5" International Conference
on Electrical Engineering
ICEENG 2006

Military Technical College
Kobry El-kobbah,
Cairo, Egypt

DESIGN OF PIPELINED AES ENCRYPTION
ALGORITHM USING FPGA

Alaa’El Din Rohiem , KamelMohamed Hassan , Ahmed®M. EI-Amin

ABSTRACT:

In this paper, we present developed design procedures for a pipelined Advanced
Encryption Standard [AES] encryption algorithm using Field Programmable Gate Array
[FPGA].The design procedures starting from entering the design parameters until
functional simulation and testing have been introduced in this paper. System throughput
of 1.408Gbps has been achieved, whereas the published results for similar systems are
much less than this rate [4-7].

KEY WORDS:
FPGA, AES, VHDL, encryption, decryption.

1- INTRODUCTION:

The main factor that this paper is concerned with is to increase the throughput of the
design, in another words is to decrease the timing delay between entering two successive
inputs and this problem occurs because the design of the AES algorithm depends on the
number of rounds in the algorithm and that the data must pass with at least 10 rounds
during encryption operation [1] So in the ordinary case we won't be able to enter another
data input except after at least 10 rounds which will lead to decrease the throughput of the
design so In this paper, we introduce a new design technique that enables the user to enter

more than one input without the need to wait until the first input has been encrypted.

The both designs of the encryption and decryption modules of the AES algorithm are
introduced such that more than one input with different operation (encryption or
decryption) may be applied successively to integrate both the encryption and decryption
functions on one chip.Tablel introduces some of the previous trials in implementing the

AES encryption algorithm.

Table 1 Pervious designs of AES Encryption Algorithm

Architecture Process FPGA Frequency Throughput
device (MH2) (Mbps)
SCHAO02[8] Encryption FPGAJ/ASIC NA 640/ 1280
SKLAOQ2 Encryption/Decryption XCV300 BG432 22 259
CASTO03[9] Encryption without Key expander Flex EP1F10K30E NA 157
SUNGO1 128, 192 and 256 bit ASIC NA 1024
ELB100 Encryption XCV1000 BG560 141 300
GAJ00 Encryption/Decryption XILINX Virtex 25.9 331
WEEKO00[10] Encryption/Decryption ASIC Approach NA 265

NA:Not available

From Tablel, it is shown that the maximum achieved throughput 1280 Mbps which is
less than what we have achieved using the proposed design.

The design steps will be accomplished by using the well known package of Mentor

Graphics which is FPGA advantage for HDL design version 5.2 [2].

The rest of this paper is organized as follows; section (1) contains the introduction,
section (2) presents the hardware pipelined design of AES encryption algorithm, section
(3) presents the AES design functional Simulation and section (4) is the conclusion
followed by the Appendices.

2- HARDWARE PIPELINED DESIGN OFAES ENCRYPTION
ALGORITHM:

In this section we will discuss the architecture of the proposed design and the function of

every main block in pipelined AES encryption algorithm design.

2.1 The Design Architecture:
The basic idea of the design is to allow the entrance of two or more consecutive inputs
without the need to wait until the complete encryption/decryption full round has been
performed. This idea is accomplished by the main-controller module; which at the
beginning receives the first 128 bit (the seed key) then passes them to the key-expander
block, to begin the key expanding operation. After this operation is finished, the

expanded keys are ready and therefore the design is prepared to receive the input data

(through the same port), to begin encryption/decryption operations. Afterwards, the out-
selector passes the output data to the output port and an interruption appears indicating

that the output data is ready.

Package List

LIBRARY ieee;
USEieee std logic_1164.all;

USEieee std logic_arith.all;

Fig.1shows the toplevel view of the AES algorithm design and the inputs and the

Fig.1 Main Block of Pipelined AES Algorithm design

outputs of the design which will be described later in Table 2.

The internal block diagram of the proposed design will be shown in Fig.5 and the main
blocks in this figure are: the AES_encryptor, AES_decryptor, main_controller,

key expander and output_selector.

2.2 The Main_Controller Module:

This module shown in Fig.5 is responsible for receiving the seed key(128 bit) through the
data_ip port and passes them to the key_expander through the seed_key port to begin the
key expanding operation, then it waits until the key is expanded and then it enables the
design to receive the input data through the same port data_ip to begin the encryption\

decryption

operation with the allowance that two or more consecutive inputs can be entered in spite
of the operation either (encryption or decryption) in another words the design is enabled

to operate in both directions (encryption or decryption).

This module is implemented as a state diagram and the inputs to this module are
data_in(128 bit), data_in_rdy(1 bit), enc_dec(1 bit) and key_rdy(1 bit) and the outputs are
seed_key(128 bit), key_intr(1 bit), cipher_in(128 bit), decipher_in(128 bit), enc_en(1 bit),
dec_en(1 bit), and data_rdy(1 bit).

The inputs of this module are the input to the whole design (Table 2) except key rdy
which indicates the main controller that the expanded keys are ready so that the controller
enables the data entrance, and the output ports of the module will be discussed in Table 2.

2.3 The Key_Expander Module:

The main functions of this module are expanding the key and passing the expanded keys
to the inputs of the encryption/ decryption units and enabling the main_controller module
to begin the data entrance mode by setting key_rdy signal “high” Fig.2 and these
functions are achieved through the following blocks: key_controller, rcon_key,
s_box_key, and rounds_keys block and the function of every block will be

discussed in the following sections.

Declarations

Project:

<enter project name here>

<enter comments here>

ram_wr

Sxley >

el 0

QUL

Ports:
clk : std_logic
key_intr : std_logic
rst : std_logic
seed_key : std_logic_vector(0 TO 127)
key_rdy : std_logic
key_round : std_logic_vector(0 TO 127)
key_roundl : std_logic_vector(0 TO 127)
key_round10 : std_logic_vector(0 TO 127)
key_round2 : std_logic_vector(0 TO 127)
key_round3 : std_logic_vector(0 TO 127)
key_round4 : std_logic_vector(0 TO 127)
key_round5 : std_logic_vector(0 TO 127)
key_round6é : std_logic_vector(0 TO 127)
key_round7 : std_logic_vector(0 TO 127)
key_round8 : std_logic_vector(0 TO 127)
key_round9 : std_logic_vector(0 TO 127)
Diagram Signals:
SIGNAL ex_key std_logic_vector(0 TO 127)
SIGNAL ram_add D ostd_ TO 3)
SIGNAL ram_wr std_logic
SIGNAL rcon_in - std_logic_vector(0 TO 7)
SIGNAL rcon_out 1 ostd_ i T0 7)
SIGNAL sin_1 std_ vector(0 TO 7)
SIGNAL sin_2 std_ vector(0 TO 7)
SIGNAL sin_3 std_ vector(0 TO 7) <company name>
SIGNAL sin_4 std_ vector(0 TO 7)
SIGNAL sout_1 std_ vector(0 TO 7) Tite: <enter diagramtitle here>
SIGNAL sout_2 std_ vector(0 TO 7) path: rard e derfstrutl
SIGNAL sout_3 : std_logic_vector(0 TO 7) ath: aes_hardwarefley expander/struct
SIGNAL sout_4 : std_logic_vector(0 TO 7) Edited: by M ohamed on 07 Pri 2006
Package List
LIBRARY ieee;
USE ieee std_logic_1164.all;
USEieee std_logic_arith.all;
ok aes_hardw are aes_hardware
Ist R:: key_controller s_box_key
key_intr ey iy ley_rdy >
seed key D e—— [0 kv dy 0 e 11
aes_hardware
s_box_key
sin 1:07) |_b 12
4 D200
» aes_hardware
> 0207 s_box_key
13
4. 00
in : (0:7)
@n aes_hardware
s_box_key
kcon ol Ld 2es_hardware | m
rcon_key Lamadd
15

sout 4: 0]

Fig.2 Key_expander Module

2.3.1 The key_controller module:

ram_add

aes_hardware
rounds_keys
16

(LD

This is the main block in the key_expander module, it do all the needed operations for

expanding the key with the aid of the s_box_key block and rcon_key block as the
s_box_key block contain the key S_BOX and the rcon_key block for doing the RCON

operations needed for completion of the key expansion.

2.3.2 The rounds_key module:

This block is responsible about monitoring the key_controller block as when it finish the

ley_r
key_rc
ey _ic
ley_rc
ley_r
key_rc
key_rc
ey _ic

ley_r

key expansion it passes the expanded keys to the input of the encryption and decryption

units to begin the encryption/ decryption operation.

2.4 The Output_Selector Module:

The main function of this module Fig.5 is to receive the encrypted data or decrypted data
and buffers the output data through the output port data_out with an output interrupt to
indicate that the output data is ready. The design input ports are: data_rdy, enc_en,
dec_en, cipher_out_final, decipher_out_final, clk and rst, and the output ports are:

data_out and out_intr.

The output ports are the same as the output ports of the whole design and the function
input ports will be discussed in Table 2.The design of this module is introduced as a state

diagram.

2.5 AES_Encryptor:
The main function of this module Fig.3 is encrypting the data for only one round of the
AES algorithm and the 10 rounds are achieved by repeating this block for 10 times taking

into consideration the last special round such that the

Packag e List

LIBRARY ieee;

USE ie ee.std _logic_11 64.all;
USE ie ee.std_logic_arith.all;

Decl ar ations
Ports:

@ std

: std_logic vector(0 T0 127)

: std_logic_vector(0 T0 127)
: std_logic
: std_logic

cipher_out : std_logic vector(0 TO 127)

Diagram Signals:
SIGNAL MixCo I_OP
SIGNAL MixCo 1_OP1 :
SIGNAL MixCo I_OP2 :
SIGNAL MixCo 1_OP3 :
SIGNAL shox_out
SIGNAL sbox_ outl
SIGNAL shox_out10 :
SIGNAL sbox_outll :
SIGNAL shox_outl2 :
SIGNAL sbox_outl3 :
SIGNAL shox_outl4 :
SIGNAL sbox_outl5 :

: std_l ogic_vector(0 TO 31)

std_ll ogiic_vector(0 TO 31)
std_I ogic_vector(0 TO 31)
> vector(0 TO 31)
vector(0 TO 7)

H stcl: ogic_vector(0 TO 7)

<company name>

Project: <enter project name he re>

<enter c omments here>

Titl e: <ent er diagram title here>
Path: aes_ hardware/AES _encryptor/stru ct
[Ed ited: by H esham EI Mag hraby on 14 Ap r 2006

iRl 1320 P1: 0TO7)
Ol OO P2 0TO7)
(iRl 8 ORDY P3: 0TO7)
iRl OVQDY 1P4: 0TO7)

act mix
j=)
=
= MixCol_OP : (0 TO 31)
S aes_hardware
(-
5 Mix_Col
8 .
X 116
s

8
bz

OFRA_P1: ©0TO7)
OFRA_P2: ©TO7)
OFRA_P3: ©T07)
"M Pa: 0TO7)

j=)
=
s MixCol_OP : (0TO31)
2 aes_hardware
0 o
= Mix_Col
3 _
=17
=

act_

gz

8\ P1: 0TO7)
M P2: TO7)
QR B3 0107

iR Ba: 0107

=

g MixCol_OP : (0TO 31)
8 aes_hardware

SI Mix_Col

= 118

s

Fig.3 AES_encryptor detailed diagram

Mix_ Col module is deactivated by a signal called act_mix, Fig .3 shows a single module
of every block used in the AES_encryptor module, the first block is the s_box module
and it is repeated 16 times to every 8 bit of the input and the second block is the Mix_col
block and it is repeated 4 times and the third block is the embedded block ebl and it is

only one module in the design.

The main functions of the encryption round are implemented in this module which are:
the SBox, shift rows, mix columns, and adding the round key, such that the SBox
function is implemented by the s_box block, and the mix of the columns by the Mix_col

block and both adding the round key and shifting rows by the embedded block ebl.

2.6 The AES_decryptor module:

The main function of this module Fig.4 is to decrypt the input data for only one round of
the AES algorithm and the 10 rounds are achieved by repeating the block for 10 times(as
in the encryption operation) taking into consideration the last special round to finish the

whole decryption process.

decipher_in

D e—

Package Lis t

LIBRARYiee e;

U SEieeestd _logic_116 4.all;
U SEieee.std _logic_arith.all;

deciphor- {002,042

decipher_in (104 TO 111) |

Declaratio ns

Ports:
Key_in
act_mix
clk
decipher_in
rst
decipher_out

Diagram Signals:
SIGNAL

Inv_Mi c_ColOP1
SIGNAL Inv_Mic_ColOP10
SIGNAL Inv_Mic_ColOP11
SIGNAL Inv_Mic_ColOP12
SIGNAL Inv_Mic_ColOP13
SIGNAL Inv_Mic_ColOP14
SIGNAL Inv_Mic_ColOP15
SIGNAL Inv_Mic_ColOP16
SIGNAL Inv_Mic_ColOP2 : std
SIGNAL Inv_Mic_ColOP3 : std

: std_logic_vector(0 TO 127)
: std_logic
std_ logic
: std_logic_vector(0 TO 127)
: std_logic
: std_logic_vector(0 TO 127)

: std_logic_vec tor(0
: std gic_vec tor(0
: std_logic_vec tor(0
std_l ogic_vec tor(0
std gic_vec tor(0
: std_l ogic_vec tor(0
: std_l ogic_vec tor(0
: std_l ogic_vec tor(0
gic_vec tor(0
ogic_vec tor(0

SIGNAL Inv_Mic_ColOP4 : std_logic_vector(0

SIGNAL Inv_Mic_ColOP5 : std
SIGNAL Inv_Mic_ColOP6 : std

gic_vec tor(0
ogic_vec tor(0

SIGNAL Inv_Mic_ColOP7 : std_logic_vector(0

SIGNAL Inv_Mic_ColOP8 : std
SIGNAL Inv_Mic_ColOP9
SIGNAL invs_out

ogic_vec tor(0
ogic_vec tor(0
1 ogic_vec tor(0

SIGNAL invs_outl ogic_vec tor(0
SIGNAL invs_outl0 gic_vec tor(0
SIGNAL invs_outll ogic_vec tor(0
SIGNAL invs_outl2 1 ogic_vec tor(0
SIGNAL invs_outl3 gic_vec tor(0

SIGNAL invs_outl4
SIGNAL invs_outl5
SIGNAL invs_out2
SIGNAL invs_out3
invs_out4
VS_O ut5
SIGNAL invs_out6
invs_out7

SIGNAL
SIGNAL

SIGNAL
SIGNAL

SIGNAL invs_out9
SIGNAL xor_out

ogic_vec tor(0
1 ogic_vec tor(0
ogic_vec tor(0
ogic_vec tor(0
1 ogic_vec tor(0
ogic_vec tor(0
ogic_vec tor(0
1 ogic_vec tor(0
ogic_vec tor(0
gic_vec tor(0
|_logic_vec tor(0

T0
TO
TO
T0
TO
TO
T0
TO
TO
T0
TO
TO
T0
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

TO 7

TO

<co
[Title: <ente r dia
Path: aes_ hard
Edited: |by TRC o

Fig.4 AES_decryptor detailed diagram

Fig .4 shows a single module of every block used in the AES_decryptor module, the first
block is the inv_s_box module and is repeated 16 times to every 8 bit of the input and the
second block is the embedded block eb1 and is the only one in the AES_decryptor
module and the third block is the Inv_Mix_col block and it is repeated 4 times and the

fourth block is the act_last_round block and it is only one module in the design.

The block implements the main functions in deciphering process which are Inverse Shift
Rows, Inverse SBox, Add round key, and Inverse Mix Columns such that the Inverse
shift rows function is implemented by the shifting the inputs to the inv_sbox blocks and

the Inverse

SBox function is implemented by the inv_sbox blocks and the add round key function by
the embedded block eb1 and the Inverse mix columns function by the Inv_Mix_Col
block taking into consideration that the last round is obtained without this function.

3- AES DESIGN FUNCTIONAL SIMULATION:

This step is accomplished by the downstream tool ModelSim SE 5.7f in the FPGA
advantage version 5.2 to simulate the design functionality to check if it achieves the same
function designed for or not.The testing procedure is discussed in the following section.

3.1 Testing Procedure:

The clock period is 100 ns, the rst of the design is active high.First we enter the key at the
input port data_in with an interrupt to indicate that the key is ready, and then we wait
until the key_rdy signal is set high by the design when the expanded keys are generated,
Secondly we enter the first input data with the interrupt and the enc_dec signal is set high
to enable the encryption circuit, after 3 clocks we enter the second input data with the
interrupt and enc_dec signal is set low to enable the decryption circuit, after 7 clocks we
enter the third input data with an interrupt and enc_dec signal is set high to enable the
encryption circuit, after 14 clocks the first output occurs at the data_out port with an
interrupt at out_intr and after 17 clocks second output occurs at the data_out port with an
interrupt and after 20 clocks the third output occurs at the data_out port with an interrupt,
and the inputs and outputs values (testing string) is shown in Table3.

Table (3) the functional simulation testing string

Input Input data(Hex) Operation Output data(Hex)

no.

1 00112233445566778899AABBCCDDEEFF | Encryption | 69C4EO0D86A7B0430D8CDB78070B4
2 69C4EO0D86A7B0430D8CDB78070B4C55A | Decryption | 00112233445566778899AABBCCDD!
3 00112233445566778899AABBCCDDEEFO0 | Encryption | FOOB22FASEDI9C26FBD6A3A691F9(

Input Key (constant): 000102030405060708090a0b0c0d0e0f (Hex)

Proceedings of the 5" ICEENG Conference, 16-18 May, 2006

Fig.6 illustrates the input signals timing and how it is successively entered to the design
and Fig.7 shows the output signals and their delay than the input signal.
The throughput of the design is calculated by the following formula:
Throughput = Block size x frequency / (number of clock cycles between two
consecutive inputs).

In the proposed design the input needs 3 clock cycle between two successive inputs,

the blocksize is 128 bit, and the operating frequency is equal to 33 MHz,
Therefore the throughput = 1.408 Gbps/sec.

4- CONCLUSION:

The proposed design pipelined AES encryption algorithm improved the system
throughput considerably. This achievement is in the expense of increasing the size of the
used system.

The future work will focus on reducing the number of used blocks to minimize the
system size, to be able to download the proposed design on a single chip and be
implemented in different applications.

5-APPENDENCIES:

The appendices in this paper contain the functional simulation of the inputs and outputs
of the proposed design as shown in Fig.6 and Fig.7 respectively. Fig. 5 also contains the
AES internal design and Table 2 shows all the input and output ports in the proposed
design and the function of each port.

Proceedings of the 5 ICEENG Conference, 16-18 May, 2006
LI |

File Edit Cursor Zoom Compare Bookmark

dBE LK T

= wave - default

568

$.

7

S

Mtopleve| aes/rst
Moplevel aes/clk
Moplevel_aes/data_ir

Moplevel aes/data in_rdy

" Mtoplevel aesfenc dec

Moplevel aes/dec_en
Mtoplevel aesdenc_en

- Mtoplevel aes/zeed key

Moplevel aestkey ink
Mtoplevel aeskey rdy
Mtoplevel aes/data_out
Mopleve| aesdout ink

*toplevel _aes/cipher_in

level aes/cipher_out_final
Moplevel aes/decipher_in

" wel_aes/decipher_out_final

Mtoplevel aes/data_rdy
Mtoplevel aes/key round
Mtoplevel aeskey_roundl
Mopleve| aeskey roundZ

* toplevel aesdkey round3

Moplevel aesfkey roundd
Moplevel aes/key roundd

*Mtoplevel_assfkey roundd

Moplevel aestkey round?
Mtoplevel aeskey roundd
Mtoplevel aeskey roundd

toplevel_aesfkey round10

Format Window

I:ﬂ!- {:‘{ {1

BAC4ENDERATRO430DRCOE FA0Y0B4CHRS .

I
000 0203040506070803040B 0CODOEOF
0
1
(anoooenoooon0oCano00nao0OGa0oOG0
0
001122334455667 788338 ABECCDDEERF
CBAT3E37878FEEE26F 4F R B2 CED 87
ON0000000000000000000a000000000
2B29AR1ABEFCADACAZFRF455ACRET11E
0
00010203040506070203040B 0CODOEDF
DBaa F4FDD2AFT2RADAAET SR DRARTEF
EE52CFOBE43DEDFIBESBCRONRR30BFE
BEFF744EDEC2CBFRCEI0CEFO4E3ER4]
47F7F7BCI5353E03F36C 32 CFD0SEDFD
A IE B SR D E RO AAF AT ADFR22AL
RE3S0F 7DFFARI23RATEEIDCT DA FRE
T4F 371 AES5FEZECA40ADF4DAEATCN2E
47436735041 CESBSE D BBAF4AERR AL
54933201 F0855 /681 093E DACREZCTT4E
13111D7FE 334481 7Fa07ATEE 4028 20CE

af

0T 20304 0RO A0a0A 0B OC DO F

DRAATATDD 28F 7R ADAAGTor 1DGABTFE

BG32CFOB R4 DED1BE 9 Co0BAa0R e

BEFF744E D220 FCRY0CEFI4EIBF 41

4?"F?F?EIEEIE;153E[I=FEIEIEBEEI CFDOSEDED

JCAAAGE E&ESFEDEEEDFE&FEH—“«DFE}EM

EEHSDF?DF?E«EEIEEIE?EEHD L1048 31FER

14F37014AE 34FE 28@44&&3 FAD4E 430026

174351 3841 EEEEI‘-'IEIIH RLAFAAEBF7AD7

54333201 FDEEE?E§1 093EDICRE 2CAF4E

1311 7P E $34451 77 07ATARA0 28300

17000 e

Fig.6 the functional simulation of the design
Proceedings of the 5 ICEENG Conference, 16-18 May, 2006

=t wave - default

File Edit Cursor Zfoom Compare Bookmark Formak indow

FE&E +sBBER ! GE o HEQQ@f ! R
EE

ELENERE feied

- = =

/data_in ABBCCODEEFD :j:,j

fdata_in_rdy |0 | 1 | | |
I

Aoplevel_aezddata_out
Atoplevelasszdout_inkn

g.

PP Y

o
B
B

i

17000 nz

Fig.7 the functional simulation outputs of the design

Proceedings of the 5" ICEENG Conference, 16-18 May, 2006

$ 11
Foaalsy o PHITTRERRE. HIRININGS
IR TEEE R E T mmmwwmwmwm

Mo dHHINRN
Hannmnnhy
m

]

Proceedings of the 5" ICEENG Conference, 16-18 May, 2006

Table2 The design input and output ports

]] Bus
Design Unit Port Name
Length
The Design global reset input
The toplevel 1 bit rst="1" Design is in reset state and no
desi rst (Active processing occurs.
esign ports . Lo .
gnp High) rst="0"............ Design is ready for processing
. The processing clock of the design and the
clk 1 bit L . .
decision is taken with every rising edge.
This port is used for the selection of the mode of
operation in the design either Encryption or
enc_dec 1 bit Decryption ,
when enc_dec ='0'
enc_dec ='1'
]) To enter the Key and the data to the Chip
data_ip 128 bit)
respectively.
. . This port informs the design that the input data is
data_in_rdy 1 bit
ready to enter.
. The output port at which the data is found after
data_out 128 bit .
processing.
The port that indicates that the
encryption/decryption operation is completed,
)) out_intr="0".......... processing mode (data is not
out_intr 1 bit
out_intr="1"........... data is ready (processing

key rdy

1 bit

The port that indicates that the key expansion

operation is completed,

key rdy="0".......... processing mode (key is not
expanded yet)

key rdy="1"........... expanded keys are ready
(key expansion operation
finished)

seed_key

128 bit

The port which the seed key enter through to the
key_expander block

key_intr

1 bit

The port which indicates the key_expander

module that the seed key is ready at seed_key port

cipher_in

128 bit

This is the input port to the encryption unit to

begin the encryption operation

decipher_in

128 bit

This is the input port to the decryption unit to
begin the decryption operation.

The

) enc_en
main_controller

ports

1 bit

This is the signal that indicates to the out_selector
to decide whether the output is from the

encryption path.

dec_en

1 bit

This is the signal that indicates to the out_selector
to decide whether the output is from the

decryption path.

data_rdy

1 bit

This is the signal that indicates to the out_selector

to decide whether the output is ready or not.

cipher_out_final
Output_selector

ports

128 bit

This is the input port at which the data after
encryption operation is ready.

decipher_out_final

128 bit

This is the input port at which the data after
decryption operation is ready.

6- REFERENCES:

[1] William Stallings, “Cryptography and Network Security”, 2003
[2] Designing with FPGA Advantage, Mentor Graphic, student workbook, software

V5.2, January 2002

[3] Mark Zwolinski, “Digital System Design with VHDL”, 2000

[4] N. Skiavos and 0. Koufopavlou, “Architectures and VLSI Implementations of

the ES-Proposal Rijndael, Implements two different architectures with fixed block
and key length”, IEEE Transactions on Computers,Vol.51, issue 12, pp. 1463-
1472, Dec.2002.

[5] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Implementation and
Performance Evaluation of the AES Block Cipher Candidate Algorithm
Finalists,” Proc. Third Advanced Encryption Standard (AES3) Candidate Conf.,
pp. 13—27, Apr. 2000.

[6] K. Gaj and P. Chodowiec, “Comparison of the Hardware Performance of the
AES Candidates Using Reconfigurable Hardware,” Proc. Third Advanced
Encryption Standard (AES3) Candidate Conf., pp.40-54, Apr. 2000.

[7] N. Sung Kim, R. B. Brown, and T. Mudge, “VLSI Implementation of the
Symmetric Key Block Cipher with the Advanced Encryption Standard-
Rijndael”, University of Michigan, Oct. 2001.

[8] Patrick R. Schaumont, Henry Kuo, Ingrid M. Verbauwhede, “ Unlocking the
Design Secrets of a 2.29 Gb/s Rijndael Processor “, Proc.39" Design
Automation Conf. (DAC2002), pp. 634-639, June 10-14 2002

[9] CAST, Advance Encryption Standard Megafunction 2003, http://www.cast.com

[10] B. Weeks M. Bean, T. Rozylowicz, and C. Ficke, *“ Hardware Performance

Simulations of Rounds 2 Advanced Encryption Standard Algorithms ,“ Proc.
Third Advanced Encryption Standard (AES3) Candidate Conf. , pp. 286-304 ,
Apr. 2000.

