

Military Technical College

Kobry El-kobbah,
Cairo, Egypt

5th International Conference

on Electrical Engineering
ICEENG 2006

DESIGN OF PIPELINED AES ENCRYPTION

 ALGORITHM USING FPGA

 Alaa2El Din Rohiem , KamelMohamed Hassan , Ahmed3M. El-Amin

ABSTRACT:
 In this paper, we present developed design procedures for a pipelined Advanced

Encryption Standard [AES] encryption algorithm using Field Programmable Gate Array

[FPGA].The design procedures starting from entering the design parameters until

functional simulation and testing have been introduced in this paper. System throughput

of 1.408Gbps has been achieved, whereas the published results for similar systems are

much less than this rate [4-7].

KEY WORDS:
FPGA, AES, VHDL, encryption, decryption.

1- INTRODUCTION:
The main factor that this paper is concerned with is to increase the throughput of the

design, in another words is to decrease the timing delay between entering two successive

inputs and this problem occurs because the design of the AES algorithm depends on the

number of rounds in the algorithm and that the data must pass with at least 10 rounds

during encryption operation [1] So in the ordinary case we won't be able to enter another

data input except after at least 10 rounds which will lead to decrease the throughput of the

design so In this paper, we introduce a new design technique that enables the user to enter

more than one input without the need to wait until the first input has been encrypted.

The both designs of the encryption and decryption modules of the AES algorithm are

introduced such that more than one input with different operation (encryption or

decryption) may be applied successively to integrate both the encryption and decryption

functions on one chip.Table1 introduces some of the previous trials in implementing the

AES encryption algorithm.

 Table 1 Pervious designs of AES Encryption Algorithm

Architecture Process
FPGA

device

Frequency

(MHz)

Throughput

(Mbps)

SCHA02[8] Encryption FPGA/ASIC NA 640/ 1280

SKLA02 Encryption/Decryption XCV300 BG432 22 259

CAST03[9] Encryption without Key expander Flex EP1F10K30E NA 157

SUNG01 128, 192 and 256 bit ASIC NA 1024

ELB100 Encryption XCV1000 BG560 14.1 300

GAJ00 Encryption/Decryption XILINX Virtex 25.9 331

WEEK00[10] Encryption/Decryption ASIC Approach NA 265

NA:Not available

From Table1, it is shown that the maximum achieved throughput 1280 Mbps which is

less than what we have achieved using the proposed design.

The design steps will be accomplished by using the well known package of Mentor

Graphics which is FPGA advantage for HDL design version 5.2 [2].

The rest of this paper is organized as follows; section (1) contains the introduction,

section (2) presents the hardware pipelined design of AES encryption algorithm, section

(3) presents the AES design functional Simulation and section (4) is the conclusion

followed by the Appendices.

2- HARDWARE PIPELINED DESIGN OFAES ENCRYPTION

ALGORITHM:
In this section we will discuss the architecture of the proposed design and the function of

every main block in pipelined AES encryption algorithm design.

 2.1 The Design Architecture:

The basic idea of the design is to allow the entrance of two or more consecutive inputs

without the need to wait until the complete encryption/decryption full round has been

performed. This idea is accomplished by the main-controller module; which at the

beginning receives the first 128 bit (the seed key) then passes them to the key-expander

block, to begin the key expanding operation. After this operation is finished, the

expanded keys are ready and therefore the design is prepared to receive the input data

(through the same port), to begin encryption/decryption operations. Afterwards, the out-

selector passes the output data to the output port and an interruption appears indicating

that the output data is ready.

LIBRARY ieee;
USE ieee.std_logic_1164.all ;
USE ieee.std_log ic_ar ith.al l;

Package List

clk r st

aes_hardware
toplev el_aes

data_ in : (0:127)

data_out : (0 :127)

enc_dec

data_in_rdy out_ intr

key_rdy

Fig.1shows the toplevel view of the AES algorithm design and the inputs and the

Fig.1 Main Block of Pipelined AES Algorithm design

outputs of the design which will be described later in Table 2.

The internal block diagram of the proposed design will be shown in Fig.5 and the main

blocks in this figure are: the AES_encryptor, AES_decryptor, main_controller,

key_expander and output_selector.

2.2 The Main_Controller Module:

This module shown in Fig.5 is responsible for receiving the seed key(128 bit) through the

data_ip port and passes them to the key_expander through the seed_key port to begin the

key expanding operation, then it waits until the key is expanded and then it enables the

design to receive the input data through the same port data_ip to begin the encryption\

decryption

operation with the allowance that two or more consecutive inputs can be entered in spite

of the operation either (encryption or decryption) in another words the design is enabled

to operate in both directions (encryption or decryption).

This module is implemented as a state diagram and the inputs to this module are

data_in(128 bit), data_in_rdy(1 bit), enc_dec(1 bit) and key_rdy(1 bit) and the outputs are

seed_key(128 bit), key_intr(1 bit), cipher_in(128 bit), decipher_in(128 bit), enc_en(1 bit),

dec_en(1 bit), and data_rdy(1 bit).

The inputs of this module are the input to the whole design (Table 2) except key_rdy

which indicates the main controller that the expanded keys are ready so that the controller

enables the data entrance, and the output ports of the module will be discussed in Table 2.

2.3 The Key_Expander Module:

The main functions of this module are expanding the key and passing the expanded keys

to the inputs of the encryption/ decryption units and enabling the main_controller module

to begin the data entrance mode by setting key_rdy signal “high” Fig.2 and these

functions are achieved through the following blocks: key_controller, rcon_key,

s_box_key, and rounds_keys block and the function of every block will be

discussed in the following sections.

Edi ted:

SIGNAL sin_1 : std_logic_vector(0 TO 7)

Declarations
Ports:

Diagram Signals:

clk : std_logic

rst : std_logic

SIGNAL ram_wr : std_logic

key_intr : std_logic

seed_key : std_logic_vector(0 TO 127)

SIGNAL ex_key : std_logic_vector(0 TO 127)
SIGNAL ram_add : std_logic_vector(0 TO 3)

SIGNAL rcon_in : std_logic_vector(0 TO 7)
SIGNAL rcon_out : std_logic_vector(0 TO 7)

key_rdy : std_logic
key_round : std_logic_vector(0 TO 127)
key_round1 : std_logic_vector(0 TO 127)

key_round2 : std_logic_vector(0 TO 127)
key_round3 : std_logic_vector(0 TO 127)
key_round4 : std_logic_vector(0 TO 127)
key_round5 : std_logic_vector(0 TO 127)
key_round6 : std_logic_vector(0 TO 127)
key_round7 : std_logic_vector(0 TO 127)
key_round8 : std_logic_vector(0 TO 127)

key_round9 : std_logic_vector(0 TO 127)

key_round10 : std_logic_vector(0 TO 127)

Package List
LIBRARY ieee;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_ar ith.al l;

c lk
rst

key_intr
s eed_key

Ti tle:

Path:

aes_hardw are
key_controller
I0

SIGNAL sin_2 : std_logic_vector(0 TO 7)
SIGNAL sin_3 : std_logic_vector(0 TO 7)
SIGNAL sin_4 : std_logic_vector(0 TO 7)
SIGNAL sout_1 : std_logic_vector(0 TO 7)
SIGNAL sout_2 : std_logic_vector(0 TO 7)

SIGNAL sout_3 : std_logic_vector(0 TO 7)
SIGNAL sout_4 : std_logic_vector(0 TO 7)

key_rdykey_rdy

<enter project name here><company name>

by M ohamed on 07 Pri 2006

Project:

<enter diagram title here> <enter comments here>

aes_hardware/key_expander/struct1

aes_hardware
s_box_key
I1

ram_wr

ex_key

ram_adds out_1 : (0 :7)

key_ro

key_ro

key_ro

key_ro

clk

rst

aes_hardware
s_box_key
I2

aes_hardware
s_box_key
I3

aes_hardware
s_box_key
I4aes_hardw are

rcon_key
I5

s in_1 : (0:7)

s in_2 : (0:7)

s in_3 : (0:7)

s in_4 : (0:7)

s out_3 : (0 :7)

s out_4 : (0 :7)

s out_2

rcon_in : (0:7)

rcon_out : (0 :7)

ram_add

aes_hardware
rounds_keys
I6

key_ro

key_ro

key_ro

key_ro

key_ro

key_ro

key_ro

Fig.2 Key_expander Module

2.3.1 The key_controller module:

This is the main block in the key_expander module, it do all the needed operations for

expanding the key with the aid of the s_box_key block and rcon_key block as the

s_box_key block contain the key S_BOX and the rcon_key block for doing the RCON

operations needed for completion of the key expansion.

2.3.2 The rounds_key module:

This block is responsible about monitoring the key_controller block as when it finish the

key expansion it passes the expanded keys to the input of the encryption and decryption

units to begin the encryption/ decryption operation.

2.4 The Output_Selector Module:

The main function of this module Fig.5 is to receive the encrypted data or decrypted data

and buffers the output data through the output port data_out with an output interrupt to

indicate that the output data is ready. The design input ports are: data_rdy, enc_en,

dec_en, cipher_out_final, decipher_out_final, clk and rst, and the output ports are:

data_out and out_intr.

The output ports are the same as the output ports of the whole design and the function

input ports will be discussed in Table 2.The design of this module is introduced as a state

diagram.

2.5 AES_Encryptor:

The main function of this module Fig.3 is encrypting the data for only one round of the

AES algorithm and the 10 rounds are achieved by repeating this block for 10 times taking

into consideration the last special round such that the

M
ix

C
ol

_
A

cti
v

a
t io

n

<enter c omments here>

aes_ha rdware

Key_in : std_logic_vector(0 TO 127)

cipher_in : std_logic_vector(0 TO 127)

cipher_out : std_logic_vector(0 TO 127)

SIGNAL MixCol_OP : std_logic_vector(0 TO 31)

SIGNAL MixCol_OP1 : std_logic_vector(0 TO 31)

SIGNAL MixCol_OP2 : std_logic_vector(0 TO 31)
SIGNAL MixCol_OP3 : std_logic_vector(0 TO 31)

SIGNAL sbox_out : std_logic_vector(0 TO 7)
SIGNAL sbox_out1 : std_logic_vector(0 TO 7)

SIGNAL sbox_out10 : std_logic_vector(0 TO 7)

SIGNAL sbox_out11 : std_logic_vector(0 TO 7)
SIGNAL sbox_out12 : std_logic_vector(0 TO 7)

SIGNAL sbox_out13 : std_logic_vector(0 TO 7)
SIGNAL sbox_out14 : std_logic_vector(0 TO 7)
SIGNAL sbox_out15 : std_logic_vector(0 TO 7)

SIGNAL sbox_out2 : std_logic_vector(0 TO 7)
SIGNAL sbox_out3 : std_logic_vector(0 TO 7)
SIGNAL sbox_out4 : std_logic_vector(0 TO 7)

SIGNAL sbox_out5 : std_logic_vector(0 TO 7)

SIGNAL sbox_out6 : std_logic_vector(0 TO 7)

SIGNAL sbox_out7 : std_logic_vector(0 TO 7)
SIGNAL sbox_out8 : std_logic_vector(0 TO 7)
SIGNAL sbox_out9 : std_logic_vector(0 TO 7)

Decl arations
Port s:

Diagram Signals:

act_mix : std_logic

clk : std_logic
rst : std_logic

Packag e List

LIBRAR Y ieee;
USE ie ee.std_logic_11 64.all;
USE ie ee.std_logic_ar ith.all;

<compan y name> Project:

<ent er diagram title here>Titl e:

Pa th: aes_ hardware/AES _encryptor/stru ct

Ed ited: by H esham El Mag hraby on 14 Ap r 2006

<enter project name he re>

cip her_in(0:7) Mix_Co l
I16

MixCol_IP1 : (0 TO 7)

MixCol_IP2 : (0 TO 7)

MixCol_IP3 : (0 TO 7)

MixCol_IP4 : (0 TO 7)

sbox_out : (0 TO 7)

sbox_out1 : (0 TO 7)

sbox_out2 : (0 TO 7)

sbox_out3 : (0 TO 7)

ac t_mix

s_bo x
I0

sbox_out : (0:7)

MixCol_ OP : (0 TO 31) MixCo l_O

aes_ha rdware

aes_ha rdware

M
ix

C
ol

_
A

ct
iv

a
t io

n

sbox_out 9 : (0 TO 7)
s_box

MixCol_IP4 : (0 TO 7) M
ix

C
o

l_
A

ct
iv

a
t io

n

sbox_out 7 : (0 TO 7)

s _box

I1

cipher_in(8: 15) Mix_Co l

I17

MixCol_IP1 : (0 TO 7)

MixCol_IP2 : (0 TO 7)

MixCol_IP3 : (0 TO 7)

sbox_out4 : (0 TO 7)

sbox_out5 : (0 TO 7)

sbox_out6 : (0 TO 7)

act_ mix

sbox_ out13

s _box
I2

s_ box
I3

aes_h ardware

cipher_in(16 :23)

cipher_in(32 :39)

cipher_in(24 :31)

MixCol_IP1 : (0 TO 7)sbox_out 8 : (0 TO 7)

act_ mix

sbox_ out10

sbox_ out7

sbox_ out4

MixCol_ OP : (0 TO 31)

MixCol_ OP : (0 TO 31)

I4

aes_h ardware

s_box
I5

cipher_in(40 :47)

cipher in (48:55)

Mix_Co l
I18

MixCol_IP2 : (0 TO 7)

MixCol_IP3 : (0 TO 7)

MixCol_IP4 : (0 TO 7)

sbox_out 10 : (0 TO 7)

sbox_out 11 : (0 TO 7)

sbox out14

sbox_ out1

 Fig.3 AES_encryptor detailed diagram

Mix_ Col module is deactivated by a signal called act_mix, Fig .3 shows a single module

of every block used in the AES_encryptor module, the first block is the s_box module

and it is repeated 16 times to every 8 bit of the input and the second block is the Mix_col

block and it is repeated 4 times and the third block is the embedded block eb1 and it is

only one module in the design.

The main functions of the encryption round are implemented in this module which are:

the SBox, shift rows, mix columns, and adding the round key, such that the SBox

function is implemented by the s_box block, and the mix of the columns by the Mix_col

block and both adding the round key and shifting rows by the embedded block eb1.

2.6 The AES_decryptor module:

The main function of this module Fig.4 is to decrypt the input data for only one round of

the AES algorithm and the 10 rounds are achieved by repeating the block for 10 times(as

in the encryption operation) taking into consideration the last special round to finish the

whole decryption process.

inv_sbox Inv_Mic _Colxor_ou t(88 TO 95) : (0 TO 127)

Title:

Path:

Edite d:

aes_hard ware

xor _out(0 TO 7) : (0 TO 127)

xor _out(8 TO 15) : (0 TO 127)

xor _out(16 TO 23) : (0 TO 127)

xor _out(24 TO 31) : (0 TO 127)

xor_ou t(40 TO 47) : (0 TO 127)

xor_ou t(48 TO 55) : (0 TO 127)

xor_ou t(56 TO 63) : (0 TO 127)

xor_ou t(64 TO 71) : (0 TO 127)

xor_out(7 2 TO 79) : (0 TO 127)

xor_ou t(80 TO 87) : (0 TO 127)

xor_ou t(32 TO 39) : (0 TO 127)

Key_i n : std_ logic_ve ctor(0 T O 127)
act_m ix : std_ logic
clk : std_ logic
decip her_in : std_ logic_ve ctor(0 T O 127)
rst : std_ logic
decip her_out : std_ logic_ve ctor(0 T O 127)

SIGNA L Inv_Mi c_ColOP1 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP10 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP11 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP12 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP13 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP14 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP15 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP16 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP2 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP3 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP4 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP5 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP6 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP7 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP8 : std_l ogic_vec tor(0 TO 7)
SIGNA L Inv_Mi c_ColOP9 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut1 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut10 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut11 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut12 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut13 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut14 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut15 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut2 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut3 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut4 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut5 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut6 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut7 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut8 : std_l ogic_vec tor(0 TO 7)
SIGNA L invs_o ut9 : std_l ogic_vec tor(0 TO 7)
SIGNA L xor_ou t : std_l ogic_vec tor(0 TO 127)

Declaratio ns
Ports:

Diagram S ignals:

Package Lis t
L IBRARY iee e;
U SE ieee.std _logic_116 4.all;
U SE ieee.std _logic_arith.all;

<co

by TR C on

<ente r dia

aes_ hard

I4

invs_out1 : (0 TO 7)

invs_out2 : (0 TO 7)

invs_out3 : (0 TO 7)

invs_out4 : (0 TO 7)

invs_out5 : (0 TO 7)

invs_out6 : (0 TO 7)

invs_out7 : (0:7)

invs_out8 : (0 TO 7)

invs_out9 : (0 TO 7)

inv_sbox
I1
aes_hard ware
inv_sbox
I0

aes_hard ware
inv_sbox
I2

aes_hard ware
inv_sbox
I3

aes_hard ware
inv_sbox

decipher _in(0:7) : (0:127) invs_out : (0:7)

decipher_in (104 TO 111) : (0 TO 127)

decipher_in(80 TO 87) : (0 T O 127)

decipher_in(56 TO 63) : (0 TO 1 27)

dec ipher_in(32 TO 39) : (0 TO 127)

decipher_in

aes_hard ware
inv_sbox
I5

aes_hard ware
inv_sbox
I6

aes_hard ware
inv_sbox
I7

aes_hard ware
inv_sbox
I8

aes_hard ware

decipher_in(8 T O 15) : (0 TO 12 7)

dec ipher_in(112 TO 119) : (0 TO 1 27)

decipher_in(88 TO 95) : (0 TO 1 27)

decipher_in(64 TO 71) : (0 TO 1 27)

dec ipher_in(40 TO 47) : (0 TO 127)

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

Inv_Mic _Col

invs_out10 : (0 TO 7)

invs_out11 : (0 TO 7)

invs_out12 : (0 TO 7)

invs_out13 : (0 TO 7)

invs_out14 : (0 TO 7)

I9

aes_hard ware
inv_sbox
I10

aes_hard ware
inv_sbox
I11

aes_hard ware
inv_sbox
I12

aes_hard ware
inv_sbox
I13

dec ipher_in(16 TO 23) : (0 TO 127)

decipher_in(120 TO 127) : (0 TO 127)

decipher_in(96 TO 103) : (0 TO 127)

decipher_in(72 TO 79) : (0 TO 1 27)

aes_hard ware
inv_sbox
I14

decipher_in(48 TO 55) : (0 T O 127)

 Fig.4 AES_decryptor detailed diagram

Fig .4 shows a single module of every block used in the AES_decryptor module, the first

block is the inv_s_box module and is repeated 16 times to every 8 bit of the input and the

second block is the embedded block eb1 and is the only one in the AES_decryptor

module and the third block is the Inv_Mix_col block and it is repeated 4 times and the

fourth block is the act_last_round block and it is only one module in the design.

The block implements the main functions in deciphering process which are Inverse Shift

Rows, Inverse SBox, Add round key, and Inverse Mix Columns such that the Inverse

shift rows function is implemented by the shifting the inputs to the inv_sbox blocks and

the Inverse

SBox function is implemented by the inv_sbox blocks and the add round key function by

the embedded block eb1 and the Inverse mix columns function by the Inv_Mix_Col

block taking into consideration that the last round is obtained without this function.

3- AES DESIGN FUNCTIONAL SIMULATION:
This step is accomplished by the downstream tool ModelSim SE 5.7f in the FPGA

advantage version 5.2 to simulate the design functionality to check if it achieves the same

function designed for or not.The testing procedure is discussed in the following section.

3.1 Testing Procedure:

The clock period is 100 ns, the rst of the design is active high.First we enter the key at the

input port data_in with an interrupt to indicate that the key is ready, and then we wait

until the key_rdy signal is set high by the design when the expanded keys are generated,

Secondly we enter the first input data with the interrupt and the enc_dec signal is set high

to enable the encryption circuit, after 3 clocks we enter the second input data with the

interrupt and enc_dec signal is set low to enable the decryption circuit, after 7 clocks we

enter the third input data with an interrupt and enc_dec signal is set high to enable the

encryption circuit, after 14 clocks the first output occurs at the data_out port with an

interrupt at out_intr and after 17 clocks second output occurs at the data_out port with an

interrupt and after 20 clocks the third output occurs at the data_out port with an interrupt,

and the inputs and outputs values (testing string) is shown in Table3.

 Table (3) the functional simulation testing string

Input

no.

Input data(Hex) Operation Output data(Hex)

1 00112233445566778899AABBCCDDEEFF Encryption 69C4E0D86A7B0430D8CDB78070B4

2 69C4E0D86A7B0430D8CDB78070B4C55A Decryption 00112233445566778899AABBCCDDE

3 00112233445566778899AABBCCDDEEF0 Encryption F00B22FA8ED9C26FBD6A3A691F9C

Input Key (constant): 000102030405060708090a0b0c0d0e0f (Hex)

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

Fig.6 illustrates the input signals timing and how it is successively entered to the design

and Fig.7 shows the output signals and their delay than the input signal.

The throughput of the design is calculated by the following formula:

Throughput = Block size x frequency / (number of clock cycles between two

 consecutive inputs).

 In the proposed design the input needs 3 clock cycle between two successive inputs,

 the blocksize is 128 bit, and the operating frequency is equal to 33 MHz,

Therefore the throughput = 1.408 Gbps/sec.

4- CONCLUSION:
The proposed design pipelined AES encryption algorithm improved the system

throughput considerably. This achievement is in the expense of increasing the size of the

used system.

The future work will focus on reducing the number of used blocks to minimize the

system size, to be able to download the proposed design on a single chip and be

implemented in different applications.

5-APPENDENCIES:
The appendices in this paper contain the functional simulation of the inputs and outputs

of the proposed design as shown in Fig.6 and Fig.7 respectively. Fig. 5 also contains the

AES internal design and Table 2 shows all the input and output ports in the proposed

design and the function of each port.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

Fig.6 the functional simulation of the design

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

Fig.7 the functional simulation outputs of the design

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

Ports:
Declarations

-- eb1 1
act_mix <='1';
 <<-- more -->>

key_round : (0:127)

SIGNAL cipher_in : std_logic_vector(0 TO 127)

SIGNAL act_mix : std_logic

SIGNAL cipher_out : std_logic_vector(0 TO 127)

SIGNAL decipher_in : std_logic_vector(0 TO 127)
SIGNAL decipher_out : std_logic_vector(0 TO 127)

SIGNAL seed_key : std_logic_vector(0 TO 127)

SIGNAL key_intr : std_logic
SIGNAL key_round : std_logic_vector(0 TO 127)
SIGNAL key_round1 : std_logic_vector(0 TO 127)
SIGNAL key_round10 : std_logic_vector(0 TO 127)

SIGNAL cipher_out1 : std_logic_vector(0 TO 127)
SIGNAL cipher_out2 : std_logic_vector(0 TO 127)
SIGNAL cipher_out3 : std_logic_vector(0 TO 127)
SIGNAL cipher_out4 : std_logic_vector(0 TO 127)
SIGNAL cipher_out5 : std_logic_vector(0 TO 127)
SIGNAL cipher_out6 : std_logic_vector(0 TO 127)
SIGNAL cipher_out7 : std_logic_vector(0 TO 127)
SIGNAL cipher_out8 : std_logic_vector(0 TO 127)
SIGNAL cipher_out9 : std_logic_vector(0 TO 127)
SIGNAL cipher_out_final : std_logic_vector(0 TO 127)

SIGNAL act_mix_final : std_logic

SIGNAL data_rdy : std_logic

data_in : std_logic_vector(0 TO 127)

SIGNAL decipher_out_final : std_logic_vector(0 TO 127)

data_out : std_logic_vector(0 TO 127)

SIGNAL decipher_out1 : std_logic_vector(0 TO 127)
SIGNAL decipher_out2 : std_logic_vector(0 TO 127)
SIGNAL decipher_out3 : std_logic_vector(0 TO 127)
SIGNAL decipher_out4 : std_logic_vector(0 TO 127)
SIGNAL decipher_out5 : std_logic_vector(0 TO 127)
SIGNAL decipher_out6 : std_logic_vector(0 TO 127)
SIGNAL decipher_out7 : std_logic_vector(0 TO 127)
SIGNAL decipher_out8 : std_logic_vector(0 TO 127)
SIGNAL decipher_out9 : std_logic_vector(0 TO 127)

SIGNAL key_round9 : std_logic_vector(0 TO 127)
SIGNAL key_round8 : std_logic_vector(0 TO 127)
SIGNAL key_round7 : std_logic_vector(0 TO 127)
SIGNAL key_round6 : std_logic_vector(0 TO 127)
SIGNAL key_round5 : std_logic_vector(0 TO 127)
SIGNAL key_round4 : std_logic_vector(0 TO 127)
SIGNAL key_round3 : std_logic_vector(0 TO 127)
SIGNAL key_round2 : std_logic_vector(0 TO 127)

SIGNAL enc_en : std_logic

SIGNAL dec_en : std_logic

Package List

Diagram Signals:

clk : std_logic

rst : std_logic

key_rdy : std_logic

data_in_rdy : std_logic
enc_dec : std_logic

out_intr : std_logic

<enter project name here><company name>

by Mohamed on 07 Pri 2006

Project:

<enter diagram title here>Title:

Path:

<enter comments here>

aes_hardware/toplevel_aes/struct

Edited:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

aes_hardware
key_expander

rst

clk

key_intr

rst

clk

rst

clk

key_round1 : (0:127)

key_round2 : (0:127)

key_round3 : (0:127)

key_round4 : (0:127)

key_round5 : (0:127)

eb1
1

I6 keyround6:(0:127)

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

Table2 The design input and output ports

Design Unit Port Name
Bus

Length
Function

rst

1 bit

(Active

High)

The Design global reset input

rst=’1’ ………..Design is in reset state and no

processing occurs.

rst=’0’………... Design is ready for processing

procedures.

clk 1 bit
The processing clock of the design and the

decision is taken with every rising edge.

enc_dec 1 bit

This port is used for the selection of the mode of

operation in the design either Encryption or

Decryption ,

when enc_dec ='0' Encryption

 enc_dec ='1' Decryption

data_ip 128 bit
To enter the Key and the data to the Chip

respectively.

data_in_rdy 1 bit
This port informs the design that the input data is

ready to enter.

data_out 128 bit
The output port at which the data is found after

processing.

The toplevel

design ports

out_intr 1 bit

The port that indicates that the

encryption/decryption operation is completed,

out_intr = '0' ……….processing mode (data is not

ready yet)

out_intr = '1'………..data is ready (processing

finished)

key_rdy 1 bit

The port that indicates that the key expansion

operation is completed,

key_rdy = '0' ……….processing mode (key is not

expanded yet)

key_rdy = '1'………..expanded keys are ready

(key expansion operation

finished)

seed_key 128 bit
The port which the seed key enter through to the

key_expander block

key_intr 1 bit
The port which indicates the key_expander

module that the seed key is ready at seed_key port

cipher_in 128 bit
This is the input port to the encryption unit to

begin the encryption operation

decipher_in 128 bit
This is the input port to the decryption unit to

begin the decryption operation.

enc_en 1 bit

This is the signal that indicates to the out_selector

to decide whether the output is from the

encryption path.

dec_en 1 bit

This is the signal that indicates to the out_selector

to decide whether the output is from the

decryption path.

The

main_controller

ports

data_rdy 1 bit
This is the signal that indicates to the out_selector

to decide whether the output is ready or not.

cipher_out_final 128 bit
This is the input port at which the data after

encryption operation is ready. Output_selector

ports

decipher_out_final 128 bit
This is the input port at which the data after

decryption operation is ready.

6- REFERENCES:
 [1] William Stallings, “Cryptography and Network Security”, 2003

 [2] Designing with FPGA Advantage, Mentor Graphic, student workbook, software

V5.2, January 2002

[3] Mark Zwolinski, “Digital System Design with VHDL”, 2000

[4] N. Skiavos and 0. Koufopavlou, “Architectures and VLSI Implementations of

the ES-Proposal Rijndael, Implements two different architectures with fixed block

and key length”, IEEE Transactions on Computers,Vol.51, issue 12, pp. 1463-

1472, Dec.2002.

 [5] A.J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA Implementation and

Performance Evaluation of the AES Block Cipher Candidate Algorithm

Finalists,” Proc. Third Advanced Encryption Standard (AES3) Candidate Conf.,

pp. 13—27, Apr. 2000.

[6] K. Gaj and P. Chodowiec, “Comparison of the Hardware Performance of the

AES Candidates Using Reconfigurable Hardware,” Proc. Third Advanced

Encryption Standard (AES3) Candidate Conf., pp.40-54, Apr. 2000.

[7] N. Sung Kim, R. B. Brown, and T. Mudge, “VLSI Implementation of the

Symmetric Key Block Cipher with the Advanced Encryption Standard-

Rijndael”, University of Michigan, Oct. 2001.

[8] Patrick R. Schaumont, Henry Kuo, Ingrid M. Verbauwhede, “ Unlocking the

Design Secrets of a 2.29 Gb/s Rijndael Processor “, Proc.39th Design

Automation Conf. (DAC2002), pp. 634-639, June 10-14 2002

[9] CAST, Advance Encryption Standard Megafunction 2003, http://www.cast.com

[10] B. Weeks M. Bean, T. Rozylowicz, and C. Ficke, “ Hardware Performance

Simulations of Rounds 2 Advanced Encryption Standard Algorithms ,“ Proc.

Third Advanced Encryption Standard (AES3) Candidate Conf. , pp. 286-304 ,

Apr. 2000.

