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Abstract: 
The solution of polynomial controller design is usually reduced to certain polynomial operations. 

However, these operations are given in an abstract form without clear mathematical reasoning. Therefore, 
this 

paper is devoted to present a novel derivation for the problem of polynomial generalized-linear-
quadratic-gaussian (GLQG) control following a systematic approach for the derivation and 
considering a more general plant-structure that contains colored input disturbance and 
measurement noise. The presentation of the theory comes in a more concise, clear and general 
form to help those looking to use it without any details as well as those looking for detailed 
understanding and tailoring the theory to their problems. The cost function includes dynamic 
weighting elements allowing integral action to be introduced and robustness characteristics to be 
modified. Thus, the novelty of the paper stems from the fact that it presents the proof in a novel 
approach for a general plant structure which covers any special case in reality. The paper is 
supplemented with design steps and two numerical examples: one is a continuous time system 
and the other is a discrete time system. 

Keywords: Optimal Control, Polynomial Techniques. 

1- Introduction 
Optimal control is a fascinating field for research in robust control design as well as the self-
tuning control. In addition, it can be practically used in industrial control systems. However, it is 
a more mathematically complex subject compared to other methods of controller design. In 
addition, it is also difficult for a newcomer to get a good grasp of the field which is usually 
presented in a way that requires a very high level of expertise for the user. Optimal control is a 
well-established branch of control theory that is concerned with obtaining the best performance, 
in some sense, from a system. It is usually consists of a definition of the system model structure 
and a performance criterion. The control law is then obtained as the solution that minimizes the 
specified criterion, within the admissible set of control signals. Thus, the optimal control 
techniques will be successfully used in cases where the choice of cost function clearly and 
meaningfully reflected in the resultant closed-loop performance characteristics. The optimal 
control problem may be formulated using either state-space approach or using polynomial 
approach which originated by Kucera, 1979, [17] which based upon input-output models. The 
polynomial approach has the advantage of being straightforward for constructing the numerical 
algorithms and the influence of dynamic weighting on the controller is transparent. This 
approach, the objective of this paper, is based upon polynomial spectral factorization and 
diophantine equation's solution. However, the diophantine equations and the spectral 
factorizations are usually introduced or assumed in the theory or in its proof. Nothing 
mentioned upon what idea behind or why these assumptions had been used [5-15]. The reason 
for making it problematic and can not be understood well. 
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Therefore, one objective is to give the theory in a more concise, clear and general form. Concise 
to help those looking to use the theory for their problem, and a clear and systematic derivation 
to help those looking for detailed understanding and tailoring the theory to their problems. Since 
the intention is usually to have an applicable theory, it should be general enough to cover most 
of the special cases that might exist in reality. To this end, the three theories of LQG, 
generalized-linear-quadratic-gaussian (GLQG) and the generalizedllo, (GH,0) optimal control 

design polynomial approach are rederived, in four parts, covering all of the above comments. 
The main objectives of research in this area should be concerned with generalizing and 
extending the previous results such that it can be applied to a wide range of industrial processes 
and gives optimal rejection of measurable load disturbances. In addition, the cost function 
weights should be dynamical (frequency-dependent) to allow various performance 
characteristics (including integral action) to be easily introduced. 

The objective of this paper is to present a novel derivation for the problem of polynomial 
generalize-linear-quadratic-gaussian (GLQG) following a systematic approach for the derivation 
of polynomial optimal control design. The solution of polynomial approaches for controller 
design reduces to algorithms for polynomial stable-unstable factorizations, spectral 
factorizations and diophantine equations. Usually the plant structure used in most of the 
pertinent literature is not sufficiently general to cover most of the industrial control problems. 
Therefore, the other objective for the paper is to develop an GLQG-based control law for this 
general system structure that contains colored input disturbance and measurement noise. The 
cost function includes dynamic weighting elements allowing integral action to be introduced and 
robustness characteristics to be modified. The system model involves a reference signal filtered 
by a reference model, filtered disturbance corrupting the controlled output and colored 
measurement noise. Thus, the novelty of the paper stems from the fact that it presents the proof 
in a novel approach for a general plant structure which covers and could be broken down easily 
to any special case that might exist in reality. 

Whatever the application, the jacketing software might be specialized for the case study in hand 
or might be general to deal with any special case and any application. Theories should be 
supplemented with numerical algorithms for the solution of the problem and consequently a 
good simulation package is indispensable. The solution of polynomial approaches for controller 
design reduces to algorithms for polynomial stable-unstable factorizations, spectral 
factorizations and diophantine equations. The results for the numerical examples in this paper 
are obtained using a simulation package "GAMTBX", which has been developed totally by the 
author in C-language as well as MATLAB routines. 

The paper is organized as follows: Section-2 presents the system structure, Section-3 presents 
briefly the diophantine equations' solution and the spectral factorizations, Section-4 defines the 
control problem and motivates the controller design, Section-5 is devoted for the derivation of 
the GLQG controller design and the properties of the solution in addition to approaches for 
simplifying the solution or breaking down to special cases, and Section-6 presents the design 
steps and two numerical examples and finally a conclusion for the paper is given in Section-7. 

2- System Description 
The system is represented in the form of feedback configuration as shown in Fig. 1. In this 
system the high-frequency (HF) disturbance n(t) affects the observed system output and the 
requirement is to control lower frequency (LF) variations in the output, represented by the 

signal y(t). The signal n(t) can also denote measurement noise such as tachogenerator ripple, 
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gyroscopic errors.....eto. Whatever the type of n(t), ), the problem is to ensure that the signal y(t) {rather than z(t)} follows the reference signal r(t). 
Disturbance 
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(t) d I) 
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Fig. 1: Feedback control system with input disturbance, measurement noise and reference 

The system polynomials (constituting the transfer functions) are considered functions of the unit-delay 
operator Z-1  and the disturbance and noise sources are assumed to be mutually independent with zero 
mean and unit variance. The various subsystems can be represented by the coprime polynomials 
[4,5,13,16,17] as follows: the Plant Wp  =A-'B, input disturbance Wd  Adi Cd , the output 
disturbance or measurement noise W. = A n- I C„, the reference Wr  = A,T1 E„ and the controller 
Co  = Co-d1 C... The signals {qt), 4(0, TKO} are white noise signals with zero means and unity 
variances. The plant polynomials B(z' ) and A(11  ) are free of unstable hidden modes [16,19]. The 
external signal-filters (Wr  Wd  , ) are assumed to be asymptotically stable and all the denominator 
polynomials are distinct i.e. A # A n  # Ad  # Ar . The various subsystems are assumed to be causal i.e. 
A(0) = A. (0) = Ad  (0) = A,. (0) = 1. The input disturbance polynomial Cd  is strictly Hurwitz [13]. 
The plant zero polynomial B(z-1) = z-kBk  (z-1 ), includes a k-step delay where k?_1. The plant, for 
simplicity of optimization procedure, it is assumed to be free of poles on the unit circle of the Z-plane. If 
the plant includes unit circle poles, there are two methods for dealing with this problem; either (i) the 
particular poles can be moved off the unit-circle by an amount e; 	{Wiener-Hopf optimization 
theory), or (ii) the unit circle terms can be dealt with directly by integrating around small semi-circular 
contours which avoids these poles in the evaluation of the cost function [2,3,11,17,18, 19]. This paper 
presents the model structure, criterion function and solution for the polynomial GLQG control problem 
with a detailed proof complemented by the properties of the resultant closed-loop system and some 
special cases. 

3- Polynomial Operations 

factorization. 
of polynomial operations including, mainly, the solution of diophantine equations and spectral 
Usually, the process of designing an optimal controller based on input-output models reduces to a process 

1. Diophantine equation 
The polynomial equation A X + B Y = C, in which the polynomials A, B, and C are known and 
required a unique solution {X, Y) is called diophantine equation. Clearly, since there are two 
unknowns and only one equation, then there is an infinite number of solutions {X, Y}. So to obtain a 
unique solution, an :irbitrary additional constraint should be applied or defined which is clear from 
the following theorem. 
Theorem 1 [17]: The polynomial equation 

AX + BY = C 	
(1) 

n(t) 
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has a solution {X, Y} iff the greatest common f4stor of A and B is also a factor of C. Thus, to obtain 
a unique solution {X, Y} for the above polynoinial (if exists) the additional constraint is that X{Y} 
should be of minimal degree. 

2. Spectral factorization: 
It is the process of finding a stable polynomial which in some way corresponds to another polynomial 
that may be unstable. That is given a polynomial x(z-') which may or may not be stable, then the 

spectral factorization obtains a stable spectral factor siz-t of x(z-')which satisfies the relation: 

S(z-')s*(z-1)= X(z-')X*(z-') 	
(2) 

Theorem 2: [17,22] 
Let the polynomial x(z-l) in Eqn(2) have no zeros on the unit circle. Then there exists a unique 

polynomial s( z-')with all its zeros inside the unit circle. 
The effect of spectral factorization is to reflect the unstable zeros of a polynomial about the unit circle 
and to leave the stable zeros where they are without any change. Therefore, spectral factorization can 
be made by finding all the zeros of the given polynomial and reflecting the unstable ones about the 
unit circle. Then, the stable spectral factor can be obtained as a combination of the stable zeros and 
the reflections of the unstable ones. 

4- Problem Definition and Optimal Solution 
The optimal control problem requires the definition of a control law structure and the cost function to be 
minimized. The optimal control law for the stochastic tracking problem to be defined in Problem-1 is 

given in Theorem-3. The solution involves polynomial spectral factorization and solution of the 

diophantine equations, with a detailed proof. 

4.1 Control structure 
The controller structure given in Fig. 1 is known as a Single-Degree-Of-Freedom (SDOF) controller since 
the reference and observed output signal have the same weight to yield the control signal u(t). This 
controller might be replaced by a controller with separate reference r(t) and observation z(t) inputs. That 

is, there will be two controllers, respectively, reference controller and feedback or cascade controller 
which enable a smaller cost-function value to be achieved and good command following. However, it is 
common in industrial process control to use an integrator in the error channel for reducing the steady 
state error. This structure is called Two-Degree-Of-Freedom (TDOF) and it is out of the paper objective. 

Stability Lemma: (Kucera 1979) [17] 
The closed loop system with both plant and controller free 
stable iff the optimal controller satisfy 

AC 0 , + BC on = 1 
where the control law can be written as u(t) = Coe°  (t) 

C„,(z-t ) 
C = C od (z- ') 

of unstable hidden modes is asymptotically 

(3) 
and the cascade controller is defined as 

4.2 Problem-1: 
The GLQG performance criterion to be minimized by the control law defined above is given by 

J E[`412  (0] = 	 ep (z-' 
4Av  

(4)  

(5)  
yt = Pc  • e(t) + Fc  • u(t) 

Where, xir is a weighted signal composed of the tracking error e(t) and the control signal u(t) with the 

weighting elements P, and F, as rational transfer functions. The (1)4,4, ( z' ) represents the spectral 

density of the weighted signal. The weighting elements P, and F, are defined as 

Pc  = 13- Pc„ 	& 	= 
(6) 
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Where, Pcd and F‘d  ate strictly Schur polynomials with Ped  (0) = F22  (0) = 1 and Fen  might be given 
with delay. Let us define the polynomial L, to be used later in the derivation, as follows: 

L = I,, L2  Fed B 	P„ A 	 (7) then, the weighting elements are chosen to ensure that L is free of zeros on the unit-circle of the Z-Plane, or (L.  L) is positive definite on 14=1. Those definitions ensure that the spectral factors De  and Df are strictly Schur. 

5- GI,QG Controller Design with General Processes 
5.1 Theorem 3: GLQG Optimal control law 
The GLQG optimal control, which is a solution to Problem-1, is given such that the controller transfer 
function is given by 

GrF A —(X.Ad A r Fed  )A C = 	 
° HP„dA, + (XAd Ar  Fed  )B 	 (8) 

Which requires the solution of two spectral factorizations and three diophantine equations as follows: 
1. Spectral factors (De  D 1 : 

The strictly schur spectral factors 13, and Df which will be used in solving the diophantine equations 
are defined as follows 
D'o Do  = (Poo  Fo„ B — 	Pod  A)*  (13,,,Fcd B — FonPcdA) 	 (9-a) 
D:Df  = ErTr A:A o,Ao.A o  +Cd* Cd A r*A r Ao* A o  +Co'Co A: r  AA :Ad  

2. The diophantine equations: 
The polynomials G and H are obtained from the minimal degree solution {G, H, F} w.r.t. F of the 
coupled diophantine equations; 

FA,,A„A r Pod  + L2G 	Pcn Df 	 (10-a) 
FBAd A n A r k,, —I. 2 HA, = FC,Df A 

and { X, Y} the minimal degree solution w.r.t. Y of the diophantine equation; 
Y.A o Pod  + D•fo z-g' X = Pon Co C:A;A:L‘z g' 
Where; 	g, max(npf  ncr,  + 	+ n A,  +nA + n L  ) 	 (12-a) 

D fe  D -Do  
(12-b) 

5.2 Proof of Theorem-3: 
The proof of Theorem .3 will be carried out through three steps of algebraic manipulation of the cost 
function augmented by a step for minimizing this cost as follows; 
5.2.1 First step: 
The first step is to separate the cost function into two parts, one is depending on the controller Co  and the other is not. From the system model equations, the control signal u(t) can be given as follows: u(t) = Co  {r(7.)—:,,(t)—n(t)} 

= Co  {r(t) — Wp u(t)—d(t)— n(t)1 
= Co r(t)— WpC,,,u(t)— Cod(t)— Con(t) 	 (13) 

which implies that 

u(t) = 1+WC0 fr(t)—d(t)— (t)} 
p Co  

.= M{r(t)—d(t)— n(t)) 
Where, M is the control sensitivity function [1,4,20,23] that is given as: 	

(14) 

M = C° 	 = CoS 
14-WP C.  

where S is the sensitivity function defined [1,4,20,23] as follows: 

(9-b) 

(10-b) 

(15) 



(16)  

(17)  
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S= 	
1 	= 1 — Wp  M 

I+ WpCn  
The system output y(t) is given by 
y(t) = Wpu(t)+d(t) 

= WpM(r(t) — n(t)} + [1 —WpM]d(t) 

Then the tracking error e(t) can be given by 
e(t) = r(t) — y(t) 

= [1 — WpM]{r(t) — d(t)} + WpM n(t) 
According to the stability theorem, the following relations can be obtained: 

Cod  
1 	AC. = AC. 

1 + WpC„ 	+ BC. 

	

WpC. = BC. 	 (19-c) 

▪ I + WpC„ AC. +BC. 

M 	 = AC. 	
(19-d) Co 	AC. 

• 1 + WpC0  ACod  + 
where S, T and M are, respectively, the sensitivity, complementary sensitivity and controlsensitivity 
functions. Substituting these equations (19) into the tracking error (18) and control signal (14) yields: (20-a) 

e(t) = (1— BC o„){r(t)-- d (t)) + BC 0„n(t)  

u(t) = AC „„{r(t)— d(t)— n(t)) 	
(20-b) 

The weighted signal It(t) can be obtained as follows: 
W (t) = P, • e(t) + F, • u(t) 

= P, -(1 — BC)(r(t)— d(t)} +P,BConn(t)+F,ACon {r(t)— d(t)— n(0) 
= [P, • (1 — BC.) + F,AC. ]r(t)— d(t)} +[P,B— FA]C.n(t) 	

(21) 

Therefore, the integrand of the cost function or the spectral density of the weighted signal ly(t) can be 

obtained as follows: 
4),,„p (t) = [P, •(1—BC.)+F,AConno„[P, •(1— BC„„)+FAConl 

+ C:n [P,B — F,A].4).[P,B— F,A]C. 

[P:P, — 	F,A)Con  — Con (P,B — F,A)* PJ4)„ (22) 

+ 	(P,B — M) (P013 — F0 A)Con 1(4). + 40.) 

vvhere the spectral density 40  is defined as the sum of spectral densities of the reference and disturbance 

4)  = (I)  „ + 	
(23) signals as, follows 

To simplify the integrand of the cost function, Eqn(22), 
the Control spectral factor may be defined as 

DD c 	= (P,B — F,A).  (P,B — F,A) 
A:A, 

co  

(PmFca  B — F.P.d  A)*  (Pcjcd  B — Fc„P,4  A) 	 (24) 

(Pod Fcd ). (Pod Fcd 

The;refore, 



= (Pn„F‘d B - Fn,Pn,,A)• (PcoFcip-  FatPcdA) 

DC  

(Ped F,d  ) 

And the Filter spectral factor may be defined as 
Df  

A:Af  

D:Dn  
An 	= (Pnd  F‘d  ) 

Ye  

(, +Cid +Cr  =4). +Cm  

Cdc, C:C0  
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(25-b) 

(25-c) 

5- 

 

a 

 

) 

(26-a) 

A:A, A;Ad  A:An  
E:ErA:AdA:A.„ +CdCdA:ArA:An  

(Ad A n A r )*(Ad A n A, ) 
(26-b) 

(27-a) 

(27-b) 

(27-c) 

(28) 

(29-a) 

Therefore, 
D:Df  = E:E,Ad* A I A:A n  +C:CdA:ArA:Ar, +C:CnA:A,Ad*Ad 
A f 	 AdA„A, 

Yf 	 = 	
D f 

(Ad A n A, ) 
Substituting eqns(24,26) into eqns(22) yields: 
(I) 4„v  (t) = [Pc*Pn  - Pc* 	- Fn A)C„„ - C*0„ (PC B - F,A)•  Pc 	+ C:„Yn*Yc  Con  Yf*Yf  
Let us define the following auxiliary spectra, that may simplify the integrand, as follows: 
(l)h = Pc(P.B FeA )*(1). 

= Pc*  (Pn B - Fn  A )(Ir. 
Thus, the integrand of the cost function, Eqn(28) can then be written as 

)      	
foll :) * 	 ows: 

`WWI I  PnPnC13„,- 	-ConK.Y,ConYiYf 

 

(29-b) 

 (30) 

others are not. 
Now, it is clear tl.at tae cost function had been separated into parts depending on the controller Co  and 

proof is to split each term of the integrand, Eqn (30), more into parts which 
r, and parts VShich do not depend on it using what is called Completing Squares itity; 
). -AA*  + AX*  + A*X 	 (31) 

( 	• (1)ww - i'c con Yi — --.7-.T., Yc C„„Yf  - -±-1): --' . +P:Pc (1) 0  -  	— 4)hC, 
Yc rf 	 YcYf 	 (Yo Yf X Yc Yf ) 

Notice that the final tvto terms do not depend on the controller and, therefore, will not enter into the subsequent minimization argument. 

5.2.3 Third step: 

The third step in tie proof is to split the Co-dependent terms of Eqn(32) into its stable and unstable 
parts. According to the definitions of different subsystems and Eqns(6, 29) the following can be obtained 

5.2.2 Second step: 
The second step in the 
depend on the conirolle 
[17]. Considering the idet 
)0C =:(X-A)(X-A 

and completing the squar. s in Eqn(30) yield 

(32) 
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4h  

Yc  Y;  
(P,13 — F,A)* Pc  

Y:Y: 
(Y:Yf  (1)„„ )(P,B — F,A). P, 

  

Df  (PcnFcd B — F.Pcd A).  P. 	C:C„A:A:(Pc.F.dB — F„„Pcd A)* Pon  (33)  

and Df  are 
parts by 

(34)  

(35-a) 

(35-b) 

(36-a) 

(36-b) 

(37-a)  

(37-b) 

unstable term 

I  )while the 

according to its 

the boundary 

as follows: 

AdA„ArP,dD: 
Since the terms {A d A n ik,13,d  , A n  Pcd  
strictly schur spectral factors), the two 
introducing the polynomials {G, F } and 

(t)h 	[ 	G 	Fzg  = + 

} 
parts 

are stable and {D: 
of Eqn(33) can 

{X, Y} as follows: 
X 	Yzgl 

+ 

AnPcdD:D; 
,D 	) are 
be splitted 

A).  
as 

diophantine 

into 
unstable 

z-g' 
follows: 

+ 	 

Yzg' 

stable 

X 
_A oPcd  

equations 

(because D, 
and unstable 

Yzg' 
+ --;— 

Dfc  

T1-  and an 

■..) Po (z—  

+ 
 (z-1), 

) represents 

Y:Y: 

Comparing Eqns(33, 
FA d A n A r Pcd  
YA.Pcd  +DLXz-g' 
According to 

[ Ad  An  Ar Ped 	D: 
G + Ad  A n A r Pcd Fz g  

A n Pcd  TX, _ 
Dfc X + A o Pcd Yzg' 

AdAnArPcdD: 	_ 
34) yields, respectively, 

+ D:Gz-g 	= 	PcoDf  (Poo Fcd B— 

= 	PcoC:CoA:A: 
Eqns(25,27,33), the squared 

4)h 	D,Df Con  
= 

term 

AoPcdlYfe 
the first and third 

Fco Pcd A).  
(Pco Fcd B — Foo Pod  

_ in Eqn(32) becomes 
G 	± 

Ad  kAr Pcd  
± XAd  A r  Fcd  

z-g 

Fzg 
D: 
Fzg 

YConYi. 

where; 

Y:Y: 	Ad  A n A,F,d Pod  
Do Df  Con  '-- GFcd  

Dc Df Cen  

= AdAnArFcdPcd 
= 	Ti-  + T1+ 

— GF,d  +(XAd A,F,d ) 

(z 

the unit 

into 

,Pcd  

D: 	D.:, 

a stable term 

, F,d  E P (z-1) 

1) and Dc  EP

circle, Po  (z-' 

T1- 	= 

T'= 	
Fzg  [-- 

Now the M 

T. The denominator 

denominator 

definition. 

AA AF 
Yzg' — 

D: 	D fe 
1 

had been splitted 

since Ad  , A n  ,A r  

since Dc  EP 

the interior of 

dependent term of the integrand 

of T1- 	is stable 

of T,' 	is strictly unstable 

Note that; P_ (z-' ) represents 

of the unit circle and P, (z--1 ) represents the exterior of the unit circle. 

5.2.4 Minimization: 
Substituting Eqn(37) into Eqns(32) yield 

1:1)hcrn  
Cvw 	+ T1+  ][TI-  T,' 1*  + P:Pc43'0 (y:y: )(Y,Y, ) 

+Tt T1+•  + eri+Ti  + T1+  T1+  I P:Pc4). (y•y: )(ye  yf 	 (38) 

In Eqn(38), T1-  represent stable term while Tj represent the unstable term. The terms T,-Ti are analytic 

within the unit-disc 	1 of the Z-plane [2,161. Thus, using the residue theorem, the integrals of the 

cross terms in Eqn(38) are zero i.e. 
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dz 
z 	 o 

1.1=1 
cost function can be simplified to 

+ + 	— 	4)1,44 dz 

z 

1C.53--  2 6i 

(39)  

(40)  (Ye*Y;XYc  Yf 
Since the terms Ti+  and the last two terms are independent of the controller, the criterion J can be minimized by setting T1-  = 0. The idea behind splitting the terms of the criterion integrand into stable and 
unstable parts is that the integral of the cross parts will be zero (by the Residue theorem) [2,4,16,21] and 
the integrals of the stable parts can be set to zero by appropriate choice of the controller transfer 
function. Therefore, Setting T, = 0 into Eqns(37) yields 
C GF d — (XAdAr Fcd 	Gk., A — ( XA d  F.d  )A 

	

on — 	c  

DC Df 	 D.Df A 	 (41) 
Using Eqn(41) and the stability Lemma yield the controller denominator polynomial as follows: 
Cnd 

1— BC.. DC Df  — GF.d B + (XAd A r k,d  )B 

	

= 	 
A 	 D.Df A 	 (42) 

Therefore, the minimizing feedback controller Co  becomes 

(43) 

function), consider the equation 
HPcd A r 	 = DC Df — GFcd  B (44-a) 
GF.d  B + HP.d  A = DC Df  

(44-b) Multiplying Eqn(35-a) by {F.d13} and Eqn(44-b) by {D*.z-g }, then subtract mg and using the spectral factorization (25-a) yield the second diophantine equation 
FBA d A.A,F.d  —D*.z-gHA, = F..DfA(P.„F.dB—F..P.dA)*z 	 (45) 
Accordingly, the feedback controller Co  becomes 
C = 

C.. GF.d A—(XAd A rkd )A 
Cod  HP.d AT  +(XAd A.F.d  )B 	 (46) 

(47) 

27t lzk 	 (48) 

Considering the definition of L given in Eqn(7) and its factorization into LI  1,2; the following relations hold 
LIL2 
1.41 2Li L2  

Ei L2  
L,E,2 	

(49-c) 

(49-d) 
Considering Eqns(7,49), the diophantine equations (35-a,45,35-b) can be put in ihe following form: 

For more convenient solution (form of the controller transfer 

= n  = 
C  od Dc Df  — GFcd B + (XA d A r kd  )8 

A C. 	GF.d  — ( XA a  A Fca  )A 

Considering Eqns(25:26,29), the last two terms in Eqn(40) cancel each other as Follows: 
p:pc 4) 	clYtth 	 p*p 4) 	P. (P.B — F.A)* (1).P..(13.13 — F.A)(1).. 

(YoY;)(YcYr) 	 ° 	 (Yo.Y;)(YoYf 
pc pc d). 	  

(Ye Yf)(Yc Yf )  
= 0 

Therefore, the obtained solution gives minimum cost function J...„ as 
1 	 dz J mm  = 	{I +, 	— 

-r   

= 
D.D. = 
D. = 
D. = 

(49-a) 

(49-b) 
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FA d A n A o Ped  + r,L,G 	pcnDfLif 	 (50-a) 
2   

(50-b) 
FBAd A nA r kd  — E1L2HA, = F,,,Df ALI L2   

YA0Ped  + D.fo Xz-g' 	= PenC:CnA:A:L•z-g' 	
(50-c) 

These equations can be simplified by redefining the unknown polynomials: F 	G GL2  , 

and H 	HE2  to yield the diophantine equations as follows: 
FA d A n A r Ped  + L2G 	= P„,,Df  

FBA d A nA r kd  — L2HA = Fer,Df A 

YA0Ped  +DLXz-g' 	= Pc„C:C,,A*d A:L.z-g,  

5.3 Properties of the solution 
5.3.1 Implied diophntine equation: 
The implied diophantine equation can be obtained by multiplying Eqn(35-a) by (BF ,d ) and Eqn(45) by 

Pod  then substracting and using the spectral factorization (25-a) yield 
GBFed  + HA r Ped  = D0131. 	

(52) 

And the characteristic equation is given by 
•.A(GBFed  + HA Pod  ) AD,D f 	

(53) 
••=:-   

This equation shows that the system is guaranteed to be closed-loop stable if the system/plant poles A 

is stable since both D. and Df 
are defined to be stable. The controller has poles due to the weighting terms 

Pod  and Fed  and zeros due to Fed  which demonstrates the effect of the dynamic cost function elements. 
For example, integral action may be easily introduced by defining Pod  and Fed  as integrators [i.e. =1-11  

], upon which an infinite error costing at zero frequency will be introduced. 

5.3.2 GLQG Controller design with guaranteed stability 
Without loss of generality, the plant and the reference subsystems can be assumed to have common pole 
polynomials (i.e A = A ,) to simplify the computation of controller. Thus, the optimal GLQG controller 

has the following transfer function: 
C0 	GFed  — (XAd Fcd  IA 

C,, = 	-=- 
C od  HPod  XA d  Fod  )B 

Which requires the solution of three diophantine equations and two spectral factorizations as obtained 
before, taking into consideration the present assumption. The manipulation of the diophantine equations 
yields the the characteristic polynomial: 

pc  APed H+BFed G = DeDf 	
(55) 

And this shows that the system is guaranteed to be closed-loop stable, since both D. and Df are defined 

to be stable, without any restriction upon the open-loop stability or the non-minimum-phase 

property. 
Both the closed loop stability and internal stability are guaranteed since 

	

1-Pcd  A+ GFed 	 (56) 
De Df  De Df  
Thus, the controller transfer function (54) can be written as 

No  — KA 
C = 	

(57) 
Mo  +KB 

	

Where No = 
GFc

d 	M = 
HP„, 	and K = 

XA d F  cd  . It is clear that the controller satisfies the 

	

De Df 	Dc Df 	 Deb t 
 

necessary and sufficient condition for stability derived by Desoer et al. [2,3] which represents a 

generalization of the results given by Youla, et al. [22]. It should be noted that the control law is 

stabilizing for arbitrary asymptotically stable K and hence errors in the computation of X can not result 

(54) 
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in instability. This is fortunate because X depends on the output disturbance w n = —c: which involves 
inaccuracies due to lack of knowledge and randomness. 	

A 

 

5.3.3 GLQG Controller design without measurement noise 
The controller design can be facilitated more by neglecting the measurement 'wise in system structure i.e. Co  =0 in Fig. 1 . The external signal-filters ( Wr  , Wd  ) are assumed to be asymptotically stale and the 
plant, the reference and the input disturbance denominator polynomials are assumed equal i.e. A= A, = A

d  The plant may be either open-loop stable, unstable or non-minimum chase, but for simplicity of 
optimization procedure, it is assumed to be free of poles on the unit circle of the Z-plane. Thus, the 
optimal GLQG controller for this process is given by the following transfer function: 

C. GF. Co  	= 
Cod 1{Pcd 

The characteristic polynomial for this case has the form 
Po  = AP. H + 	G = Dc pi. 

(59) And this equation shows that the system is guaranteed to be closed-loop stable, since both D„ and Df  are defined to be stable, without any restriction upon the open-loop stability or the man-minimum- phase property. In addition, both the closed loop stability and internal stability can be investigated as before, where No  and Me  have the same form as before while K=O. 

6- Numerical Implementation: 
6.1. Design steps 
Having stated the GLQG stochastic tracking control law, the design procedure can be summarized in 
stepwise as follows 
Data: 	• Obtain the model polynomials A, B, and Ca. • Obtain the polynomials Er  and A, of the reference model. 

• Obtain the polynomials C d  and A d  of the disturbance model. 
• Obtain the polynomials Co  and A. of the measurement noise model 
• Choose the cost function weights Qo  and 

Obtain the spectral factors 
Solve the coupled diophantine equations for G and H. 
Solve the diophantine equation for {X, Y}. 
Calculate the controller using the appropriate form. 

6.2 Continuous process example: 
Consider a system described by the following transfer 

W B(s) 
A(s) 	0.1s2  + 1.1s + 1 

Then, consider the following simple cost weights: Po  

following controller transfer function: Co  = 

6.3 Discrete process example: 
Consider a system described by the transfer function polynomials 

	

z 2 (1+ 2z-1)Cd  (z ) 	1 – 0. 7 Z- 1  Wp 	 " A(z-1 ) 	1 -- 0.95z-1 	 wd A(z-l ) 	1– 0.95z-1  
The cost weights may be chosen as Po  = 1/ (2 – z-' ) and F = 1. The design process yield the following 

- controller transfer function: Co  = 0.4243– 0.1949z 1  
 3.5595+ 0.0636z-1 +1.555112  –1.2384z 3 

(58) 

Step-I 
Step-2 : 
Step-3 
Step-4 : 

function polynomials 
C (5)

= 	
0.15- 1 

= 	  A(s) 	0.152  + 1 ls + 1 
= 1 / s and F, = 1. The des,gn process yield the 

0.125652  + 1.3557s+ 1 
s(0.1s+1.1185) 
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7- Conclusions 
This paper presented the derivation of the optimal GLQG control theory, polynomial approach, in a novel 
form following a systematic approach which is more concise, clear and general. The derivation was based on 
a general system structure which contains colored input disturbance and measurement noise. The theory is 
presented in a more concise, clear and general form to help those looking to use it without any details as well 
as those looking for detailed understanding and tailoring the theory to their problems. The cost function 
weights may be dynamical (frequency-dependent) to allow various performance characteristics (including 
integral action) to be easily introduced and robustness characteristics to be modified. The system is guaranteed 
to be closed-loop stable since both spectral factors D. and DI are defined to be stable without any restriction 
upon the open-loop stability or the non-minimum-phase property, which is a great advantage during controller 
design. This approach is applicable to both continuous and discrete time systems as clear from the numerical 
examples given at the end of the paper. 
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