
Proceedings of the 5th ICEENG Conference, 16-18 May, 2006 CE - 6 -

Military Technical College

Kobry El-kobbah,
Cairo, Egypt

5th International Conference on

Electrical Engineering
ICEENG 2006

SYMMETRIC KEY CRYPTOGRAPHY USING WINDOWS-
BASED GRID COMPUTING FRAMEWORK

Ahmed Serag Eldin*, Ismail Abd Elghafar*, Alaa Ahmed*, Gouda Ismail*

ABSTRACT
This paper deals with one of the most critical computing problems which is Cryptography
application, it is one of the problem that needs high computing power resources.
This paper introduces Symmetric Key Cryptography using DES (Data Encryption Standard)
algorithm and employs a computing Grid for dealing with this problem. It presents a Grid for
solving this problem that has been implemented by Alchemi which is an open source project
developed at the University of Melbourne, which provides middleware for creating an
enterprise grid computing environment by harnessing windows machines. The grid has been
tested and results have been analyzed, there was an increase in performance over the single
processor, but the performance improvement is limited by the I/O and communication
overhead.

1 INRODUCTION
The last decade has seen a substantial change in the way we perceive and use computing
resources and services. A decade ago, it was normal to expect one’s computing needs to be
serviced by localized computing platforms and infrastructures. This situation has changed.
The change has been caused by, among other factors, the take-up of commodity computer and
network components. A consequence of these changes has been the capability for effective
and efficient utilization of widely distributed resources to fulfill a range of application needs.
[1, 2, 3]

As soon as computers are interconnected and communicating, we have a distributed system,
and the issues in designing, building and deploying distributed computer systems have now
been explored over many years. An increasing number of research groups have been working
in the field of wide-area distributed computing. These groups have implemented middleware,
libraries and tools that allow the cooperative use of geographically distributed resources
unified to act as a single powerful platform for the execution of a range or parallel and
distributed applications. This approach to computing has been known by several names, such
as metacomputing, scalable computing, global computing, Internet computing and lately as
Grid computing. [4, 5, 6]

The term “the Grid” was coined in the mid1990s to denote a proposed distributed computing
infrastructure for advanced science and engineering [7, 8]. Considerable progress has since
been made on the construction of such an infrastructure, but the term “Grid” has also been
conflated, at least in popular perception, to embrace everything from advanced networking to
artificial intelligence. By analogy, we adopt the term computational grid for the infrastructure
that will enable the increases in computation. A computational grid is a hardware and

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٢

software infrastructure that provides dependable, consistent, pervasive, and inexpensive
access to high-end computational capabilities. [9]

*Department of Computer Science, Military Technical College, Cairo, Egypt.
Cryptography protects data from being viewed or modified and provides secure channels of
communication over otherwise insecure channels. Secret-key encryption algorithms use a
single secret key to encrypt and decrypt data. You must secure the key from access by
unauthorized agents because any party that has the key can use it to decrypt data. Secret-key
encryption is also referred to as symmetric encryption because the same key is used for
encryption and decryption. Secret-key encryption algorithms are extremely fast (compared to
public-key algorithms) and are well suited for performing cryptographic transformations on
large streams of data.

Typically, secret-key algorithms, called block ciphers, are used to encrypt one block of data at
a time. Block ciphers (like RC2, DES, TrippleDES, and Rijndael) cryptographically transform
an input block of n bytes into an output block of encrypted bytes. If you want to encrypt or
decrypt a sequence of bytes, you have to do it block by block. Because the size of n is small
(n = 8 bytes for RC2, DES, and TripleDES; n = 16 [the default]; n = 24; or n = 32 bytes for
Rijndael), values larger than n have to be encrypted one block at a time.

In this paper we introduce Symmetric Key Cryptography using DES algorithm which was
developed at IBM in 1977. For DES, data are encrypted in 64-bit blocks; the algorithm
transforms 64-bit input in a series of steps into a 64-bit output. The same steps, with the same
key, are used to reverse the encryption. [10]

2 ALCHEMI
There is rapidly emerging interest in grid computing from commercial enterprises. A
Microsoft Windows-based grid computing infrastructure will play a critical role in the
industry-wide adoption of grids due to the large-scale deployment of Windows within
enterprises. For this purpose, we use a Windows-based grid computing framework called
Alchemi implemented on the Microsoft .NET Platform.

While the notion of grid computing is simple enough, the practical realization of grids poses a
number of challenges. Key issues that need to be dealt with are security, heterogeneity,
reliability, application composition, scheduling, and resource management. The
Microsoft .NET Framework provides a powerful toolset that can be leveraged for all of these,
in particular support for remote execution (via .NET Remoting and web services),
multithreading, security, asynchronous programming, disconnected data access, managed
execution and cross-language development, making it an ideal platform for grid computing
middleware.[11]

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٣

Fig. 1. Alchemi's main components

Alchemi is an open source project developed at the University of Melbourne, which provides
middleware for creating an enterprise grid computing environment by harnessing windows
machines. The main components of Alchemi are shown in Fig.1. Its main components are
manager and executer that support a master-worker parallel model. One or more Users can
execute their applications on the cluster by connecting to the Manager. An optional
component, the Cross Platform Manager provides a web service interface to custom grid
middleware. [12, 13, 14]

3 DESIGN AND ARCHETICTURE
Alchemi provides a Software Development Kit (SDK) that can be used by developers to
develop grid applications. The SDK includes a Dynamic Link Library (DLL) that supports
object oriented programming model for multithreaded applications. The architecture of
GridCryptoGraphy is shown in Fig.2.

In the GridCryptoGraphy application, we have developed three main classes. The first class
(GridCryptForm) is the interface to control and monitor the progress of the encryption and
decryption and connection with Alchemi manager and can be used to configure the number of
threads to be submitted and specify the location of the Alchemi manager. The classes
(GridEncryptThread and GridDecryptThred) are the thread classes that are run under Alchemi
and it uses the algorithm classes.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٤

Fig.2. GridCryptoGraphy Architecture

Multithreading Symmetric key Cryptography In our design of multithreaded symmetric
key cryptography, parallelization is being carried to process the data that need to be encrypted.
We use the Task-Farming (master-slave) model for execution and principles of SPMD (Single
Program Multiple Data) model for application parallelization. The effect of this parallelization
method is that we have to find a way to divide the files into several blocks so that the process
can be done in parallel on each block of data.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٥

Fig. 3. GridCryptoGraphy flow of process.

We divide the raw file into several blocks based on the configuration form. An analysis of the
DES algorithm reveals that the size of the block to be able to run each encryption algorithm
should be divisible by 8. This is because in the DES algorithm the encryption was done 64 bit
(8 byte) at a time, so if the block is not divisible by 8 the encryption algorithm that we
implement will simply pad the block so that it will be divisible by 8. The padding is carried
out on the last block of the file.

The flow of GridCryptoGraphy program is shown in Fig.3. It separates the input file into
several parts in order to parallelize the encryption process. After the separation of the input
file, each part of the file (block) is assigned to thread including the last block whose size is the
remainder of the predefined block size.

The file separation process is done by reading the file sequentially according to the block size.
After the threads return with the encrypted result, GridCryptoGraphy writes the encrypted
data to a random access file according to the index that is carried within the thread.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٦

4 PERFORMANCE EVALUATION
The user interface of GridCryptoGraphy is shown in Fig.4; it displays an instance of the
application during DES encryption on a large file. The GridCryptoGraphy program in Fig.4
monitors each of the threads it sends to the Alchemi manager and returns successfully
finished back to the program. In the figure, we can see the monitoring panel at the right
portion of the user interface. We can observe that the threads are submitted asynchrony to the
random access file. The id of the finished thread is written in order so we can observe that
thread no 6 finished and written to the random file before thread no 1 and 2.

If we use an input file of size (56610116 bytes) after encryption using block size (5000000)
splits to 12 working unit (No of blocks) i.e. (11 blocks multiply 5000000 bytes block size) +
(1 last block of size 1610116 bytes). Note that larger the block size configuration for the file
split process means lesser number of work units so when using a block size of 5-mega bytes it
yields to 12 work units but when using a block size of 1-mega bytes it yields to 57 work units .

 In addition, as we stated before in section 3 that the DES algorithm reveals that the size of the
block to be able to run each encryption algorithm should be divisible by 8. This is because in
the DES algorithm the encryption was done 64 bit (8 byte) at a time, so if the block is not
divisible by 8 the encryption algorithm that we implement will simply pad the block so that it
will be divisible by 8. The padding is carried out on the last block of the file, so since the last
block size is (1610116 bytes) which when we divide by 8 the result will be (201264.5) in
which we observe that it is not divisible by 8 and we have 0.5 factor which yields to 4 extra
bytes, so the algorithm pads the last block by 4 bytes so the cypher file size after encryption
will be (56610120 bytes) which is equal to the actual input file size(56610116 bytes) + 4
bytes.

Fig.4. GridCryptoGraphy at runtime (monitoring of finished threads).

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٧

4.1 Runtime Comparison
We have done a runtime comparison for the GridCryptoGraphy application using 6 executor
nodes as shown in Fig.5 and Fig.6 each with the same specification of:

Computer: Intel® Pentium®4 CPU 1.60 GHz, 128 MB of RAM.
System: Microsoft Windows XP Professional Version 2002 Service Pack 2.

Fig.5. Executer desktop.

Fig.6. Using 6 executers.

All these nodes were interconnected over a shared LAN network of 100 Mbps. The Alchemi
manager in Fig.7 was installed on a separate computer together with SQL Server 2000 and
has the following specification:

Computer: Intel® Pentium®4 CPU 3.00 GHz, 504 MB of RAM.
System: Microsoft Windows Server 2003 Standard Edition.

The executions of the GridCryptoGraphy application run on the same computer with the
manager.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٨

Fig.7. The manager.

We monitored the CPU usage and the threads execution details using the Alchemi console as
shown in Fig.8.

Fig.8. Monitoring the CPU usage & thread execution details.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ٩

The encryption and decryption experiments were conducted on files of size 9645200 bytes
(approximately 10 MB), 56610116 bytes (approximately 57 MB) and 104858112 bytes
(approximately 105 MB) with different block sizes. For each file the encryption and
decryption was carried on 1, 2,3,4,5 and 6 executer nodes. The performance results of the 105
MB file size experiment will be shown next.

In all experiments, there was a reasonable performance improvement when 2, 3 and 4
executors were used. This gain is not linear. Although there was a reasonable performance
improvement when up to 4 executors were used, there was drop in performance gain when
number of executors was increased as shown next. This is due to various overhead factors
including (a) involvement of large datasets with low computation to communication ratio, (b)
existence of serial processing component (file splitting and collating results), (c) the use of
slow and shared network, and (d) the overhead of the distributed execution environment (e.g.,
distribution of executable, initiation of execution on a remote node, and management of
threads).

Results of a video file (104858112 bytes) size
The encryption experiments were conducted on file of size 104858112 bytes (approximately
105 MB) with 1, 5 and 10 Mb block size, which lead to the creation of 105, 21 and 11 work
units respectively. For each experiment, the encryption was carried on 1, 2,3,4,5 and 6
executor nodes. The performance results of these experiments are shown in Table 1 and Fig.9,
Fig.10, Fig.11 and Fig.12.

Table 1. Performance results of (104858112 bytes) file size experiment.

1000000(1
Mega)min:sec

5000000(5
Mega)min:sec

10000000(10
Mega)min:sec

Encryption Decryption Encryption Decryption Encryption Decryption

1 02:11.906 01:15.688 05:04.984 02:28.219 09:45.859 03:56.422

2 01:40.375 00:56.266 03:10.875 01:17.531 05:25.813 02:47.594

3 01:35.016 00:55.625 02:33.844 00:56.156 04:20.172 02:00.953

4 01:32.750 01:12.109 02:18.391 01:13.469 03:47.406 01:39.453

5 01:59.500 01:55.344 05:27.266 01:41.641 04:11.578 02:01.469

6 02:35.688 01:57.844 06:27.188 03:10.109 06:24.813 02:56.422

No of
Executer

Block
size

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ١٠

105 MB using different block size

00:00.000
01:26.400
02:52.800
04:19.200
05:45.600
07:12.000
08:38.400
10:04.800
11:31.200

123456

No of Executers

Ti
m

e
in

 m
in

:s
ec

1000000 (1 Mega)min:sec
Encryption

1000000 (1 Mega)min:sec
Decryption

5000000 (5 Mega)min:sec
Encryption

5000000 (5 Mega)min:sec
Decryption

10000000 (10 Mega)min:sec
Encryption

10000000 (10 Mega)min:sec
Decryption

Fig.9. Result graph of (104858112 bytes) file size with different block sizes.

105 MB using 1 MB block size (105 work units)

00:00.000

00:43.200

01:26.400

02:09.600

02:52.800

123456

No of Executers

Ti
m

e
in

 m
in

:s
ec

1000000 (1 Mega)min:sec
Encryption

1000000 (1 Mega)min:sec
Decryption

Fig.10. Result graph of (104858112 bytes) file size with 1 Mega block sizes.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ١١

105 MB using 5 MB block size (21 work units)

00:00.000

01:26.400

02:52.800

04:19.200

05:45.600

07:12.000

123456

No of Executers

Ti
m

e
in

 m
in

:s
ec

5000000 (5 Mega)min:sec Encryption

5000000 (5 Mega)min:sec Decryption

Fig.11. Result graph of (104858112 bytes) file size with 5 Mega block sizes.

105 MB using 10 MB block size (11 work units)

00:00.000

02:52.800

05:45.600

08:38.400

11:31.200

123456

No of Executers

Ti
m

e
in

m
in

:s
ec

10000000 (10 Mega)min:sec
Encryption

10000000 (10 Mega)min:sec
Decryption

Fig.12. Result graph of (104858112 bytes) file size with 10 Mega block sizes.

A file copy test between two computers in the network for 110 MB file took an average of 20
seconds, which indicates effective usable bandwidth of 5.5 MB/sec. in our shared network.
Considering the data transfer between the GridCryptoGraphy application and executor nodes
is via the Alchemi manager, data for each work unit has to travel across the network 4 times.
Thus, the file transfer overhead alone contributes about 60-70% of the processing time in this
experiment.

Proceedings of the 5th ICEENG Conference, 16-18 May, 2006

 ١٢

The use of a faster network such as Gigabit Ethernet and faster storage systems will help
minimize the overhead. In addition, although this overhead can be approximately halved by
bypassing the manager and transferring date files between the user host and executors directly,
it violates the current Alchemi security model. Now we are updating the GridCryptoGraphy
application to make every executer access the file directly without transferring data files, this
will greatly enhance the performance.

5 CONCLUSION AND FUTURE WORK
In this paper we show the performance of the GridCryptoGraphy application that was
implemented using Alchemi to encrypt and decrypt large files using DES algorithm, there was
an increase in performance over the single processor, but the performance improvement is
limited by the I/O and communication overhead. The use of high performance networks can
enhance performance. Another way to increase performance is via transferring the data
directly between the user application and executers.
We are now updating the GridCryptoGraphy application to directly transfer data to executers
and trying to use high performance network.
Also we are designing a new application using Alchemi to brute force attack the DES
algorithm.

ACKNOWLEDGEMENT
This work was supported by the Military Technical College.

References
[1] Abbas, A. GRID COMPUTING: A Practical Guide to Technology and Applications.
[2] Grid Computing Info Centre (GRID Infoware) webpage. URL

http://www.gridcomputing.com.
[3] Global grid forum webpage. URL http://www.gridforum.org.
[4] Foster, I, Kesselman, C, and Tuecke, S. The anatomy of the grid: Enabling scalable

virtual organizations. International Journal of Supercomputer Applications.
[5] Foster, I, Kesselman, C, Jeffrey M. Nick and Tuecke, S. The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration.
[6] Fran Berman, Geoffrey Fox, Tony Hey. Grid Computing: Making the Global

Infrastructure a Reality.
[7] Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 1999.
[8] Foster, I., "What Is the Grid? A Three Point Checklist," GRIDtoday, 1(6), July 22, 2002.

URL: http://www.grigtoday.com
[9] Foster, I. and Kesselman, C. (eds.). The Grid2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, 2004 (second edition).
[10] William Stallings, Ph.D. Network and Internetwork security principles and practice.
[11] Luther, A. Buyya, R. Ranjan, R. Venugopal, S. Alchemi: A .Net-based Grid computing

Framework and its Integration into Global Grids.
[12] Luther, A. Buyya, R. Ranjan, R. Venugopal, S. Peer-to-Peer Grid computing and a .Net

based Alchemi Framework.
[13] Luther, A. Buyya, R. Ranjan, R. Venugopal, S. (2005) Alchemi: A .Net-based

Enterprise Grid computing System.
[14] Luther, A. Buyya, R. Nadiminti, K. (July 2005) Alchemi: A .NET-based Enterprise Grid

System and Framework. User Guide for Alchemi 1.0.

