
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١

١

Military Technical College

Kobry El-kobbah,
Cairo, Egypt

5th International Conference

on Electrical Engineering
ICEENG 2006

MULTI-AGENTS MODEL TO ENHANCE THE NAVIGATION PROCESS

IN A VIRTUAL ENVIRONMENT
Ismail Abd-Elghafar Khaled El-Menshawy Ali Ali Fahmy

ABSTRACT
Due to the rapid evolution of graphics hardware, interactive Virtual Environment is

becoming popular on desktop personal computers. The use of the Virtual Environment as a
simulation system becomes very important for certain types of applications, especially in the
fields of education and entertainment. These synthetic environments are even more attractive
for the user when they exhibit dynamic characteristics. The most important problem of using
the synthetic Environment is navigation process. The ability to navigate and interact in a
Virtual Environment is essential for certain types of applications, such as virtual classrooms,
on-line museums and games. Many 3D virtual environments, whether representing existing
places or imaginary ones typically leave the user alone and partially or totally unassisted in
navigating the environment Navigation process deals with the problem of finding
path/trajectory between two locations under some constraints. In this paper, a model of multi-
agents is developed to enhance the navigation process and interaction with the users of the
synthetic Virtual Environment It describes how agents can work together to solve their task.
Usually, this requires some kind of inter-agent communication.

KEYWORDS Virtual Environment, Multi agents, navigation, Virtual Reality Modeling
Language (VRML), avatar.

1. Introduction

The ability to navigate and interact in a Virtual Environment (VE) is essential for certain
types of applications, such as virtual classrooms, on-line museums and games. Many 3D
virtual environments, whether representing existing places (e.g., virtual cities) or imaginary
ones typically leave the user alone and partially or totally unassisted in navigating the
environment. One of the urgent problems of agent’s system is to build agents that are capable
of autonomous action, accept and execute high-level task descriptions with no human
supervision. On the other hand, the area of VE seems to be appropriate for the development of
intelligent agent's applications. Therefore, it seems that the time has come to integrate the VE
system with Intelligent Agents. This combination of intelligent techniques and simulation
tools together with effective means for their graphical representation and interaction of
various kinds, have given rise to a new area at their meeting point, which we call Intelligent
Virtual Environment. A virtual agent can be defined as an autonomous entity in a VE. It
should not only look like, but also behave as a living organism, and be able to interact with
the environment and its inhabitants. Developing guided tours led by embodied agents is not an
easy task for the 3D content creator, since it currently has to be done partly by hand (e.g.,
coding a suitable path for the virtual agent avoiding obstacles). Moreover, the code written for
one 3D VE can be very limitedly reused for other ones. In [5] One of the effective ways in
developing navigation systems and exploring the VE is using the intelligent agent because of
its properties, which increase its efficiency and easiness of exploring the VE. It becomes

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٢

٢

increasing important to give the autonomous agent the ability to navigate around dynamic
objects in the Virtual Environment. This paper is motivated by the necessity to create a
generic model to improve the navigation process in the VE by applying the embodied agents
model. This model must be:
Applicable to very complex 3D Virtual Environments;
Computationally inexpensive to operate in real time;
Able to find a path, if it exists, and the path length should not differ much from the length of
optimal path.
Improve the capability of the VE browser by adding an autonomous agent to enhance the
support of the user by doing navigation process.
Agents in the proposed model contain knowledge, are designed to work autonomously, act on
behalf of the user, and have the ability to learn. The virtual intelligent agents are navigation
aids, leading users around and preventing them from being lost. The users have simply to
follow the guide or trace the drawn path to explore the VE. Also, it works as information aids
(since the agent is also able to provide information about the encountered places and objects).
An embodied agent can also have the additional advantage of making the 3D VE more lively
and attractive for the user. The core idea of the proposed model is based on the accessibility
knowledge representation by building a navigational map and the use this map for real time
navigation process. The approach we follow to deal with the problem of deriving a suitable set
of positions for the guided tour is based on using a motion planning algorithm that takes as
input a map of the virtual environment. The rest of this paper is organized as follows is as
follows: Section 2 a brief overview of related works of navigation process in the Virtual
Environment. Section 3 reviews the conceptual model of the Virtual Environment Browser..
Section 4 explains the general proposed model of an intelligent Virtual Environment,
discusses the rules of building the Virtual Environment based on multi-agent system,
illustrates the roles and behaviors of each agent described in the proposed model. Section 5
shows the experimental result to measure the performance of the VE browser after the multi-
agents model has applied The paper is ended with the conclusion and the future work.

2. Related Works
There is an enormous body of work related to 3D navigation in virtual environments. It can be
classified into two main categories: working on understanding the cognitive principles behind
navigation, and working on developing navigation techniques for specific tasks and
applications. A task-based taxonomy of different navigation techniques is presented in [4].
The author in [2] have explored cognitive and design principles as they are applied to large
virtual environments. There has also been considerable work in designing intelligent user
interfaces for improved navigation. Most of the prior work on navigation for walkthrough
applications has focused on developing body-centered interaction methods, including devices
such as treadmills, or on evaluating the differences between various interaction techniques,
such as walking and joystick based flying, There has been less work on automatic
computation of navigation paths in complex environments. [8]The author has presented an
inter-action technique based on body gestures for walking and ascending, or descending, steps
and ladders in virtual environments. These techniques were applied to architectural
walkthrough environments. The author has presented a simple interaction technique for
walkthroughs in which the user draws the intended path directly on the scene, and the avatar
automatically moves along the path. Many of the current computer games also offer effective
means of navigation. However, it is not clear that these approaches can be extended to
navigation and automatic path computation in general massive environments. For handling
very large environments, Wilson et al. have presented fast algorithms for collision detection

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٣

٣

and distance computation between the avatar, or other moving objects, and the rest of the
environment. The resulting system works well in terms of computing collision-free paths in
the localized neighborhood of the avatar, but cannot be used to compute a global path
between arbitrary initial and destination positions in a complex environment. [10]
A model is presented for describing the Intelligent Information in the Virtual Environment, as
well as the Camera Control. Its main goal is to be able to populate Virtual Environments with
virtual agents endowed with different Levels of Autonomy: from guided to autonomous. [3]
The authors in [7]review the intersection of AI and VE. They consider the use of AI as a
component of a VE and Intelligent Virtual Agents as a major application area, covering
movement, sensing, behavior and control architectures. In their systems, intelligence is
embedded in the system architecture itself, by incorporating AI algorithms into the virtual
reality system. They survey work on emotion and natural language interaction, and considers
interactive narrative as a case-study. Another proposed path–planning algorithm is proposed
to modify a Java3D implementation of VRML (Virtual Reality Modeling Language) browser
to incorporate it into the user interface in the control loop of 3D interactions to compute
collision-free maneuver paths but without using Agent based system.[9] Now, we have to
answer the following question, how can we browse and interact with the desktop Virtual
Environment? The answer is that the user has to use a Virtual Environment Browser to be
able to see the contents of the VE and interact with the objects in it. The next section explains
the conceptual model of the Virtual Environment Browser. To realize our model we used
VRML, which limits us to a medium quality desktop VR.

3. Functional model of the Virtual Environment Browser

We have mainly modified the routine of processing mouse events, the routine of updating the
next viewpoint configuration and the routine of Navigation Process in the virtual environment
browser. Fig.1. illustrates the Interaction between the end user and the synthetic VE. This
environment is created by using VRML.

Fig.1. The Interaction between the VE and the end user

Synthetic
 Environment
Created By

VRML X
Virtual Environment Browser

Merge Autonomous
Agents

 Intelligent Virtual Environment Browser
Embodied with Multi-agent

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٤

٤

Fig.2. Description of the VE file as a scene graph

VRML file describes a 3D environment based on a scene graph structure. Scene graphs are
hierarchical treelike data structures that describe an entire 3D scene, including the geometry
representation, the appearance of objects, and the relationships among the objects in the world
as shown in figure (2)
Many 3D VE Browsers do not offer sufficient assistance to users in navigating through the
VE, find objects/places of interests, and learn how to interact with them. This paper proposes
the adoption of Intelligent Navigation agent of VE as an effective user aid and describes a
novel tool that provides automatic code generation for adding such intelligent guided agent to
3D VE developed using the VRML and JAVA. The VE Browser interprets a VRML file and
presents the corresponding 3D VE. Figure 3 illustrates the conceptual model of the Virtual
Environment Browser. There are three steps to display a VRML file in the Browser.

(a) The parser interprets the VRML file and determines the meaning of its syntax,
parsing generates built-in nodes and user-defined ones.

(b) These nodes are combined according to the scene hierarchy in order to construct
a scene graph. Other mechanisms such as event processing by Routes or script
interpretation are processed. The Browser also interprets the user’s input and
changes the viewpoint of 3D worlds based on the sensor nodes in VRML.

(c) It generates audio/visual feedback to the user.

VRML File

 Execution engine

Route-graph

Transformation
hierarchy

Parser

Protos Built-in nodes

World

Audio/Visual representation

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٥

٥

The next section discusses a proposed model of the multi-agent based system to enhance the
navigation process in the Virtual Environment Browser.

4. Proposed model of the multi-agent in the Virtual Environment

The agent is the primary entity with the Virtual Environment Model, composed of
capabilities, plans, databases, and events. Agents can address other agents and post events to
them thus modeling inter-agent communication. We have setup the navigation assistant model
as a collection of various agents, each with its own specialized capabilities. Each agent has a
goal structure that governs:
(1) How they interact in the environment and
(2) The behavior of each agent.
 A goal represents a task or states, which the agent is trying to achieve. Agents may have
multiple goals and work to accomplish each one individually or concurrently with other goals.
Each agent contains a goal list; these goals are sorted by order of precedence. The agents
attempt to accomplish the higher precedence goal, and then move on the next goal.
Determining which goals are active is based on the capability function of each agent and each
goal is given a priority number.
4.1 The rules for building the multi-agent in the VE
The following steps are required to apply the agent model in the VE:

 The Role: The first thing we want to do is to figure out which role the agent should
have in the synthetic Virtual Environment. This could typically be a description of the agent
type, its personality and how it is supposed to react to the other objects.

 Goals: Some primary goals of the agent should be identified with the role description.
 Behaviors :These implements both goals and strategies to fulfill the goals.

Behaviors are units which continuously compete to take control of the agent. They are
organized in a hierarchy of groups containing mutually exclusive behaviors, where
the top level group could be said to represent the agent’s goals whereas the lower
level groups represent different strategies to achieve the goal of their parent.

 Drives: Mostly an agent should have some sort of drives that act as an internal
motivation to the agent and a bias to engage in a special line of action.

 Information extraction: The next thing to do is to identify the objects, agents and
avatars in the world which the agent should pay attention to. Without these
classifications, agent cannot assess any meaning to the sensory information.

The proposed model of the embodied agents in the synthetic VE consists of five agents. The
first agent is a Watching-agent. This agent works as Interface Agent. The interface agent is
usually not the interface between the user and the VE. Instead, it observes the interaction
between the user and the VE from the sideline, learns from it and interacts with the controller
agents through Headquarter Agent so we called it a Watching-agent. The second agent is a
headquarter-agent, it works as a supervisor agent, and it is a mediator agent between the
higher level agent (Watching-agent) and the lower level of the working agents. It stores the
dynamically information about the VE. It sends this information to the working agents group.
The third agent is the Position-tracker agent. It is used to determine the position of the
navigator agents in the synthetic VE. It stores the status of each node, edge and path in the
VE. The fourth agent is the Object-identifier-agent. It is used to keep track the changes of the
dynamic objects in the VE. Finally, the fifth agent is the Navigator-Agent. It is the moving
agent that helps the visitors of the VE to find their interested way. The navigator agent in the
VE must be autonomous, deal with uncertainty, plan and decide what to do, react to
unexpected situations that are; it has to overcome really hard problems if we want it to act in
an intelligent and autonomous, thus navigator agent pose one of the biggest challenges for AI.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٦

٦

It solve Figure 4 illustrates the structure of the proposed Model of the Intelligent Agents
embodied in VE.

١
٣

٩٩

٨
٨

٨

٧

٣
VRML file

Fig.4. Proposed model of the navigation process in a VE based on Multi-Agent system

Synthetic
 Virtual Environment

Created by Virtual Reality
 Modeling language

(VRML)

Interactive Virtual Environment
 Browser Package

2D Map
generation Scene

Components
Manager

Navigator
agent

Objects
identification

 agent

Modify
Object

Descriptions
and

locations

٢

٩

EAI
١ ٦

٤

 2D-Map of Virtual
Environment Objects Descriptions

& locations

Watching agent

١
١
٥

٥

١

٥

Headquarter agent

Agent’s
Position
Tracker

4

Communication Module (ACL)

١١١٠

١ ١ ١

١
٣

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٧

٧

Cycle Time

When the user loads the synthetic VE, the Browser reads it as a VRML file to display its
contents at the same time the VRML file as input is used by 2D-Map extraction module. The
3D model of the environment is transformed into a 2D environment which is used as an aid by
the Navigator agent. Also, VRML file is used by scene components manager module to build
the database file which contains the static objects of the synthetic Virtual environment.

4.2 The 2D Map generation Module

The basic idea of this module is to determine whether a cell of the map should indicate the
presences of a geometry that prevents navigation, by checking if the corresponding area in the
VE can be traveled by the navigator agent created for the purpose. This is done by
automatically moving a ViewPoint through the VE and detecting each collision of the
viewpoint itself with any geometry. Whenever a collision is detected, the cell of the map that
corresponds to the current position of the viewpoint is marked as containing geometry. We
now describe in detail how the proposed approach is implemented.

Fig.5 Description of the VRML nodes and routing of events for map extraction
module

A Time Sensor node starts and stops the map derivation process, and controls the speed of
scan. The derivation of the map is carried out by two VRML scripts, called scanEnvironment
and buildMap. The first script computes and updates the position of the viewpoint to scan the
entire VE. The second script receives detected collision events and updates the cell of the map
that corresponds to the current position of the viewpoint. Collision events are generated by a
Collision node, whose children include a NavigationInfo node (defining the size of the avatar
used for scanning), a ViewPoint node (specifying the current position of the avatar).

Avatar size

Position
Scan Environment 2

1

3

loop

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٨

٨

4.3 Modify Object Descriptions and locations Module

During run-time, the environment is observed and all changes in the dynamic obstacles
 are tracked. Changes occur when obstacles appear, disappear, or change position. In all
cases, two kinds of update operations are performed: cell occupation in case an object is
 detected to appear, and cell liberation in case an object is detected to disappear as
shown in figure (6). Obstacle motions are treated with consecutive liberation and occupation
operations. Cells are updated per object. Two sets are initialized , the set of objects
disappearing and the set of objects appearing at a particular point in time. For each
 object, the cells occupied by the object are determined and sent to the modify object
description and locations module. Therefore, each update operation receives one cell as input.

Fig.6. shows the path changes according to the different obstacles positions

4.4. Roles of the Embodied Agents in VE
Each agent has the capability function; it is the brain of each agent. Within the capability
function, the agent takes into account its current knowledge about the environment, its active
goals and the resources that it has to accomplish its goals.

4.4.1 The behaviors of the Watching-agent in the Virtual Environment

The watching agent (User Agent) is located at the position where the VE Browser is
running, and which simply listens to the interactions of the user with the VE and sends
relevant events to the Headquarter-agent. Accepting messages from the Headquarter-
Agent, interpreting these and controlling the VE via the External Authoring Interface,
(EAI). as shown in figure (7). EAI plays an important role in transferring the knowledge
and the events between the Watching-agent and the user actions in VE. It is programming
interface for communication between Virtual Environment Browser and watching
agent.[6]

The Watching-agent layer consists of the reasonable core, the Knowledge Base and the
abstraction knowledge of the VE. On the other hand, the Browser layer is also a composite
module consisting of the Static entities of VE and the Dynamic Virtual Objects Library. It also
contains containing also the agent’s Virtual Representative (Avatar) and the VRML Central
Processing Unit, (VRML CPU). The reasonable Core provides the agent with reasoning
capabilities. Reasoning is supported by a number of knowledge bases which store various
types of knowledge such as static and dynamic knowledge, domain knowledge, knowledge
about the agent’s capabilities, spatial knowledge about the virtual space, etc. The VE is

١

١

٢

٢

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

٩

٩

represented as a ‘mental’ structure in the agent’s knowledge base, which is, in fact, an
abstraction that maintains only the important information about it. The Logical Core reasons
about the current world situation and according to its goals it sets some abstract actions which
must be immediately executed at the virtual layer.

Fig.7. Watching-agent architecture as interface Agent of the VE Browser

The required actions, e.g. move to next location, are received by it. the action command
arrives at the Virtual Reality Management Unit that specifies in detail the received actions. It
provides specific values concerning the orientation and position of the avatar, e.g. it specifies
the coordinates, orientation and path so that it can successfully move to the next location, and
sends them as commands to the VE Browser. The Browser executes the command by altering
the VE appropriately. When changes have been performed the EAI notifies the watching
agent that the action has been successfully executed and the logical core goes on by updating
its internal and external state. Consequently, the agent looks around into the virtual space,
gathers any additional information and decides the next step it should take to achieve its
goals.

Knowledge base

External Authoring Interface (EAI)

Reasonable
Core

VE abstraction

Dynamic Virtual
Objects

VRML Central
processing Unit

Static objects
of the VE

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١٠

١٠

Has capability Watching_Agent_Capability cap؛

posts event Watching_Agent_Request ev؛

handles event Mission_Reply؛

handles event User_InterAction؛

 #private data Board Abstarct_Environment_model ؛()

The Watching-agent responds to any changes occur in the Virtual Environments, traces any
user’s action and sends a request to the headquarter agent to tell what is the required actions.
The headquarter agent handles the request by using Job-classification plan and decides which
working agent is responsible for doing the required task. The Watching-agent is defined as a
combination of a planner and a reactor.

4.4.2 The roles of the Headquarter Agent

1. It creates, maintains, and stores a user profile with all events history. Moreover, it
controls a number of sub-agents that each focuses on a particular aspect of the user’s behavior.
Events coming from the watching agent are received by it, entered into the event history and
then send to appropriate sub-agents.

2. It stores the previous communications with the user through the Watching-agent.
3. It keeps tracks of all the actions that currently are being performed (or have been
performed).

Fig.8. the model of the Watching agent’s Behaviors

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١١

١١

handles event Watching_Agent_Request؛
posts event Watching_Agent_Request ev؛
sends event Mission_Reply ev1؛

 # uses plan Job_Classification؛
 # private data Environment_Data ؛() }

Fig.9. Headquarter agent’s Behavior Model

4.4.3 The Roles of the Objects tracker Agent
It keeps track of the objects shapes and its locations.
It responses to any changes for objects positions and shapes

#handles event Object_position_changes؛

handles event Size_modifications؛

handles event New_Object؛

handles event Delete_object؛

posts event Reply_execution ev؛

handles event execution_reply؛

uses plan Update_navigation_map;

Fig.10. The Architecture of the objects tracker agent

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١٢

١٢

4.4.4 The Roles of the Navigator agent
The Navigator-Agent is the main agent in the proposed model of the navigation agents in VE
used to enhance the navigation process. The problem of intelligent navigator agent in VE is
the subject of many recent AI researches. Even though many solutions have been proposed to
address this problem, the ever-growing complexity of VE inhabited by sophisticated
characters, makes it necessary to further elaborate computational models used for intelligent
agent navigation. In this paper we develop our navigation algorithm based on the construction
and use of the so-called navigation map. The algorithm is perfectly suitable for the use in
modern VR systems, 3D video games and simulators. The Navigator Agent is capable of
pursuing its goals (that might have been specified by the users) on their own. This relieves the
user from technical detail, e.g., specifying obstacle avoidance strategies. The Navigator Agent
helps the user to find specific locations in the VE. It is specialized in determining appropriate
free and safe paths through the VE, and can provide guidance to the user that tries to follow
such paths. It computes possible free paths. Information required by the navigator-agent are:

• The navigator agent should be able to reason about the geometry of the world in which
it moves. It knows about the user’s coordinates in the VE and it has knowledge of the
coordinates of a number of objects and locations. This knowledge is necessary when a
user refers to an object close to the navigation agent in order to have a starting point
for a walk in the environment and when the visitor specifies an object or location as
the goal of a route in the environment. The navigator agent is able to determine its
position with respect to nearby objects and locations and can compute a walk from this
position to another with coordinates close to the goal of the walk.

• The navigator agent knows more about current position and focus of gaze of the
user, geometric relations between objects and locations, knowledge of previously
visited locations or routes and knowledge of the previous communication with the
visitor.

• Interest Points: positions where the agents can go. Each Interest Point is surrounded
by a set of points that form a limit region around it. This region is used to distribute
the agents in the case of multiple-agents navigation. These region points can be
connected within themselves, forms access regions between one Interest Point and
another. The connection forming graphs that represent the possible paths to be
applied by the agents. The paths are formed by the connection of two Interest Points.
Once there is a path between two Interest Points, the navigator agent is able to apply
this path.

• Navigation map generation means the automatic generation of paths to link up two or
more Interest Points.

• Criteria specification associated with the paths that could be used by the agents
during the navigation process.

Fig.11. illustrates the relationship between the navigator agent and the navigation module.
The navigator agent precepts and receives an initiation massage from the headquarter agent
and sends a request to the navigation module. the navigation module is responsible for leading
the navigator agent from a source location to a destination, avoiding danger and obstacles.
After the navigation module completes its plan, it sends a safe path to the navigator agent to
follow it.

Navigator Agent

Navigation Module

Inputs

Queries Requests

Follow path

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١٣

١٣

Fig.11. relationship between the navigator-agent and the navigation module

import moving_agents.Tracing_Agents

public agent Navigator_agent extends Agent {#has capability navigator_capabiliy cap

 #handles event Headquarter_Request

 #handles event Modification_2Dworld

 #handles event surface_contacts

 #uses plan RestrictedArea

 #uses plan Free_Space

 #uses plan MoveToNextNode

 #uses plan Building_Navigation_Map

 #uses plan Tracing_Agents

 #uses plan Surface_following

 #private data Board Messages_Controller()

Fig.12. The Architecture of the navigator agent
Navigation module plays an important role in formulating proper paths to reach a destination
point. Often the agent must deviate from its intended course to negotiate obstacles that are in
its path. After the maneuver has been made, the agent may find that it has strayed in a
direction farther away from it goal. In this case the agent must take corrective actions to move
towards its goal. A fitness function may be used to determine how well the agent is meeting
its goal of navigating to an assigned waypoint. The Navigator-Agent communicates with the

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١٤

١٤

headquarter-agent by using KQML languages. The following messages to the headquarter-
agent that define the agent’s actions in the environment:

4.4.5 The roles of the Position Tracker agent

1. Maintaining knowledge of current agent’s position and orientation is frequently
problem for a people in the VE [2]. The solution of this problem is a position-tracker
agent. The Position Tracker Agent maintains knowledge about the position of the
navigator agents which is dynamic as it changes over time

2. Monitors the current position of the navigator agent, looks for the next view and keeps
track of the previous locations and what is within the eyesight of the visitor. It is a very
useful method when the environment contains multiple navigator agents

3. �t keeps track of the previously visited locations by the user.

public agent Agent_position extends Agent { #handles event Agent_movement

 #uses plan modify_Agent_position
 #uses plan States_of_other_Agents

 #uses plan Constrained_surface_movements
 #private data SquareIndex State_of_other_Agents()
 public Agent_position(String name)

Fig.13. The architecture of the position tracker agent

5. Experimental Results
The experiment is done to measure the efficiency of the VE Browser after we applied the
proposed model. In order to compare the effects of incorporating navigator agent into the VE
Browser, the experiment consists of two runs (with and without navigator agent). The results
of this experiment are summarized in Table (1). The overall times taken to complete the
requested task are 85 and 210 seconds, respectively for the VE with and without navigator
agent. The performance speedup for the VE with navigator agent is about 42 %. In term of
movement steps, about half of the steps are saved after the navigator agent is used.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١٥

١٥

Table (1) the efficiency of the navigation process in the VE Browser with and without
navigator agent

Comparison points with navigator Agent without navigator Agent
no of navigation steps 584 1025
Total execution time (sec) 85 203

0

50

100

150

200

250

with navigator Agent without navigator Agent

Total execution time
(sec)

The efficiency of the navigation process in VE

6. Conclusion and future work
The combination of intelligent techniques and tools, embodied in autonomous agents, together
with effective means for their graphical representation and interaction of various kinds, have
given rising to a new area at their meeting point, which we call Intelligent Virtual
Environment. The architecture of an intelligent navigation agent system is presented and
applied in the synthetic Virtual Environment. The synthetic Virtual environment embedded
with autonomous agents offer a general solution of shared objects and autonomous agents in
Virtual Environment. Interesting behaviors such as obstacle avoidance or exploration
following a given stimulus towards a goal are easily expressible in this environment and opens
up for a variety of biologically-inspired behaviors for virtual agents populating the virtual
environment. The performance of the navigation process in the VE is increased by 42% when
the embodied agents are added. For the future work, Developing an inter-agent protocol that
will enable the agents to communicate with each other and exchange information, in order to
accomplish given tasks faster than using the current communication languages. Extend this
model to be able to solve the problem of the multi-navigator agents in shared VE. more
experiments need to be carried out for different tasks, on different VE, and on different
systems of various computing powers.

References
[1] Chan Su Lee and Grigore C. Burdea., Virtual Reality Technology, Second Edition
Laboratory Manual, The State University of New Jersey U.S.A, John Wiley &Sons, (2003).
[2] Dzmitry Aliakseyeu, Sriram Subramanian, Jean-Bernard Martens, Matthias Rauterberg:
“Interaction Techniques for Navigation through and Manipulation of 2D and 3D Data”, Eigth
Eurographics Workshop on Virtual Environments,W. Stürzlinger & S. Müller, (2002).

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 9 -

١٦

١٦

[3] Tim Batchelor Hnd., ANTS: Automatic Navigation of Terrain Systems, Alumnus of
Bolton Institute, (2003).
[4] L. Kavraki, P.Svestka, J. Latombe, and M. Overmars., Probabilistic Roadmaps for Fast
Path Planning in High-Dimensional Configuration Spaces., IEEE Transaction on Robotics
and Automation., 12:566-580, (1996).
[5] Luca Chittaro, Lucio Ieronutti, Roberto Ranon., Navigating 3D Virtual Environments by
Following Embodied Agents., PsychNology Journal., Volume 2., Number 1, 24 – 42.,(2004).
[6] Rikk Carey, Gavin Bell, Chris Marrin., Virtual Reality Modeling Language., International
Standard ISO/IEC 14772-1., The VRML Consortium Incorporated., (1997).
[7] Ruth Aylett and Marc Cavazza., Intelligent Virtual Environments-A State-of-the-art
Report, University of Salford, CVE, Salford., University of Teesside, School of Computing
and Mathematics, (2004).
[8] Slater, M., Usoh, M., and Steed., A Steps and ladders in virtual reality., In ACM
Proceedings of VRST., 45–54. (1994).
[9] Tsai-Yen Li, Hsu-Chi Chou., Motion Planning for a Crowd of Robots., in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA)., (2003).
[10] Wenfeng Li, Henrik I Christensen, Anders Oreback., An Architecture for Indoor
Navigation., Proceeding of the International Conference on Robotics & Automation IEEE,
p1783-1788., (2004).

