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ABSTRACT:

In this paper, the Gain Saturation Approximation method is used for the design of a
4.5 GHz GaAs MESFET Oscillator. This method is based on S-Parameter simulation
of the initial oscillator topology including the transistor model. A computer-aided-
design was employed for optimizing and simulating the designed circuit to obtain the

conditions of oscillation.
To verify this work, the optimized circuit is fabricated, by using microstrip technology,

and measured. The optimized circuit is also simulated using MDS program. Good
agreement between simulation and measurement is obtained.
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INTRODUCTION:

The generation of microwave signals has generally been performed using vacuum
tubes and solid-state devices. Tubes such as klystrons and traveling-wave tubes are
excessively used for high power applications, whereas solid-state devices are
suitable for low noise, low and medium power levels. Microstrip solid-state oscillators
are particularly useful for aerospace and military applications where weight and size
impose severe limitations on the design of the system.

The design approach presented in this paper is based on the advanced techniques
available in modern CAD programs.

VERIFYING THE TRANSISTOR MODEL:

For small signal linear behavior, the components in the schematic of Fig.1 are
derived as constant values, which represent behavior at the quiescent operating
point of the device [1,2]. We make a verification to our transistor MESFET(P35-
1105-1) by using the available MDS.

The S-Parameter verification model for this transistor is shown in Fig.2. First, the
transistor model is implemented using the microwave design system. Second, this
model is simulated to obtain its S-Parameters. The simulation output of (P35-1105-1)
MESFET transistor is shown in Fig.3.
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Fig.1 Small signal model of the GAT6- Plessey transistor, including packaging effect.
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Fig.2 S-parameter Simulation of the implemented GATS transistor.

THE GAIN SATURATION APPROXIMATION AND OSCILLATOR CIRCUIT
DESIGN:

We know that the device is characterized initially with Small-signal S-Parameters.
Johnson [3] has suggested a simple approach for modeling the large-signal power.
The primary change in the device can be characterized by a reduction in magnitude
of S21, the other S-Parameters are not change. The new value of S21 is
corresponding to maximum oscillator output power and we use the new value to
design our oscillator.

— GoP
P, = Py, {1 ~ exp [T]} (1)

- S —— Small signal gain

Pl e Saturated output power as an amplifier
.2
|f>z| .
& u= _S”_-ﬁ 2
ME ( )
2 S ~1
SIZ
Where:
Gige  sswemions Maximum efficient gain
K s The rollett stability factor
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and the maximum oscillator power is given by:

R)w.' - ‘Pml 1 - —L - -ZL(IO‘ (4,
‘ A G G()

and the maximum efficient gain GME is given by:

G,=1
LnG,

G, (max. oscillator power) =

(5)

Equations (2) &( 5) are used to determine the reduction in lSlll .The modified S-
Parameters are used to design the Oscillator using the linear approach [4] with a few
modifications as follows:

(a) A feedback circuit [5] is designed to maximize the input reflection of the oscillator.
We use the equation (8) to achieve this condition and calculate the output
impedance, which achieves the unconditional stability to the oscillator as shown in
Fig.4.

Zout «— »ZL

Z1 Z3 ZL

Fig.4 Circuit with series feedback transistor oscillator.
The output impedance is given by:

Zz:Zu
ZH - Zl

Z

o — L2 T

(6)

Where Zij is the composed of the transistor matrix, and impedance Z3 The transistor
matrix obtained by converting S-Parameters to Z-Parameters [6].

(b) The load circuit design:

XL = _X()m' (7)
o R l
By e (8)
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DESIGN EXAMPLE: _
The practical microstrip oscillator circuit is shown in Fig.5. After some calculations we

get the initial values of the oscillator parameters as shown in Table 1.

Table 1. the element value of 4.5 GHz oscillator

Symbol Value[mm] Symbol Value[mm]
L1 11.766 La 5.37
L2 15.33 L5 11.398
L3 15.33 Z0 50 ohm

Ls Zo

Fig.5 Practical microstrip FET oscillator circuit[7,8]

CAD OF MICROSTRIP OSCILLATORS:
The Computer Aided Analysis of an oscillator proceeds as follows:

(1) Guessing the oscillation frequency and magnitude. The first guess is entered on
the analysis block. Subsequent guesses are derived from the results of previous
analysis.

(2) Calculating the voltage drop across the oscillator port as shown in Fig.6.
If the voltage drop is zero, the analysis is finished.
If the phase is zero, the magnitude of the current source is changed.
If the phase is not zero, the frequency of the current source is changed.

(3) Going back to step one.
If there is no voltage drop across the current source, then the current source
supplies no power to the circuit. So, the signal must be coming from the
oscillator, not the current source, which is our objective. The optimized 4.5GHz
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oscillator schematic is shown in Fig.7. The results of the loop gain test are
presented on two plots as shown in Fig.8.

Osc.Test port

4

Feedback

Fig. 6 Oscillator test component in the MDS Program.

(a) A rectangular plot on which two traces are inserted, to show the magnitude and
phase of the loop gain S11. If MAG(S11) >1 When PHASE (S11)=0, The circuit is
likely to oscillate at the frequency where the phase is zero. If |[Loop Gain|< 1, the
circuit will not oscillate. Oscillations will build to higher signal levels, where the gain
will compress until |Loop Gain| = 1 forlarge signal operation which is the steady-
state case .

(b) A polar plot that shows S11 in complex form. The trace should encircle the
point (1+j0),with increasing the frequency in clockwise direction. It is clear from Fig.8
that the circuit will oscillate at about 4.5 GHz frequency.

OSCILLATOR FABRICATION:

We use GDSII format artwork translator to generate the layout of the oscillator
schematic circuit. This layout is shown in Fig.9, with the inclusion of open circuit
discontinuity, via effect, metal thickness and device package parasitic, then this
layout is translated into Gerber format. The Gerber format is used to generate a
transparent mask on a film using a laser photo-plotter with very high accuracy.
The microstrip oscillator circuit is built using thin fim technology and
photolythographic technique and we make all fabrication process on the oscillator

circuit, and we chose RT5880 substrates (&,=2.2).

MEASUREMENTS:

We used in our oscillator measurement a universal test fixture, two power supplie to
give us +V for Vos and -V for Vgs and spectrum analyzer HP8363A. The output
frequency of the oscillator is 4.5305 GHz as shown in Fig.10 and the output
spectrum of the 4.5 GHz oscillator is shown in Fig.11, we find, the oscillator is shifted
from the ideal one by +30.5 MHz, which represent a good result and the output
power is 10dBm.
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Fig.8 Estimating the possibility and frequency of oscillation.
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Fig.9 Layout of the 4. 5GHz oscillator.
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Fig.11 Spectrum analyzer output of the 4.5 GHz oscillator.
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