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ABSTRACT 

C 	 In this paper, an enhanced algorithm for radar threat identification and based on the 

artificial neural network (ANN) is proposed. Four radar parameters are used as the inputs for 

the suggested ANNs. These parameters are: 1) the radio frequency, 2) the pulse repetition 

frequency, 3) the pulse width, and 4) the scan rate. A lot of work has been done to select the 

suitable structure of the ANNs. The chosen ANNs achieve minimum sum square errors and 

short time training. Also, they provide the highest success rate over all the examined 

networks. It is found that, one can choose a single hidden layer ANN structure with 12 nodes 

in the hidden layer or a double hidden layer with six nodes in each hidden layer. These ANN 

provide 100% success rate. Due to the simplicity of the ANNs structure, it can be used for on-

line analysis. To use the developed ANN algorithms for radar threat identification in the on-

line analysis, the main requirement is to finish the training phase beforehand. 
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I. Introduction 
Radar is a key sensor in most modern weapon systems. Its ability to function in all 

weather environments at long ranges is unmatched by any other available sensor. Thus, it is 

used extensively in control and guidance of weapon systems. Hence, it is a prime target for 

electronic warfare. There are many classifications for radar types [1] from different points of 

view. First, according to the radar location (Land-based, Naval, Airborne, and Space-based 

radars). Second, according to the radar application (Surveillance, Target acquisition, Weapon 

control, Aircraft control, Missile guidance, Navigation and Mapping radars). Third, according 

to the design principles (2-D search, 3-D search, Moving target indicator, Pulse Doppler and 

Special purpose radars). 
Knowing the correct type of the intercepted radar signal is important in Electronic Intelligence 

(FLINT) applications for two reasons. First, helps to determine the threats and the priority. 

Second, determines the suitable counter actions against these threats. In this paper some 

enhanced artificial neural network (ANN) algorithms are used for solving the problem of 

radar threats identification. In the ANNs approach, all the extracted radar parameters are 

considered simultaneously. So, the time order of applying the extracted parameters does not 

affect on the probability of correct decision about the radar type. For that reason, it is 

suggested that the use of the ANN approach in radar identification process may have better 

performance than the decision theoretic approach (threat libirary). The ANNs are successful in 

many practical applications including control [4], signal processing [5], pattern recognition 

[6], modeling [7], manufacturing processes [8] and modulation recognition process [9]. In the 

next section we introduce the suggested structure of the ANN for the radar types identification 

process. In Sec. III, the choice of ANN architectures and the method of speed up the 

computations are introduced. A summary of the results of the behavior of ANN in radar 

identification problemis introduced in Sec.IV . Finally, the paper is concluded in Sec. V. 

H. Suggested Structure for ANN Based Radar Types Classification 
The developed algorithm based on the ANN approach is composed of three main 

blocks. These are: A) the pre-processing in which the required radar parameters are extracted 

from every realization as well as the data sets used in training and test phases of the ANNs are 

determined, B) training and learning phase to adjust the identifier structure, and C) test phase 

to decide about the type of the intercepted signal. 
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A) The Pre-processing 

In this work, the identification of radar types depends on comparison of the intercepted radar 

parameters with the parameters of well-known radars. These parameters include, carrier 

frequency, pulse repetition frequency, pulse width, and antenna scan rate. It is worth noting 

that the extraction of the suitable radar parameters should be finished in a pre-processing 

stage. Assuming that there are Ms data sets available about each of the radar of interest. Some 

of the available Ms data sets are used in the training phase to adjust the ANN structure, while 

the others are used in the test phase to measure the performance and to decide about the 

intercepted radar type. In the proposed ANN algorithm, from each simulated radar type (500 

realizations) the first 100 realizations are used in the training phase. Meanwhile, in the test 

phase, all the simulated realizations are used to measure the performance. 

Some suggested methods for measuring the specified radar parameters are presented in 

this paper. The radio frequency of a signal can be estimated in the frequency domain, using 

either the periodogram or the frequency-centred method. In the periodogram method, the 

carrier is estimated as the location of the largest peak of the average spectrum. As the 

spectrum of radar signals have a carrier component, this method may be good for carrier 

frequency estimation but it requires long signal duration (average). Also, the carrier frequency 

can be estimated using the frequency-centred method [9] as 

(01 
= 	 

E (01 
1=1 

where {Z(i)} is the squared spectrum sequence of the analytic signal associated with a 

real signal. Also, the carrier frequency can be estimated in the time-domain using the zero- 

crossings of the RF signal. So, the carrier frequency can be estimated [9] as follows 
Mx -1 

(2) 
Y (i) 

where Mx is the number of zero-crossings in the received radar pulse and {y (i)} is the zeros-
crossing difference sequence. 

There are many practical techniques for pulse repetition interval and pulse width 

estimation [10]. It is well known that the radar signals have (Sin (x) / x)2 spectrum shape 

with main lobe width equals to twice the reciprocal of the pulse width and the spectral lines 

separation equals the PRF. Thus, by observing the averaged spectrum one can estimate the 

(1) 
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PRF and PW of a radar signal. Furthermore, [10] presents three methods for symbol transition 

sequence extraction and they can be used for automatic pulse width and pulse repetition 

interval measurement. These are: 1) the zero-crossing, 2) the derivative and 3) the Wavelet 

transform methods. After determining the pulses transitions sequences by one of these three 

methods, the differences between successive transitions are calculated. For fixed radar 

parameters, the results will be one of two values. The smallest one is corresponding to the 

pulse width and the largest one is corresponding to the pulse repetition interval. 

Ten radar types are selected from [11] to check the ability of using the developed 

ANN algorithm in radar types identification problem. The parameters of the radar types under 

consideration are listed as a sample library in Table 1. It is clear that, some of the parameters 

have fixed values (single or a list of values) such as the pulse repetition frequency, the pulse 

width, and the scan rate. On the other hand, the radio frequency takes a range of values. The 

specified parameters for the selected radars are generated with some tolerance (10%) to 

increase the degree of realism. 

Table 1: List of Radar Parameters of Interest. 

Types Radio 
Frequency 

(MHz) 

Pulse Repetition 
Frequency (Hz) 

Pulse Width 
(P sec.) 

Scan Rate 
(RPM) 

Radar 1 1250 —1350 774 13, 26, 39 6, 12, 15 
Radar 2 1250 —1350 667, 800 2.9, 3.5 20, 22 
Radar 3 2700 — 2900 300, 405 2 7.5 

Radar 4 2900 — 3100 250 6.5 6 
Radar 5 3100 — 3400 2793, 5050 10.75 12,20 
Radar 6 9275 — 9475 200, 4500 0.8, 1.5 24 
Radar 7 10000 —10250 8600 6.25 1, 2 
Radar 8 9000 —13500 1900, 205 0 0.5, 1.75 16, 44 
Radar 9 1250 —1350 244 6 3.3, 5, 6.6, 10 
Radar 10 9320 — 9430 200, 300, 800 0.38, 1, 2.5 4.5, 8,12 

B) Training Phase 

The objective of training a network is to find the optimum weights and biases to 

minimize the error between the network output and the correct response. There are many types 

of learning methods to achieve the minimum error [12]. These are error-correction learning 

(back propagation), Hebbian learning, competitive learning, and Holtzman learning. A popular 

criterion is the minimum mean squared error between the network output and the correct 

response. Also, there are many learning paradigms such as supervised, unsupervised, and 
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self-organized learning [2]. In supervised learning, the training data must be provided in terms 

of input/output pairs denoted as [X, T] = { [xl, tl], [x2, t2], , [xL, tL] }, where xi is a (Ix 1) 

vector and I is the number of nodes in the input layer, ti is a (Oxl) vector, 0 is the number of 

nodes in the output layer, and L is the number of training pairs. Both the back propagation and 

the supervised learning paradigm are used in all the developed ANN algorithms introduced in 

this paper. The chosen ANNs are adaptively trained using momentum back propagation 

learning. In this paper, all the networks used are adaptively trained to reduce the sum squared 

error, SSE, defined in terms of the difference between the calculated output and the actual 

target. The training SSE for the two network types is defined as follows 

1- In the network with single hidden layer, the SSE is defined by 

SSE = 	E (i ,i), 
1=1 j=1 

where, 

E = (T - A2 )2 

T is the actual target and A2 is the calculated target and is given by 

A2= W2 Log_sigmoid {W1 Pin + B1} + B2 

W1 and B1 are the weights and biases of the hidden layer containing S nodes, W2 and B2 are 

the weights and biases of the output layer, and Pin is the input data vector. The activation 

functions associated with the hidden layer is the Log_sigmoid function [9] and that associated 

with the output layer is the Linear function [9]. Let the number of realizations used for 

training be L. The dimensions of all the matrices and vectors used can be expressed as 

follows: Pin, W 1 , Bl, bl, Al, W2, B2, b2, and A2, are respectively (IxL), ( SxI ), ( SxL), 

(Sxl), ( SxL ), (OxS), (OxL), (0x1), and (OxL) matrices and Bl is given by [bl, bl], and 

B2 is given by [b2, 	b2]. 

2- For the double hidden layer, the SSE is as given by (3) but (4) is re-expressed by 

E = ( T - A3 )2 	 (6) 
Where, A3 is the calculated target and it is given by 

A3=Log_sig { W3 [Linear { W2 [Log_sig {W1Pin+B1 } +B2] I ]+B3 } 	 (7) 
W I and B 1 are the weights and biases of the first hidden layer containing S1 nodes, W2 and 

B2 are the weights and biases of the second hidden layer containing S2 nodes, W3 and B3 are 

the weights and biases of the output layer, and Pin is the input data vector. The activation 

functions associated with the first hidden layers and the output layer are the Log_sigmoid 

(3)  

(4)  

(5)  
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function [9] and that associated with the second hidden layer is the Linear function [9]. Let the 

number of realizations used for training be L. The dimensions of all the matrices and vectors 

used can be expressed as follows: Pin, Wl, B1, bl, Al, W2, B2, b2, A2, W3, B3, b3, and A3 

are respectively (IxL), ( S10), (S1xL), (Slx 1 ), ( S 1 xL), (S2xS1), (S2xL), (S2x1), (S2xL), 

(OxS2), (OxL), (0x1), and (OxL) matrices and B1 is given by [bl, bl], B2 is given by 

[b2, b2]. and B3 is given by [b3, b3]. The outputs of the training phase are the weights 

and biases of the trained network that will be used in the test phase. The training phase 

procedure of the networks with single and two hidden layers are depicted in Fig. 1. 

C) Test phase 
In the ANN test phase, the only data needed from the trained networks are their weights 

and biases. The radar parameters of the set of realizations to be used in the test phase are 

introduced to the trained network. Generally, the test phase comprises the following steps: 

• The actual target matrix, T, is defined for radar types as an identity matrix. 

• For every realization of the test group, the corresponding output vector, A2 or A3, 

based on the number of hidden layers used, is computed. 

• The element corresponding to the maximum value in the output vector is set to 1 and 

the other elements are set to 0. 

• The modified output vector should correspond to one of the columns of the matrix T 

and this correspondence is taken as the deduced radar type. 

• Repeat the whole procedure for each realization in the test group. 
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Figure 1. Training phase procedure of the ANN algorithms 

HI. Choice of ANN Architecture and Speed up the Computations 

The artificial neural network based radar types identification process involves trying 

different architectures, learning techniques and training parameters in order to achieve an 

acceptable success rate. The selection of the network parameters is based on choosing the 

structure that gives minimum sum-squared errors SSE in the training phase, and maximum 

probability of correct decisions in the test phase. Two network types, based on the number of 

hidden layers, are considered for radar types identification. These are: 1) single hidden layer 

network, and 2) two hidden layers network. A lot of work has been done to choose the 
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optimum network structure. All the tested networks contain a 4-node input layer, a 10-node 

output layer, and they are differ in the number of hidden layers and the number of nodes in 

each hidden layer. It is found that all the tested networks required a long training time, as the 

radar parameter values have different ranges for different radar types. For example; the value 

of the radio frequency for type 1 is of order 109 Hz and of order 1010 Hz for type 7. So, 

normalization of the datasets is used to speed up the training and learning phase. Normalizing 

the datasets reduces the range of their values to be [0 - 1], and this leads to avoiding the 

problem of long training time. However, the normalization should be applied in the test phase 

as well as in the training phase. 

In the training phase, the dataset corresponding to each parameter are normalized 

with respect to the maximum value over all the segments used in the training phase. In the test 

phase, two cases are considered: 1) all the segments, that used in the test phase, are available 

at the beginning (off-line analysis), and 2) not all the segments are available at the beginning, 

only one segment is available at a time, (on-line analysis). Thus, three suggested ways for the 

normalization in the test phase are considered. First, the maximum value is taken over all the 

test data (off-line analysis only). Second, the maximum value of the training data is 

considered as the maximum for the test data. Third, the maximum value of the test data is 

consider as the maximum value of the training data then updating this maximum value by 

comparing the value of the extracted parameter for every segment with the previous maximum 

value considered. Note that, in the third method the initial maximum value is taken as the 

maximum value over the datasets used for training phase. 

For the single hidden layer ANN, the numbers in Table 2 are based on the 100 

realizations for each of the 10 radar types. It is observed that the 8, 10, 11, 12, 14, 15, 18, 20, 

and 25 nodes in the hidden layer of ANNs achieve 100% success rate while the other tested 

networks (4, 5, 6, and 7 nodes in the hidden layer) do not. Dependence of the SSE on the 

number of epochs for different number of nodes in the hidden layer is displayed in Fig. 2. It is 

clear that a 12-node hidden layer for radar types identification is better than choosing any of 

the other tested networks with respect to the SSE. So, a network with 4-node input layer, a 12-

node hidden layer and a 10-node output layer is considered further to evaluate the 

performance of the single hidden layer ANN algorithm. 

For the double hidden layer ANNs, the numbers in Table 3 are based on the 100 

realizations for each of the 10 radar types. It is clear that the networks with (4, 4), (5, 5) (6, 6), 

(7, 7), (8, 8), (9, 9), and (10, 10) in the hidden layers achieve 100 % success rate while, the 

3 
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other tested network (3, 3) does not. Dependence of the SSE on the number of epochs for 

different number of nodes in the hidden layers is displayed in Fig. 3. It is clear choosing the 

(6-6) ANN for radar types identification is better than the other ANNs with respect to the SSE 

and as it requires less training time. So, a network with 4-node input layer, a (6-6) nodes in the 

hidden layers and a 10-node output layer is considered further to evaluate the performance of 

the double hidden layer ANN algorithm. 

Table 2: Overall performance for the single hidden layer trained ANNs 

Number of Nodes 

in hidden layer 

Number of Epochs Minimum SSE Overall probability of 

correct decision 

4 10000 402.01 63.6 

5 10000 327.88 80 

6 10000 249.8 80 

7 10000 171.37 90 

8 10000 109.21 100 

10 10000 34.08 100 

11 10000 25.21 100 

13 10000 30.16 100 

14 10000 28.12 100 

15 10000 23.48 100 

18 10000 25.51 100 

20 10000 30.76 100 

25 10000 24.9 100 
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Table 3: Overall performance of the double hidden layer trained ANNs 

Number of Nodes 

in hidden layers 

Number of Epochs Minimum SSE Overall probability of 

correct decision 'Yo 

3, 3 10000 103.13 99.75 

4,4 10000 5.5 x10-21  100 

5,5 4503 9.33x10-21  

9.67x10-21  

100 

100 7,7 2241 

8,8 2618 9.98x10-21  100 

9,9 3070 9.81x10"21  100 

10,10 2290 9.33x11121  100 
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Figure 3: Dependence of SSE on the number of epochs for 

some of the double hidden layer trained networks 

IV- Performance Evaluations 

In the developed algorithms, the actual target, T, is (10 x 10) identity matrix. In this 

matrix, the columns in ascending order correspond to type 1 decision, type 2 decision, ...and 

type N decision. The results of the performance evaluation of the proposed procedure for radar 

types identification, using the single hidden layers (12-node) ANN present that all radar types 

have been correctly classified with success rate 100%. The results of the performance 

evaluation of the proposed procedure for radar types identification, using the double hidden 

layers (6-6) ANN and derived from 500 realizations present that all types have been correctly 

classified with success rate 100 %. 

V. Conclusions 

In the ANN algorithms for radar types identification, a lot of work has been done. 

Two types of ANN (single and double hidden layer) are considered. It is worth noting that, the 

training has been done using only 100 realizations for each radar type. Many network structure 

have been tested to choose the best. In the single hidden layer case it was found that the best 

network has 12 nodes in the hidden layer. In the double hidden layer case it was found that the 

best network has 6 nodes in each hidden layer and in both cases, the chosen networks achieves 

overall success rate 100%. 
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