
ICEENG

Proceedings of the 1st ICEENG conference, 24-26 March, 1998 	 IC5 9— 7E3

MILITARY TECHNICAL COLLEGE
CAIRO-EGYPT

FIRST INTERNATIONAL CONE ON
ELECTRICAL ENGINEERING

INCREMENTAL BEHAVIORAL SIMULATOR
FOR DIGITAL CIRCUITS ON PCs

Ebrahim Zakaria *, Handy M. Kelash ** , Samir M. Hassan *** ,
Hassan A. Shehata ***

Abstract
Verification before fabrication is one of the main objectives of computer aided design. The

highly complex designs implemented in VLSI, ULSI and WSI technologies need more
sophisticated tools for verifications on the same level of complexity. Simulation as a process of
modeling a real system on computer is an imperative tool especially in the earlier phases of
design, where a lot of modifications can be done on the design to get a free error design. The
latest development in the capabilities of personal computers makes it possible to develop many
applications on PC platforms. In this paper we propose an incremental behavioral simulator for
digital systems to run on PC platforms. The simulator is used to evaluate the performance of
digital circuits without hardware realization of such systems. The simulator implements the
event-driven mode of operation. The incremental facility of the simulator reduces the overall
simulation time where the part affected by a change is only resimulated. Different case studies
have been evaluated on the proposed simulator. Results of simulation time as a function of
circuit size are presented.

1. Introduction
As the technology progresses the complexity of the systems designed using this technology

increases. Design of digital systems is one of these areas in which the technology of production
proceeds rapidly. The revolution of silicon technology made it possible to have more than one
million transistors on a single chip, which is equivalent to more than a hundred thousand gates.
The production of such custom prototypes is a very expensive and a time consuming procedure,
so the development of such complex designs without verifying their works before fabrication is a
big risk. A single error in the design means extra money and a time delay for the reproduction.
Verification before fabrication is one of the main objectives of computer aided design. The
highly complex designs implemented in VLSI, VLSI and WSI technologies need more
sophisticated tools for verifications on the same level of complexity.

*Shebein El-Koom University, Faculty of Eng.
**Menoufia University, Faculty of Electronic Eng., Dept. of Comp. Science and Eng
*** Signal Department. Egyptian Armed Forces

IC 59 —7 9 Proceedings of the 1st ICEENG conference, 24-26 March, 1998

Simulation as a process of modeling a real system on computer is a vital tool for verification
which assists the designer to predict the performance of the designed system without physical
realization. It is an imperative tool especially in the earlier phases of design, where a lot of
modifications can be done on the design to get a free error design. The latest development in
the capabilities of personal computers makes it possible to develop many applications on PCs
platforms. The incremental behavioral simulator is one of these powerful tools which can
simulate such digital systems at different levels. Simulation permits several designers to
evaluate different parts of a design simultaneously . It can be used during the debugging of the
prototype of a new system. It can also be used to evaluate the quality of test programs. It
allows precise control of the timing of asynchronous events (e.g. interrupts). Simulation helps
the designer to optimize system behavior. It also permits checking error conditions. With
simulation, the simulated Circuit can be started with any desired initial state to study its
performance at different conditions.

2. Simulation Hierarchy
Digital system can be simulated at different levels of abstraction, ranging from the

behavioral level to the geometric level. At the behavioral level a system can be described in
terms of the algorithms that it performs. At the functional level which is also called a register
transfer level model (RTL), the design can be used to describe the flow of data and control
signals within and between functional blocks. At this level the design is made up of building
blocks such as flip-flops, registers, multiplexers, counters, encoders, arithmetic logic units and
elements of similar level of complexity. The logic level simulation describes a system as an
interconnection of switching elements or gates. At this level the designer's interest is in logical
correctness of the design and timing of signals at different nets. The circuit level of simulation
is used on individual gates and functional devices to verify their behaviors. The circuit is
described in terms of interconnection between resistors, capacitors, inductors, transistors and
current sources. The designer is interested in knowing what kind of switching speeds, voltages
and noise margins are expected. Geometric level model describes a circuit in terms of its
physical shapes. In this paper we stress on the behavioral level where the design is described in
terms of black boxes. These black boxes are expressed in terms of their algorithms without
going deep to their constructions.

3. Simulation Approaches
Models are activated by their input signals, which could be digital or analog. Accordingly

simulation approaches can be categorized as time driven and event driven. Time Driven
Simulat;.on approach is proper for analogue circuit [1], which is beyond the scope of this work.
In this paper we stress on event driven simulation approach.

3-1 Event Driven Simulation
In event driven simulation, simulated time is incremented from one event time to the next,

where an event represents a change in state. Thus, event driven simulation may have greater
potential speed up than time driven simulation [2]. When a signal change occurs on a primary
input or the output of any circuit element, then an event is said to have occurred on the net
driven by that primary input or output of an element. When an event occurs on a net, then all
elements driven by that net are simulated. If a signal change on the input of a device does not

Proceedings of the 1st 10EENG conference, 24-26 March, 1998 CS 9 —8 0

cause a - change on the device output, then simulation is terminated along that signal path Since
the amount of activity in a time frame is minimal, why bother to simulate only those elements
which are involved in signal changes. This strategy, employed at global level, requires a
simulator that can operate on tables of information which include a list of the elements in the
circuit and their interconnections. The interconnection list includes a list of the inputs and a list
of the destination elements for each circuit device. The list is used to link elements for each
circuit device and link elements together for the purpose of passing simulation results between
elements and facilitating scheduling of elements for simulation. Event driven simulation can be
performed in either nominal delay or zero delay conditions. The nominal delay simulator
assigns delay values to logic elements based on manufacturers recommendation or
measurements with precision instruments. The zero delay simulator totally ignores delay time
within a logic function performed by the element. The nominal delay simulator gives precise
simulation results but on the cost of CPU time. The zero delay simulator usually runs faster but
does not indicate when events occur. The work done in this paper deals with digital systems.
The digital system simulator will run in an event mode of operation.

4. Modeling of Blocks
Modeling is an important stage prerior to simulation. At this stage the simulated blocks are

to be expressed at the required level. Models are written in Pascal language because of its
simplicity and availability. In our work we describe the models in a standard form as shown
below.
PROCEDURE <module name>(set of inputs : type,set of outputs : type, input time, delay,

output time : type);
As an example EX-OR is described according to its truth table shown in Fig.1,

Logic Gate 	 Truth table

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Fig.]. Logic symbol and Truth table of EX-OR gate

Accordingly the model of the Exclusive_OR can be expressed as :
PROCEDURE XOR(a,b,y,Tin,delay,Tout : integer);

begin
if a=b then y:=0

else y:=1 ;
Tout := Tin + delay;

end;

5. Structure of Simulator

The infrastructure of the simulator, shown in Fig.2, consists of :

• Schematic Library: It contains the graphic representation for each component and its
database.

B

Simulator

Core

Output Interface

- Graphics
- Text File

Behavioral

Model Editor
and library

Proceedings of the 1st 10EENG conference, 24-26 March, 1998 	 C59 -81 	I

• Schematic editor: The user edits his design using his own components from the
ready made library or create his own components.

• Translator: This program It converts the schematic file to a text file written in Structured
Design Language format (SDL), describing the simulator system, into a form suitable for
simulator.

• Behavioral Model Editor and Library: It contains the procedures describing the
algorithm of each block and also-the designer can edit new procedures for new blocks to be
simulated.

• Stimuli file: It contains the input signal required for executing the models. these signals are
written in a certain format containing information about the excited net, its value, its time.

• Simulator Core: It contains two sub modules; the scheduler module and the component
status module.

r Senematia
Library

• Schematic
Editor

• ...

User Interfaces.

Fig.2. Structure of simulator

5-1 Scheduler
The digital simulator implements the event driven mode of operation. In event driven

simulation when a signal change occurs at a certain net, then an event is said to have occurred
at this net. When an event occurs on a net, then all elements driven by that net are simulated. If
a signal change on the input to a device does not cause a change on the device output, then
simulation is terminated along that signal path. During simulation; the events corresponding to
primary inputs as well as to any other nets in the design should be arranged on a time priority.
This operation is carried out by the scheduler. The scheduler is constructed from a two
dimensional array called the scheduler array containing net name, value and time. The
scheduler implements the algorithm shown in Fig.3, where The scheduler array receives input
stimuli either from input intertlice or from the component status array. The scheduling

IC59 –82-1

procedure sorts the contents of scheduler array by time. It transmits the Lets of the lower time
stamp at the top of the scheduler array, to the component status array. After that it shifts the
contents of the array to delete the 'transmitted nets to be ready for receiving the calculated nets
from the next phase of simulation.

Scheduler receives stimuli inputs from input interface or from component status

Yes
Is scheduler empty ?
	

End

No

1. Sort the input events by time
2. Transmit the current events to the component status
3. Rearrange the events

Fig.3. Algorithm of scheduler array

5-2 Component Status :
Each simulated component in the design has a group of inputs and another group of outputs.

These nets change their status from a phase of simulation to another. The value and time of
activation of each net is stored for the previous and current time. If there is an event(s) at the
input of a component, its behavior is executed to calculate the corresponding output(s). All
these activities of storage, updating and calculations are carried out by component status stage.
This stage has an array called the component status array shown Fig.4, It is a three dimensional
array containing names of input nets, old value of the input nets, new value of the input nets,
names of output nets, old value of the output nets, new value of the output nets at the previous

I/P 	Old 	New Time 0/P Old 	New Time
net value value 	net value value

name 	 name

Fig.4. Component status array

Proceedings of the 1st 10EENG conference, 24-26 March, 1998

AND1

CS 9 —83 Proceedings of the 1st ICEENG conference, 24-26 March, 1998

and current time stamps. After building the component status array with the
connectivityinformation it receives the transmitted nets from scheduler array and update the
component status array at the event time. Then it calculates the output at the event time and
update the component status array, and transmits the changed outputs to the scheduler array.

6. Incremental Simulation
When there is an error in the design (behavioral or schematic), or it is desired to make a

change in the design (inserting or deleting a block) to get the required specifications or to
enhance the design. Normally, simulators deal with such situations as a completely new
design, that should be simulated from the beginning. The incremental simulator seeks to reduce
the time delay from which the conventional simulator is suffering from when it resimulates a
design after making some changes on it. The simulator reduces the computational effort by
using the previously evaluated nets outside the cone of disturbance and reevaluates only the
nets inside that cone.
The incremental simulator should have the following characteristics:
a) Simulation continues instantaneously after a pause in which changes in interconnections

between the subsystems (models) or logical blocks can be made.
b) Minimum delay to introduce new blocks into the model.
c) Not to recompile the complete model when making some changes in the behavioral model

of some blocks.
To explain the concept of incremental operation consider the circuit shown in Fig.5, which is
the first phase or design.
Assuming that the circuit has been simulated, it means that all the nets values have been
calculated for the complete simulation period and stored in the following form :

net number 	net value time
Now as a msult of this simulation result it is realized that an inverter has to be incorporated
into the paTh connecting the output of AND1 and the input of NAND3.

NAND1

■ 0

AND2
INV1

A>

	

B> 	

	

C> 	 •

OR1

NAND2
•

NOR1
	 > J

NAND3

NOR2

M

Fig.5. A circuit under simulation (at the gate level).

INV1 	E

	>5

OR 1
NOR2

B> NAND3 NV2 4
CONE OF

DISTURBANCE
c> 	

NOR1
J

F A
ND1

NAND2

AND2

Proceedings of the 1st 10EENG conference, 24-26 March, 1998

The circuit after inserting the inverter INV2 is shown in Fig.6,

NAND1

Fig.6. Cone of disturbance after inserting an inverter

What the incremental simulator will do with this circuit is:

1) Determination of the cone of disturbance: This cone contains the gates that are affected by
the insertion of INV2. In this case these gates are NAND3, NOR2, AND2. These gates
only should be reevaluated in simulating the new circuit.

2) Determination of the cone driving signals: Signals D, E, J, and K which enters the cone from
outside are considered as drivers for the components inside the cone of disturbance.

3) Simulation of the components inside the cone of disturbance.

The circuit which will be simulated again is shown in Fig.7.
AND2

Fig.7. The portion of the circuit which will be reevaluated.

The simulator does not of
	

all the entire circuit but only the gates inside the cone of
disturbance. The history of the signals D, E, J, and K is available from the last simulation run.

Ics 9n r, Proceedings of the 1st 10EENG conference, 24-26 March, 1998

Thus if these values are accessed again and applied to these inputs, we can get the new results
of this new phase of design[3]. Incremental simulator presents a very fast simulation tool which
responds very quickly to the design changes occur frequently in the earlier stages of design.
This simulator achieves speed up ranges from 3 to 20, where the running time is dependent on
the relative locations of design changes on the incremental simulator. This speed up of
simulation process helps the designer in making his changes on the design with minimum time
delay. The simulator presented in this paper has the following features :

I The simulator can detect glitches caused by hazards.
2. The simulator is designed to detect instances where two or more tri_state devices are

simultaneously active.
3. Display of signals at different points in time domain.
4. Incremental mode of operation.

7. Results
The circuit shown in Fig.8, has been simulated on the proposed simulator. It represents a

Pseudo Random code (PN) generator. It consists of 3 stage shift register and an EX_OR gate.
It produces a code of length 23 -1 = 7. The clock is running at a frequency of 1 MHz. The
output wave forms of simulation are shown in Fig.9-a,b, for two different initial conditions (I,
I, I) and (1, 0, 1) stored in shift registers. To evaluate the performance of the simulator a
design with different sizes has been simulated. The design is a two word full adder with 1-bit,
2-bit and 3-bit words. Simulation time for these three cases are shown in table I, where the
simulator runs on a Pentium133 platform.

Output

_ 	_ 	1
QO Q1 Q2

CK

CL

Fig.8. Pseudo Random code generator

Proceedings of the 1st ICEENG conference, 24-26 March, 1998 [C59 —86

CK

I
OUTPUT

(1)
OUTPUT

r

L

(B)

Fig.9. Output wavelbrins of simulation

Table 1. Simulation time of full adder circuits

Circuit Name No. of Gates Simulation time

1-bit word full adder 5 0.9 msec

2-bit word full adder 10 3.96 msec

3-bit word full adder 15 9 msec

8. Conclusion
The simulator presented in this paper is dedicated to digital circuits. It implements the

event driven mode of operation. The simulator has incremental feature. It runs on PCs where
the simulator software is written in PASCAL. Many circuits have been tested on the simulator
and verified. PC platforms show powerful capabilities in running behavioral simulators for
digital circuits.

9. References
[1] R. Righter, J. Walrand, 'Distributed Simulation of Discrete Event Systems' , Proceeding of
the IEEE, Vol. 77, No. 1, PP.99-113., Jan.1989.
[2] Alexander Miczo:Digital Logic Testing And Simulation' , John Wily & Sons, 1987.
[3] K Dimond, S Hassan, 'An Incremental Functional Simulator Implemented on a Network of
Transputers', the Proceedings of the European Design Automation Conference, Glasgow,
Scotland, 1)1)296-300, 1990.
[4] Drago M., Rihard k., Borut Z.:Simulation And Modeling Of Continuous', 1992.
[5] Miron A., Melvin A. B., Arthur D. F., 'Digital System Testing And Testable Design',
Computer Science Press, 1990.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

