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Abstract:

The active impedances and the currents of the elements in planar finite phased arrays of
dipoles show the presence of scan dependent interference pattern between more than
one wave. The first wave is the forced scanned space wave excited by the generators (or
the wave corresponding to an incident plane wave) and the other waves are traveling
waves on the planar dipole antenna array surface. The phenomenon of traveling waves
on the array surface is investigated by searching for natural waves that can propagate on
an infinite dipole array, where the natural waves are obtained as the source-free solution
of the infinite array problem. The study reveals the presence of surface and leaky waves
of different types. The effects of the array parameters on these traveling waves are
investigated. These traveling waves are found to interpret many of the interference
phenomena encountered.
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1. Introduction:

The active impedances and the currents of the elements in planar finite phased arrays of
dipoles show the presence of scan dependent interference pattern between more than
one wave, in both the radiation problem and the problem of an incident plane wave. The
first wave is the forced scanned space wave excited by the generators (or the wave
corresponding to the incident plane wave) and the other waves are traveling waves on
the planar dipole antenna array surface [1, 2]. For small inter-element spacings and low
source impedance, the traveling wave was identified as a surface wave similar to that
propagating on linear Yagi-Uda arrays [2, 3]. Similar interference patterns are also
found with half wavelength inter-element spacing and significant source impedance [1],
which can not be interpreted as surface waves. The surface wave does not appear in the
excitation of the infinite array, but becomes excited as a natural wave of the structure
excited by the discontinuities at the ends of a finite array [2]. As other slow surface
waves, such surface waves do not radiate as they propagate inside the array, but as the
surface wave reaches the finite array end, it radiates in the endfire direction and partially
reflects, causing similar phenomenon as it encounters the other edge, in a series of
multiple reflections. Such surface waves cause scattering and radiation in unwanted
directions. The phenomenon of traveling waves on the array surface can be investigated
by searching for natural waves that can propagate on an infinite dipole array, where the
natural waves are obtained as the source-free solution of the infinite array problem [2,
4]. This condition is equivalent to setting the dipole self impedance or admittance to
zero. This condition allows natural currents (voltages) to exist on the antenna without
exciting voltage (current). The present study reveals the presence of surface and leaky
waves of different types. The effects of the array parameters on these traveling waves
are investigated.

2. Analysis of the array dipole currents and impedances
Let us consider a finite array of M X N dipole elements with the dipoles oriented in the
x- direction. The feed network of each dipole consists of a voltage source in series with
a source impedance Zs. The equations for the applied voltages for the dipoles in the
array can be written in terms of the array currents, self, mutual impedances Zij and
source impedances Zs as [1, 2, 5, 6]:

nnS IZIZIZZV 12121111 )( +−−−−−−−−+++=

nns IZIZZIZV 22221212 )( +−−−−−−−−+++=

--        ---------------------------------------------------                                 (1)
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The array element currents are the solution of this matrix equation. The phase of the
driving voltage in the mth nth element in the array is expressed in terms of the scan
angles 0 and 0 as:

( ),exp 00 nmmnmn kyjkxjAV βα −−=                                                             (2)
   where

000 cossin φθα = , 000 sinsin φθβ = , λπ /2=k ,     is the wavelength

( )nm yx ,   position of the (m, n) element, ynxm ndyandmdx == ,

The current on either dipole is assumed to have a sinusoidal distribution, namely for
dipole 2;

( ) |)|(sin 22222 ζζ −= lkII m                                                                         (3)
  The mutual impedance between two dipoles with sinusoidal current distribution is
given as [7, 5, 6]
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The vertical field component Ex due to dipole 1 at dipole 2 can be written as [7]

)cos2(30 1
21

21

r
ekl

r
e

r
eIjE

jkrjkrjkr

mx

−−−

−+−=                                        (5)

where the distances r, r1, r2 are from the observation point to the center and the ends of
dipole 1, respectively. Substituting Eqn. (5) in Eqn. (4),
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This formulation, Eqn.(1), can be used both for an array excited by voltage sources to
scan the array beam [1] (as shown above), or for scattering from an array with load
impedances [2], with the array excited with an incident plane wave from the same
direction as the scan angle. The impedance matrix may generally be obtained using a
moment method solution of electric field integral equations on the elements [2]. For
dipoles near half wavelength long, the current distribution on the elements is known to
be fairly described by a sinusoidal function. The use of this distribution as a single
entire domain expansion and weight function in the moment solution reduces the
impedance matrix to the matrix of the self and mutual impedances of the elements,
Eqns.(1, 6). In these cases the elements of the voltage vector, Eqn. (2), become the
electric field in the exciting gap of the dipole (or the incident plane wave electric field)
multiplied by the weight function (sinusoidal) and integrated on the dipole length. The
case of the incident plane wave leads to Eqn. (1), for the fed dipoles, multiplied by a
constant, with the scan angle equal to the angle of incidence of the plane wave.
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3. Interference patterns on dipole arrays
Numerical calculation of the active impedances and excited currents is made for
cylindrical dipoles. Calculated currents are studied for the case of an incident plane
wave in H-plane at incidence angle ο

οθ 45= . Cylindrical dipole length and radius are
0.39  and 0.006 , respectively, element spacings are 0.41  and 0.23  in x- and y-
 directions, respectively. Figure 1 shows the element currents for 25 x infinite array for
incident plane wave at angle ο

οθ 45=  with zero load impedance [2]. Fig. 2 shows the
corresponding computed results for 25x25 finite array, which agree reasonably (a
scaling factor exists due to different amplitudes of the incident wave). Fig. 3 shows the
spectrum of the computed current of Fig. 2, (the unique range of the spectrum for such
periodic current of period dy is from – /2dy to /2dy, which in the present case becomes
in the range -2.17< <2.17). The spectrum shows the existence of three propagating
waves, one is the forced wave excited by the incident plane wave with θβ Sin= , the
other is a surface wave with 25.1≅β , and the third is the corresponding surface wave
propagating in the reverse direction (reflected at the array end), where  is normalized
w.r.t. 'k'. Figure 2 shows an interference pattern along the array between these waves. If
we have (without loss of generality) two propagating waves of equal amplitudes;

yjyj ee 21 & ββ , their sum becomes,
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21 ββ , and the cosine term represents a standing wave pattern along the array.
It is to be noted that a half cycle in the cosine interference pattern corresponds to a
complete cycle seen in the standing wave pattern on the array since both negative and
positive half cycles in the cosine pattern become an envelope for the traveling wave,
thus the period 'yc' of complete cycle in the standing wave pattern on the array is
obtained from the following condition, where β1 and β2 are normalized w.r.t. k :

( ) πββ
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=− cy212
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Active impedance results are computed with  (51 x 51) elements array, Fig. 4, for scan
in H-plane at 60o. Cylindrical dipole length and radius are 0.486  and 0.002 ,
respectively, which correspond to the resonant length in an infinite array. The
impedances again show an interference pattern.
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4. Traveling waves on infinite planar dipole arrays and interpretation of
interference patterns.
The propagation constant of the surface wave (β) propagating on the planar finite by
infinite array was obtained by applying the condition that the active impedance of the
dipole in an infinite array is equal to zero, which corresponds to the source-free
solutions for wave propagation on the array, since current can be supported with zero
voltage [2, 8]. In what follows we investigate the different types of natural traveling
waves on the surface of an infinite array of strip dipoles.

Natural traveling waves on an infinite planar array of strip dipoles
The active impedance of a strip dipole in an infinite planar array of strip dipoles of
length 'a' and width 'b' and separations dx,  dy in the x- and y- directions, respectively, is
given by [9, 5],
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 and  are the propagation constants of the wave in the x- and y- directions. The dipole
impedance in this periodic array is expressed as a series of Floquet's harmonics. The
impedance of a cylindrical dipole is nearly equal to that of a strip dipole with the strip
width equal to 4 times the cylindrical dipole radius [10, ch.4].
The propagation constant of a natural surface wave is obtained as the zero of Eqn.(9),
namely
Zp( )=0                                                                                           (10)
In order to find the real propagation constants  of the surface waves in the y direction
(propagation constant in x- direction, =0), we make a scan for the impedance Zp versus

. Fig. 5 shows the real and imaginary parts of dipole active impedance against the real
propagation constant β, for array dimensions: dx=0.41 , dy=.23 , a=0.39 , b=0.012 .
The behavior of the impedance in the figure is related to the grating lobe circles of the
array [1], whose centers in the beta direction are at n /dy, with unit radius. From Fig. 5
it is found that for values of β  within the grating lobe circles the real part of impedance
is finite since radiation occurs in these regions. In the region between the grating lobe
circles, the real part of impedance=0 since β=sin  >1, which correspond to invisible
space where no radiating space waves exist. This behavior repeats for the different
grating lobes. In Fig. 5 the imaginary part has two zeroes (two roots) at two points; one
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at β>1 and another root at d y 1/ −λβ p , and these roots repeat periodically between the
different grating lobe circles. The propagation constants (roots) of the main two surface
waves lie between the main-beam unit-radius grating lobe circle (in the grating lobe
diagram) and the next grating lobe circle, whose center is located at /dy. The discussion
of Ref. [2, 8] do not point to roots other than the one near β=1. As the separation
distance dy increases the region between the grating lobe circles decreases and the
imaginary part does not attain zero values, so no real surface waves can propagate.
A program for computing the complex surface wave propagation constants was made to
search for the roots  of Eqn. (10) ( =0 for propagation in the y- direction) using
Muller's method [11]. Eqn. (10) means that current wave with propagation constant 
can propagate on the array surface when the antennas terminals are short circuited.
In Eqn. (10) the propagation constant f, of the Floquet's harmonics in the z- direction,
normal to the array plane, appears as a square root whose proper sign should be used.
For the surface waves the propagation factor of the Floquet's harmonics is:

zjyjxj fff eee γβα −−−

Eqn. (10) shows that the propagation constants f,  f of the Floquet's harmonics are
',' n

d
m

d yx

λ
β

λ
α ++ , where m', n' run from minus infinity to infinity. The propagation

constant f is given by:
221 fff βαγ −−=

  According to the values of f, f, the value of f is chosen such that:
    If fff γβα ⇒+> 221  is real (radiating harmonic)

If fff γβα ⇒>+ 122 is (-ve imaginary)

The latter condition corresponds to a wave decaying away from the array plane
 (surface wave).
Figure 6 shows the propagation constants β of the surface waves propagating in
the y- direction, with the variation of the distance dy (normalized w.r.t. wavelength).
The figure shows two real surface wave roots, the smaller one corresponds to the one
obtained in Ref. [2, 8] and the greater one is another root not mentioned in these
references. With small spacing the propagation constant of the main surface wave is
nearly the free space one. As the distance dy increases, the two roots approach each
other (since the grating lobe circles approach each other) until they become equal at dy

=0.39 λ. This behavior is similar to that given in Ref. [4] for surface waves on the
modulated reactance surface. If dy is increased beyond 0.39 λ in Fig. 6, no real roots
exist. In this case leaky wave roots are searched with the increase of dy, where the two
surface wave roots merge into a leaky wave root.
For leaky waves, the propagation constant  becomes complex, and the sign of the
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complex propagation constant  of the Floquet's harmonics in the direction normal to
the array plane is taken to correspond to an outgoing wave. Such harmonics may decay
or grow in the direction normal to the array plane [4, 5]. The harmonics which grow are
improper, however they can be incorporated in the solution since their fields exist in
angular sectors where the field decays away from the surface [4].
The attenuation constant of the leaky wave (imaginary part) is found to be negligible, of
the order of 10-6 or 10-7.
5. Effects of different parameters on the surface wave and leaky wave propagation
constants
Figure 7 and Fig. 8 show the surface waves propagation constants as a functions of the
dipole length 'a' and the separation distance 'dy', where the curves are presented in the
form of the propagation constants versus the distance 'dy'' with a certain value of dy/a  in
each curve. It can be seen that as a/dy increases, the surface wave roots merge into a
single root at a smaller value of dy, such that at the merging point, 'a' is of the order of
0.4 .
Figure 9 shows the effect of increasing the separation distance in the x-direction to be
equal to 10.4 , which corresponds approximately to the linear Yagi array as studied in
[3], where the elements in x-direction are now far from each other.
6. Surface waves on arrays with source impedance or load impedance
When the dipole is fed from a source with internal impedance or when a plane wave is
incident on the array of dipoles with loads, the surface waves become attenuated due to
the losses in the loads, i.e. the propagation constants become complex. Under loaded
conditions, the source-free solution no longer corresponds to setting Zp =0, Eqn.(10), to
obtain the propagation constants, but rather the total impedance equals zero,

( ) 0=+ loadp ZZ β                                                                                 (11)
This condition means that current wave with propagation constant  can propagate on
the array surface when the antennas terminals with loads are short circuited.
Figure 10 shows the current distribution, 25x25 elements array of cylindrical  dipole,
dx=0.41 , dy=0.23 , a=0.39 , radius=0.003 ,  using Zload =100 ohms for an incident
plane wave at 0=45o. The calculated normalized surface wave propagation constant
from the interference pattern, Eqn.(8), gives =1.14, and the root of the first surface
wave gives β =1.097– j0.156, whose real part agrees reasonably with that calculated
from the interference pattern. At the right of Fig. 10 an interference pattern is seen
whose period is 2dy, which corresponds to a propagation constant =2.88 when
considered to interfere with the incident wave ( =k sin 0=0.707), or =3.27 when
considered to interfere with the first surface wave ( =1.097), and the second surface
wave propagation constant is calculated from the characteristic equation to be
β=3.25 - j0.156, whose real part agrees reasonably with that calculated from the

interference pattern with the first surface wave. Thus, the interference pattern shows the
excitation of the two surface waves.
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7. Arrays with leaky waves
Concerning Fig. 4 for the element impedances in case of scanning at 0 = 60o, the
interference pattern is found to correspond to interference between the space wave with
β = k sin 0, and a traveling wave with propagation constant approximately equal to k,
with small attenuation constant. This traveling wave can not be a surface wave since the
separation distance is 0.5 , thus a leaky wave is expected rather than a surface wave.
Fig. 11 shows the leaky wave propagation constant versus the load impedance for an
array with resonant elements and dy=0.39 . In fact, it was difficult to trace the root for
larger values of dy because it required taking very small increments of dy. Actually, the
inverse of Eqn.(11) is more appropriate to take as the characteristic equation since the
condition =1, expected for the leaky wave from the interference patterns, Fig. 4,
corresponds to an angle 0=90o , where =sin 0=1. For an infinite array the dipole
impedance at scan angle 0=90o is infinite [1, 5]. Thus we expect the value of Zp for this
leaky wave to be infinity and the condition of the leaky waves in the presence of Zload to
be:
  Zp )+ Zload= ∞                                                                                 (12)
    which defines also a source-free characteristic wave of the structure, i.e. a  wave with
propagation constant  can propagate on the array surface when the antennas terminals
are open circuited. In this case a finite load impedance has nearly no effect on the
propagation constant.
Fig. 12 shows the propagation constant of the leaky mode satisfying Eqn.(12), whose
real part equals unity, thus this mode can interpret the interference curves of Fig. 4.
Surface waves can not propagate on dipole arrays in the E-plane (collinear dipoles). The
appropriate condition for leaky wave propagating in the E-plane is
  Zp( ) + Zload=0                                                                                 (13)
  This condition is used since at scan angle 0=90o, = sin 0=1 (as required for the leaky
wave) and the element active impedance Zp of the infinite array is small [1, 5]. Fig. 13
shows the corresponding complex propagation constants of these leaky waves versus
the load resistance.
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8. Conclusions:
Planar dipole arrays are periodic structures which can support traveling surface or leaky
waves. The condition found to obtain the complex propagation constants of such natural
source-free waves is that the corresponding element (plus the source or load) impedance
in an infinite array is zero or infinite. The type of the traveling wave; whether a surface
wave or a leaky wave, depends on the dipole length, the separating distances and the
direction of propagation; whether along or perpendicular to the dipole directions. It is
found that for the case of short non-resonant elements with small separation, more than
one surface wave can propagate in the H- plane on the array surface, otherwise leaky
waves propagate. Results were obtained for the propagation constants of the surface and
leaky waves for different dipole lengths (short and resonant), element spacings (up to
half wavelength), load or source impedance and direction of propagation (in E- or H-
plane). The obtained propagation constants of the surface and leaky waves interpret
reasonably the interference patterns found for the currents or impedances on the finite
array surface between these traveling waves and the forced scanned wave excited by the
generators (or the wave corresponding to an incident plane wave)
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