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Abstract:

The modeling of the acoustic echo path was presented using multiple of small
adaptive filters rather than using one long adaptive filter. A new approach is proposed
using the concept of decomposing the long adaptive filter into low order multiple sub-
filters in which the error signals are independent on each other. The independency of the
error signals exhibits the parallelism technique. This achieves our goal in increasing
speed of the convergence rate. Simulation results show that the proposed decomposed
least-mean-square (LMS) adaptive algorithm significantly improved the convergence
rate with respect to that of the original long adaptive filter. The proposed algorithm is
also compared with multiple sub-filters approach used for acoustic echo cancellation as
the technique of decomposition of error. This technique is based on using multiple sub-
adaptive filters in which the error signals are dependent on each other. In this way the
parallelism technique is not achieved and as the result the convergence rate increases.
This is different from our proposed technique which is based on independency of the
error signals to assure that our algorithm has faster convergence rate. The steady state
error of our proposed technique is still high as the technique of decomposition of error.
This steady state error is small with respect to using one long adaptive filter and this
will be obvious in our simulation results. The hardware implementation of this proposed
technique was also introduced using field programmable gate arrays (FPGAs). Filtering
data in real-time requires dedicated hardware to meet demanding time requirements. If
the statistics of the signal are not known, then adaptive filtering algorithms can be
implemented to estimate the signals statistics iteratively. The modeling of the acoustic
echo path was represented by using three sub-adaptive filters of order =10 with fixed
step size =0.05/3 for each adaptive filter. We use sinusoidal input signal with additive
white gaussian noise (AWGN) for different signal-to-noise ratio (SNR) to examine our
approach.
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1. Introduction:

The increase in data band-width for telecommunications today has created a need
for high quality audio teleconferencing. Echo-cancellers are a common feature to
teleconferencing systems which use “hand-free” operating systems, where by the users
at each end of the conference can freely interact with each other. The purpose of an
acoustic echo-canceller for these applications is to reduce the amount of sound which a
far-end teleconference transmits from returning to them. A common approach for
estimating the impulse response of the acoustic echo path is the LMS algorithm.
Acoustic echo originates due to the coupling of the loudspeaker and microphone in
hands-free telephony and teleconferencing [1]. On systems that perform real-time
processing of data, performance is often limited by the processing capability of the
system [2]. Therefore, evaluation of different architectures to determine the most
efficient architecture is an important task. Digital Signal Processing (DSP) has
revolutionized the manner in which we manipulate data. The DSP approach clearly has
many advantages over traditional methods, and furthermore, the devices used are
inherently reconfigurable, leading to many possibilities. Modern computational power
has given us the ability to process tremendous amounts of data in real-time. DSP is
found in a wide variety of applications, such as: filtering, speech recognition, image
enhancement, data compression, neural networks; as well as functions that are
unpractical for analog implementation, such as linear-phase filters [3]. Signals from the
real world are naturally analog in form, and therefore must first be discretely sampled
for a digital computer to understand and manipulate. The signals are discretely sampled
and quantized, and the data is represented in binary format so that the noise margin is
overcome. This makes DSP algorithms insensitive to thermal noise. Further, DSP
algorithms are predictable and repeatable to the exact bits given the same inputs. This
has the advantage of easy simulation and short design time. Additionally, if a prototype
is shown to function correctly, then subsequent devices will also. There are many
advantages to hardware that can be reconfigured with different programming files.
Dedicated hardware can provide the highest processing performance, but is inflexible
for changes. Reconfigurable hardware devices offer both the flexibility of computer
software, and the ability to construct custom high performance computing circuits [2].
The hardware can swap out configurations based on the task at hand, effectively
multiplying the amount of physical hardware available. In space applications, it may be
necessary to install new functionality into a system, which may have been unforeseen.
For example, satellite applications need to be able to adjust to changing operation
requirements [4]. With a reconfigurable chip, functionality that was not predicted at the
outset can be uploaded to the satellite when needed.  A simplified model for acoustic
echo path is developed based on the idea that the propagation delay is caused due to the
speed of the sound wave, while reflections experience attenuation of high frequency
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components and some energy loss. The response of the acoustic echo path is broken into
frames according to the reflections received at the microphone using process of
segmentation approach for modeling of non-stationary processes [5]. Many signal
processing applications call for adaptive filters with very long impulse responses. In
acoustic echo cancellation, thousands of finite impulse response (FIR) filter coefficients
may be required to sufficiently model the echo path. Moreover, the input data are often
very strongly correlated which causes slow convergence of most adaptation algorithms,
such as the well-known normalized least-mean-square algorithm. The requirements are
particularly demanding for high-quality and/or multi-channel audio reproductions so
that more sophisticated algorithms taking into account the input signal correlations have
to be used [6]. Usually acoustic echo cancellers are realized by adaptive FIR filters,
requiring thousands of coefficients to accurately model the echo return path. This leads
to excessive burden of computation and slower convergence rate. One of the ways to
mitigate this slowly convergent and computationally intensive long adaptive filter
problem is to use decomposition. This idea is based on distributing the load of adjusting
a long adaptive filter to low order multiple sub-filters updated individually by a separate
adaptive algorithm. It is generally found that adaptive LMS algorithm with lower order
has faster convergence [7]. In most of the cases, the eigen-value spread of the auto
correlation decreases as the order of the filter decreases except for white input [8]. We
present the modeling of the acoustic echo path based on segmentation approach. A new
algorithm is proposed using the concept of decomposing the long adaptive filter into
low order multiple sub-filters with the parallelism technique. Simulation results show
that the proposed decomposed LMS adaptive algorithm significantly improved the
convergence rate.

2. Previous Approaches To Acoustic Echo Cancellation

In this Session, we try to discuss different approaches used for acoustic echo
cancellation and discuss the main problems in these approaches.

2.1 Echo Cancellation Using One Long Adaptive Filter

This approach , as shown in figure (1), is based on using the filtering algorithms
which try to estimate the impulse response of the acoustic echo path, h(n), and filter the
incoming signal from the far-end, x(n) [9,10]. The near-end input, d(n), e.g., from a
microphone, will contain both the far-end sound and the new near-end sound. The far-
end sound is convolved with the estimated, h(n), and subtracted from y(n) before being
sent to the far-end.
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Figure (1): Echo cancellation using one long adaptive filter

The main problems that have to be addressed are system identification of the
loudspeaker-room-microphone path in order to cancel the acoustic echo, d(n), and that
this technique requires thousands of coefficients to accurately model the echo return
path. These lead to excessive burden of computation and slower convergence rate.
2.2 Decomposition of Error Technique

This approach is based on using multiple sub-adaptive filters in which error
signals are dependant on each other. The idea of decomposing the input signal vector
and the weight vector into sub-vectors was first presented in [11]. Here the
decomposition is to partition the long single adaptive filter into smaller multiple sub-
filters. Each sub-filter is updated by an individual adaptive algorithm. Adaptive
algorithms are constructed depending upon how the error signal is generated. The error
signal can be obtained at each stage of the sub filter for its updation. These
arrangements are shown in figure (2).
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Figure (2): Decomposition of error technique

The adaptation factor is separately chosen for each sub-filter. In the different error
mode although algorithm appears to be fast at the beginning but the steady state error is
high [12]. The main problems of this approach are its slower convergence rate and it has
large steady state error.

3. The Proposed Approach

             The drawbacks of the previous approaches are their slower convergence rate
and their large steady state error. Our proposed approach tries to overcome these
drawbacks. The main idea of our algorithm is based on using multiple sub-adaptive
filters in which error signals are independent on each other. In our proposed technique
the error signals e1(n), e2(n) and e3(n), as shown in figure (3), can be obtained by
comparing the output of FIR filter that represents the impulse response of the echo path
in the near-end physical environment and the output of multiple low order sub-adaptive
filters. Then we take the average of these error signals, using the average block, before
being sent to the far end system. By this way we make error signals independent on each
other and this exhibits the parallelism technique that achieves faster convergence rate. In
another word the independency of the error signals, in our proposed approach,
introduces the parallelism technique that tries to make the convergence rate faster. In
this way we solve the problem of slower convergence rate but still the steady state error
the same as that of the decomposition of error approach. This steady state error is small
with respect to using one long adaptive filter.
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Figure (3): The proposed approach

From figure (3) we note that the error signals e1(n),e2(n) and e3(n) are independent
on each other as we discussed before. The average block is used to get the average of
these three error signals before being sent to the far end system. Each sub-filter can be
updated by an individual adaptive algorithm. The adaptation factor is separately chosen
for each sub-filter.

We should have been observed that FIR filter must be system identification of the
loudspeaker-room-microphone path. Acoustic echo can result from a combination of
direct acoustic coupling and multi-path effect where the sound wave is reflected from
various surfaces and then picked up by the microphone. The reflected sound signal
experiences attenuation, propagation delay and energy loss. The model of the acoustic
echo path cannot be static unless there is no change or movement of the person and
objects in the environment. Keeping in view the characteristics of the reflected sound
signal, the model for multiple reflections together with the direct path from Loudspeaker
to microphone can be obtained. These attenuation constants depend upon the size of the
room and surface from which reflections occur.
4. Convergence Behavior of The Proposed Approach

Here we will discuss only the adaptive filter portion of the Acoustic Echo
Canceller rather than discussing the other components like double talk detector and
residual echo suppressor. We assume that the person in the near end physical
environment is silent.

The input time series, x(n), is assumed sinusoidal function with AWGN for
different SNR. The microphone output is described as
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length of low path FIR filter corresponding to each reflection. Also H0 = 1.0, X0(n) = x
(n) and  (n) is the ambient noise assumed independent of sequence Xj(n) with a
variance min =E[ 2 (n)]. E[*] represents the expectation operation. The order of each
adaptive sub-filter is considered to be same as that of the individual reflection path
coefficient length in exact modeling.
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The LMS adaptation of each sub-filter, Wi(n), is given as
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E representsthe ectationoperation and tr representsthe traceoperation[*] exp {*} .

We must note that for the MSE to converge, it is necessary that E[Vi(n)] and
tr{Ri,iE[Vi(n) Vi

T(n)]}converge.
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This gives the essential condition for convergence but still tighter bound for the
step size can be obtained to confirm stability and convergence of sub-filters. Therefore
we obtain the correlation matrix of weight error vector by post multiplying (7) by its
transpose and taking expectation. Applying the Gaussian fourth moment factoring
theorem and defining the rotation vector as
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Where Qi is the eigen vector matrix of Ri,i ,The MSE convergence and stability are
ensured if step size i is shown such that
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5. Loadable Coefficient Filter Taps

           The heart of any digital filter is the filter tap. This is where the multiplications
take place and is therefore the main bottleneck in implementation. Many different
schemes for fast multiplication in FPGAs have been devised, such as distributed
arithmetic, serial-parallel multiplication, and Wallace trees [13], to name a few. Some,
such as the distributed arithmetic technique, are optimized for situations where one of
the multiplicands is to remain a constant value, and are referred to as constant
coefficient multipliers (KCM)[14]. Though this is true for standard digital filters, it is
not the case for an adaptive filter whose coefficients are updated with each discrete time
sample. Consequently, an efficient digital adaptive filter demands taps with a fast
variable coefficient multiplier (VCM). A VCM can however obtain some of the benefits
of a KCM by essentially being designed as a KCM that can reconfigure itself. In this
case it is known as a dynamic constant coefficient multiplier (DKCM) and is a middle-
way between KCMs and VCMs [14]. A DKCM offers the speed of a KCM and the
reconfiguration of a DCM although utilizes more logic than either. This is a necessary
price to pay however, for an adaptive filter.

6.  A Multiplier

An approach to multiplication that uses the Full_Adder , 8-bit ripple-carry adder,
Positive-edge-triggered D flip-flop with asynchronous clear,  an 8-bit register , an 8-bit
multiplexer, a zero detector , a variable-width shift register and a Moore state machine
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is as shown in Figure (4). This figure shows a schematic that describes the
interconnection of all the components for the multiplier. Notice that the schematic
comprises two halves: an 8-bit-wide datapath section (consisting of the registers,
adder, multiplexer, and zero detector) and a control section (the finite-state machine).
The arrows in the schematic denote the inputs and outputs of each component.
VHDL has strict rules about the direction of connections.

Figure (4): The multiplier used for our proposed approach

7. Hardware Verification

The proposed design was thoroughly tested on the FPGA. The VHDL design
using the FPGA fabric only was tested as well as the hybrid designs using the FPGA
fabric for filtering and utilizing the PowerPC for the training algorithm. To test the
validity of the hardware results, an Avnet Virtex-II Pro Development kit with a Xilinx
XC2VP20 FPGA was used. This board can plug directly into the PCI slot of a host
computer for fast data transfer over the PCI bus. The included PCI Utility enabled this
as well as quick FPGA reconfiguration over the PCI.
8. Simulation Results

8.1 Matlab Simulation

We examined our approach by using sinusoidal input signal, x(n), with AWGN
for different SNR. Echo path impulse response, h(n), in the near end physical
environment  was measured at a distance of 1.0 ft using computer loudspeaker and
unidynamic microphone. The sampling frequency of the simulation is16,000 Hz. We
assume that low path FIR filter which represents the impulse response of the echo path
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in the near end physical environment has order =10 and the three adaptive filters have
order =10. The sinusoidal input signal ,x(n), The output of FIR filter, d(n), and the
average output of the three adaptive filters, y(n), for different SNR are shown in figure
(5) through (8).
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Figure (5): a) The input signal ,b) The output of FIR filter, c) The average output of the
three adaptive filters

For SNR=5dB
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Figure(6): a) The input signal ,b) The output of FIR filter, c) The average output of the
three adaptive filters

For SNR=10dB
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Figure(7): a) The input signal ,b) The output of FIR filter, c) The average output of the
three adaptive filters

For SNR=15dB
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Figure(8): a) The input signal ,b) The output of FIR filter, c) The average output of the
three adaptive filters

For SNR=20dB

The MSE, defined in equation (6), versus the number of iterations M in the
proposed algorithm for different SNR is compared with the previous techniques as
shown in figure (9) through (12).

Figure(9): MSE versus number of iterations M for different approaches at SNR=5dB
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Figure(10): MSE versus number of iterations M for different approaches at SNR=10dB

Figure(11): MSE versus number of iterations M for different approaches at SNR=15dB

0 50 100 150 200 250 300 350 400
10

-20

10
-15

10-10

10-5

100

number of iterations M

MSE

(dB
)

proposed technique
decomposation of error technique
one long adaptive filter technique

0 50 100 150 200 250 300
10-20

10
-15

10-10

10-5

10
0

number of iterations M

MSE

(dB
)

proposed technique
decomposation of error technique
one long adaptive filter technique



Proceedings of the 6th ICEENG Conference, 27-29 May, 2008 EE134 - 15

0 10 20 30 40 50 60 70 80 90 100
10

-20

10
-15

10
-10

10
-5

10
0

number of iterations M

M SE

(dB
)

proposed technique
decomposation of error technique
one long adaptive filter technique

Figure(12): MSE versus number of iterations M for different approaches at SNR=20dB

From Figure (9) through (12), we conclude that in our proposed technique, we
need a small number of iterations to reach steady state error. We also conclude that in
the technique of decomposition of error and the technique of using one long adaptive
filter we need large number of iterations to reach steady state error. In this way it is
obvious that our proposed technique achieves faster convergence rate. This is expected
as our proposed technique is based on using multiple sub-adaptive filters with the
independency of error signals to achieve the parallelism technique. This is, as we
discussed before, the key idea for the improvement of our proposed technique compared
with the previous techniques. It is obvious from our simulations that the steady state
error of our proposed approach is the same as using technique of decomposition of
error. Also it is obvious that this steady state error is small with respect to using one
long adaptive filter. Table (1) demonstrates the comparison of our proposed approach
with the previous approaches.
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Table (1): Comparison  of different approaches

Technique
parameter

one long adaptive
filter technique

decomposition of
error technique

proposed
technique

Number of
adaptive filters

used
One Three Three

Step size of each
adaptive filter 0.05 0.05/3 0.05/3

Order of each
adaptive filter 30 10 10

Convergence rate
at SNR=5dB 350iterations 150 iterations 100 iterations

Convergence rate
at SNR=10dB 150 iterations 50 iterations 40 iterations

Convergence rate
at SNR=15dB 350 iterations 150 iterations 140 iterations

Convergence rate
at SNR=20dB 100 iterations 90 iterations 18 iterations

Steady state
error at previous

SNRs
0.001 0.000001 0.000001

8.2 FPGA Simulation and Synthesis:

             The algorithms for adaptive filtering were coded in Matlab and experimented to
determine optimal parameters such as the learning rate for the LMS algorithm. Next, the
algorithms were converted to a fixed-point representation, and finally, coded for the
Virtex-II Pro. The above algorithms were converted so that all internal calculations
would be done with a fixed-point number representation. This is necessary, as the
embedded PowerPC has no floating-point unit (FPU), and FPGA’s don’t natively
support floating-point either. Although a FPU could be designed in an FPGA, they are
resource intensive, and therefore can feasibly only support sequential operations. Doing
so however would fail to take full advantage of the FPGA’s major strength, which is
high parallelization. Figures (13) through (16) show the timing diagram of the proposed
approach at different SNR. We perform rounding operation on the signals before
converting it into binary format.
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Figure (13) : Timing diagram of the proposed approach at SNR=5dB

Figure (14) : Timing diagram of the proposed approach at SNR=10dB

Figure (15) : Timing diagram of the proposed approach at SNR=15dB

Figure (16) : Timing diagram of the proposed approach at SNR=20dB
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            From figure (13) through (16) we must note that, The desired is the output of
FIR filter after conversion to binary format and data out is the average output of
adaptive filter after conversion to binary format. We must also note that these binary
numbers after 1usec begin to converge from each other this is due to the rounding
operation which we preformed on the signals before the conversion into binary format.
we try to introduce the device utilization  for 2VP2fg256 for our proposed approach
through table (2) to show how our proposed approach has an efficient realization

Table (2) : The Device Utilization for 2VP2fg256 for the proposed approach

Resources Used Avail Utilization
IOs 66 240 27.50%

Global Buffers 1 32 3.13%
Function Generators 323 12288 2.63%

CLB Slices 294 6144 4.79%
Dffs or Latches 587 13008 4.51%

9. Conclusions:

An acoustic echo cancellation based on using multiple sub-adaptive filters in our
proposed technique shows the improvement in performance. This technique achieves
faster convergence rate than using the method of decomposition of error and that of
using only one long adaptive filter. The key idea for this improvement is that our
proposed algorithm is based on independency of the error signals which exhibits the
parallelism technique. In this way, we achieve faster convergence rate.

The Least Mean-Square algorithm was found to be an efficient training algorithm
for FPGA based adaptive filters. The used resources in the proposed approach show the
efficient of this algorithm for FPGA realization. The issue of whether to train in
hardware or software is based on power specifications, and is dependent on the
complete system being designed. While the extra power consumed would make the
PowerPC seem unattractive, as part of a larger embedded system this could be practical.
If many processes can share the PowerPC then the extra power would be mitigated by
the creation of extra hardware that it has avoided. With no microprocessor, a finite state
machine for timing, as well as a memory interface is needed, and these will consume
more power, although still less than the PowerPC. Lastly, the microprocessor can be
used to easily swap out software training algorithms for application testing and
evaluation. Embedded microprocessors within FPGA’s are opening up many new
possibilities for hardware engineers, although it requires a new design process. The
future of embedded Systems-on-Chip design will involve more precisely determining
the optimal hardware and software tradeoffs for the functionality needed.
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