another one of a different 
(smaller) size without disassembly of the entire unit, which is very useful in simulating 
damage in any of the members. 
A finite element model of the space frame is shown in Fig. 2. The frame consists of eight 
bays, each of which is a cube with 707 mm long sides. Since the modal tests are to be 
conducted in a free-free condition, no supports are identified in the model. All tubes in the 
vertical (x-y) planes are 30 mm in diameter and have a wall thickness of 1.5 mm. Tubes in 
the horizontal (x-z) planes, other than those already included in the vertical planes, are 22 
mm in diameter and 1.0 mm thick. Lumped masses, each of 1.75 kg, are added to nodes 4, 9, 
25, 28, and 36. Masses of 2.75 kg are added at nodes 6, 17, and 30. Each member of the 
space frame is initially represented by five 3D beam elements. The internal d.o.f. in the 
element are then condensed out by using Guyan reduction. The resulting finite element model 
of the space frame possesses 216 d.o.f. Analytical studies showed that the rotational d.o.f did 
not contribute significantly to the strain energy of the structure and could be condensed out 
without introducing significant errors in the calculated frequencies and mode shapes. All of 
the results presented here are thus based on measurement of response along only a set of 
selected translational d.o.f. The system equivalent reduction expansion process (SEREP) [5] 
is used to condense out the d.o.f not used. 
 
 
FINITE ELEMENT MODEL  
 
The numerical simulation has been applied to a simplified FEM of the eight-bay space frame 
used for the experimental verification, which described in the previous section. The physical 
properties of the frame components are listed in Table (1). The elements are modeled using a 
3D beam element, which has six translational and six rotational DOFs. The joints are 
modeled as being rigid. The masses of the spherical nodes, the difference between the actual 
mass of the element and that derived on the basis of uniform mass density, and the mass of 
the instrumentation attached to each node are accounted for by attaching equivalent lumped 
masses at the joints. To simulate the effect of the payload, added lumped masses, each having 
mass of 1.75 kg are added to nodes 4, 9, 25, 28 and 36 while masses of 2.75 kg are added to 
nodes 6, 17 and 30. For simplicity, rotational inertia effects of the eight lumped masses are 
ignored and the masses are modeled as point masses. The FEM connectivity is shown in Fig. 
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2 and the elements connectivity is listed in Table 2. The model has a total of 216 DOFs. For 
simplicity, the mass of the element is accounted for by using a lumped mass formulation. 
 
  
DAMAGE IDENTIFICATION PROCEDURES 
 
The study focused on a critical evaluation of the current methods of vibration-based damage 
identification, particularly those that known as model based methods and non-model based 
methods as well. The objective of this study is to develop and refine an integrated VBDI 
structural health monitoring procedure that combines a various analytical and experimental 
approaches. The algorithm adopted in this study is expected to mitigate some of the common 
difficulties in VBDI techniques and identify possible damage location and severity at single 
and multiple sites. These procedures are summarized as follows; 
Step 1: The elemental stiffness and mass matrices are formulated and used to assemble the 
216 DOF FEM of the undamaged structure. The modal parameters (natural frequencies and 
mode shapes) are then determined through the solution of the eigenvalue problem.  
Step 2: Different damage cases were simulated by reducing the stiffness of the damaged 
elements. The FEM of the damaged structure is constructed to calculate the modal parameters 
of the damaged structure. Random errors are then applied to the damaged natural frequencies 
and mode shapes to simulate the practical situation. 
Step 3: A selection for the optimum and minimum number of DOF's to serve as measurement 
points is carried out according to Amin [2] and found to be equal to 75 DOF's. The set of the 
identification modes are selected based on the strain energy stored in each mode as the first 
three non-rigid body modes were selected. 
Step 4: The FRF's of the healthy and damaged structures at all the selected measurement 
DOF's due to excitation at two different points (2_y and 33_z) were created analytically using 
equations (10, 11&12). Random errors were then applied to the healthy and damaged FRF's 
to simulate the practical situation as well. 
Step 5: The damaged region is determined using the analytically created FRF's before and 
after the damage since the damage detection indices were calculated using equation (9) to 
determine the affected nodes. Consequently the elements that are connected to these nodes 
were considered as candidates for damage. 
Step 6: In step 3, only 75 DOF's of  the 216 were considered as measuring points.  
Consequently, the SEREP transformation matrix is formulated to reduce FEM matrices from 
216 × 216 to the size of  75 × 75 to calculate the mode shapes of the healthy and damaged 
structure preserving the frequencies unchanged during the reduction. 
Step 7: The reduced mode shapes of the undamaged and damaged structures are normalized 
with respect to the reduced mass matrix. Then orthogonality check is performed to pair the 
corresponding undamaged and damaged modes to be included in the identification process. 
Step 8: The optimization problem is formulated using optimality criterion based on equations 
from (1) to (7) to identify damage location and extent. In this step all the 109 elements of the 
structures were considered as candidates for damage and included in the optimization 
problem as design variables.  
Step 9: The optimization problem is reformulated again where the candidate elements 
determined in step 5 were included in the optimization problem as design variables. This step 
illustrates the effect of isolating the damaged area using FRF difference on the performance 
of the optimal matrix update in identifying different possible damaged scenarios.  
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The analytical part will focus on two main issues: (1) A simple strategy was first formulated 
for developing and updating the FEM of the structure used in the validation of the approach, 
Amin [2]. (2) More than one technique (FRF differences and optimal matrix update) is then 
combined to improve the efficiency of damage identification algorithms in the presence of 
modeling and measurement errors. The proposed algorithm is then validated by applying it to 
a realistic large-scale structure. 
 
In order to investigate the feasibility of the proposed algorithm, for which the theoretical 
background was presented earlier, a series of computer simulation and sensitivity studies 
were performed. A series of  MATLAB codes were developed in order to implement the 
procedures of the algorithm. The algorithm is used to identify different levels of damage at 
single and multiple sites. To simulate real life structural health monitoring conditions, 
simulated random errors are introduced to the analytical FRF's and the analytical modal 
parameters (frequencies and mode shapes) for both healthy and damaged cases using 
MATLAB RAND function. This step is meant to test the ability of the algorithm to detect 
damage in the presence of the expected modeling and measurement errors. Samples of results 
of the computer simulation studies, which demonstrate the feasibility of different steps of the 
proposed algorithm, are presented here in. 
 
 
DISCUSSION AND CONCLUSIONS 
 
To test the feasibility of the proposed identification algorithm presented here, different 
damage cases are considered in the computer simulation. The damage cases included three 
groups; sever, mixed and light damage cases at single and multiple sites. Table 2 include 
description for each group of the different damage scenarios. 
  
In the present study, the existence of uncertainty parameters that may shadow the 
performances of the identification algorithm had account for. Numerical random errors 
generated by MATLAB were included in the frequencies and mode shapes to simulate 
modeling and measurement errors applied to the modal parameters of the healthy and 
damaged structure as well. The values of random vector errors varying between 0.5 and 2 % 
are applied to the frequencies, while errors between 1 and 10 % are applied to the mode shape 
elements. The FRF's data is also corrupted with simulated random errors to simulate 
measuring errors.  
 
Results of some of the damaged cases studied during the computer simulation are discussed 
here. Table 3 illustrate the changes in frequencies for each of the damage cases. For each of 
the damaged scenarios group, the FRF difference graphs are shown in Fig. 3 for illustration. 
Damage identification results for each damage case are shown in Fig. 4 to Fig. 6. For each 
damage case of the damage scenarios, Figures labeled (a) show the damage identification 
results using all the 109 frame elements as candidates for damage in the optimization 
problem. Figures labeled (d) show the damage identification results using only the candidate 
elements resulting from damaged region isolation in the optimization problem. Figures 
labeled (c) and (d), show the DDI values due to excitation at pts. (2-Y) and (33-Z) 
respectively related to the affected nodes. These figures used to isolate the damaged region.  
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 In the presence of simulated random errors, the proposed VBDI algorithm predicts the 
damage location and severity quite correctly for the severe damage cases at single and 
multiple sites (Fig. 4, 5 &6). In the lighter damage case (Fig. 7 & 8) some of the identified 
members are not those with damage, but are in the same vicinity. In the mixed damaged 
cases, (Fig. 9 & 10) show the prediction of damage for different severities at the same 
damaged case. The prediction is accurate, however some of the severity values was 
underestimated. The FRF difference technique is applied to identify the damaged region, and 
the process of matrix update optimization repeated with the candidate damaged elements 
restricted to the region identified in the previous step concluded from figures labeled (c) and 
(d). Comparing the figures labeled (a) and labeled (b) proves the influence of the isolation of 
damaged region as the damage estimate is significantly improved. The use of FRF difference 
technique gave the confidence in the predicted damage elements since it is a real 
measurements and not affected by any source of uncertainty even in the presence of 
simulated random measuring errors.    
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Table 1: Nominal properties of the frame components 

 
 
 
 
 
 
 
 
 
 
 

Table 2: Damage scenarios for different groups 
 

Damage 
Group 

Damage 
Case   

Damaged 
Elements

Elements 
Connectivity

Damage 
Severity 

% 
DS1 98 18-21 80 

DS2 38 
102 

20-24 
24-27 

80 
80 Sever 

DS3 
33 
37 
41 

15-19 
19-23 
23-27 

80 
80 
80 

DL1 38 20-24 50 
Light 

DL2 33 
37 

15-19 
19-23 

50 
50 

DM1 37 
38 

19-23 
20-24 

80 
50 

Mixed 
DM2 

38 
42 
78 

20-24 
24-28 
20-22 

50 
80 
80 

 
 

Table 3: Changes in the frequencies caused by damage 
 

Sever damage Group Light damage Group Mixed damage Group 
DS1 DS2 DS3 DL1 DL2 DM1 DM2 

Healthy 
Modes 

 
(Hz) 

Freq. 
(Hz) 

% 
∆ω 

Freq. 
(Hz) 

% 
∆ω 

Freq. 
(Hz) 

% 
∆ω 

Freq. 
(Hz) 

% 
∆ω

Freq. 
(Hz) 

% 
∆ω

Freq. 
(Hz) 

% 
∆ω 

Freq. 
(Hz) 

% 
∆ω

49.40 45.80 7.3 49.35 0.1 47.02 4.8 49.04 0.7 48.97 0.9 46.14 6.6 45.68 7.5
52.96 52.82 0.3 44.12 16.7 42.95 18.9 51.36 3.0 50.62 4.4 49.89 5.8 48.40 8.6
58.10 58.10 0.0 56.04 3.5 54.94 5.4 57.37 1.3 55.85 3.9 53.39 8.1 55.89 3.8

 
 

Elements per 
plane 

Dimension 
(mm) 

Area 
(mm2) 

Inertia 
(mm4) 

wt 
(gm) 

Aluminium node 46 diameter - - 80 
Struts in (x-y) 707x30x1.5 134.3 13673 350 
Struts in (x-z) 707x22x1.0 65.97 3645 230 

Diagonal in (x-y) 1000x30x1.5 134.3 13673 450 
Diagonal in (x-z) 1000x22x1.0 65.97 3645 275 
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Fig. 1 Meroform aluminium tube, dimensions 
 

 
 
 
 

 
 

 
 

Fig. 2 : Finite element model of the space frame 
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Fig. 3(a) Comparison between analytical FRFs calculated at DOF (23-x) due to excitation at 

DOF (2-y) for damage case DS3. 
 

 
Fig. 3(b) Comparison between analytical FRFs calculated at DOF (20-x) due to excitation at 

DOF (2-y) for damage case DL1. 
 

 
Fig. 3(c)Comparison between analytical FRFs calculated at DOF (24-x) due to excitation at 

DOF (2-y) for damage case DM2. 
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Fig. 4 (a) Damage identification results for damage case DS1 using 109 elements 
 
 
 
 
 

 

 
 
 

Fig. 4 (b) Damage identification case DS1 based on damaged region identification using DDI 
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Fig. 4 (c) DDI values case DS1 using FRFs  at translational x-axis due to excitation at (2-y) 
 
 
 
 
 

 
 
 
 

Fig. 4 (d) DDI values case DS1 using FRFs  at translational x-axis due to excitation at (33-Z)
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Fig.5 (a) Damage identification results for damage case DS2 using 109 elements 

 

Fig. 5 (b) Damage identification case DS2 based on damaged region identification using DDI 

 
Fig. 5 (c) DDI values case DS2 using FRFs  at translational x-axis due to excitation at (2-y)  

 
Fig. 5 (d) DDI values case DS2 using FRFs  at translational x-axis due to excitation at (33-Z)  
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Fig. 6 (a) Damage identification results for damage case DS3 using 109 elements 

 

 
Fig. 6 (b) Damage identification case DS3 based on damaged region identification using DDI 

 
Fig. 6 (c) DDI values case DS3 using FRFs  at translational x-axis due to excitation at (2-y) 

 
Fig. 6 (d) DDI values case DS3 using FRFs at translational x-axis due to excitation at (33-Z) 
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Fig.7 (a) Damage identification results for damage case DL1 using 109elements 

 

 
Fig. 7 (b) Damage identification damage case DL1 based on region identification using DDI 

 
Fig. 7 (c) DDI values case DL1 using FRFs  at translational x-axis due to excitation at (2-y) 

 
Fig. 7 (d) DDI values case DL1 using FRFs  at translational x-axis due to excitation at (33-Z) 
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Fig. 8(a) Damage identification results for damage case DL2 using 109elements 

 

 
Fig. 8(b) Damage identification case DL2 based on region identification using DDI 

 
Fig. 8 (c) DDI values case DL2 using FRFs  at translational x-axis due to excitation at (2-y) 

 
Fig. 8 (d) DDI values case DL2 using FRFs  at translational x-axis due to excitation at (33-Z) 
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Fig. 9 (a) Damage identification results for damage case DM1 using 109elements 

 

 
Fig. 9 (b) Damage identification case DM1 based on region identification using DDI 

 
Fig. 9 (c) DDI values case DM1 using FRFs  at translational x-axis due to excitation at (2-y) 

 
Fig. 9 (d) DDI values case DM1 using FRFs  at translational x-axis due to excitation at (33-Z) 
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Fig. 10 (a) Damage identification results for damage case DM2 using 109elements 

 
Fig. 10 (b) damage identification case DM2 based on region identification using DDI 

 
Fig. 10 (c) DDI values case DM2 using FRFs  at translational x-axis due to excitation at (2-y) 

Fig. 10 (d) DDI values case DM2 using FRFs at translational x-axis due to excitation (33-Z) 


