
0

Development and Performance Analysis of on-Board
Computer Software for Real Time Auto-Pilot Control System

E. Mohamed, H. Taha, S. A. Shedeid, K. Shehata

Abstract: On board computer (OBC) is an essential component of any On-Board Control
System that involves several tasks that needs to be executed in precise order and for accurate
periods of time. Most of the real time control systems require instantaneous execution of
commands either through hardware or software. To ensure that these requirements are
fulfilled, it is necessary to measure not only the execution time of individual tasks, but also
establish the overall real time performance of the system as well. These measurements may
then be used as a basis for accurate real time scheduling analysis and to identify timing
problems or to spot which code segment needs to be optimized. The most common reasons
for measuring execution times are to refine, estimates, optimize code, analyze real time
performance, and to debug timing errors. Oscilloscope is one of the best tools for accurately
measuring execution time with nano-second's result, especially when accurate timing is
critical. This method requires extra hardware features, Oscilloscope analysis features, and
additional software code segments. Depending on the real time operating system (RTOS) and
hardware, it is possible that code is not executing at the proper rate or during the right period
as specified by the designer. These drawbacks may result due to limitations in the operating
system, the application software or the hardware used. This proposal presents hyper threads, a
unifying programming model for specifying application threads running within a hybrid
CPU/FPGA system that is used to control the real time operation of an auto-pilot control
system.

Nomenclature
ARINC Aeronautical Radio, Incorporated
ADC Analog to Digital Converter
ASIC Application-Specific Integrated Circuit
FDM Flight Dynamic Model
FPGA Field Programmable Gate Array
SoC System on a Chip
SBC Single Board Computer
OBC On Board Computer
ISR Interrupt Service Routine
PID Proportional Integral Differential
RTOS Real Time Operating System
RMA Rate Monotonic Analysis

1. Introduction
 In this paper, a proposal for developing an on-Board computer software for real time
auto-pilot control system based on incorporating an FPGA chip with a CPU is introduced.
Schedulability of the proposed architecture for real time applications is evaluated using two
performance indices; Basic RMA test and Extended RAM tests [1].
First, a brief introduction about RTOS is introduced in the next section. Then, the two
performance indices used in analyzing the Schedulability of the proposed system under real
time operating conditions are presented. Afterward, a brief summery about the software
developing tools used in this work is outlined.
In section 2, a description of the developed Real Time Auto-Pilot Control System
specifications is introduced along with some of the tasks managed by the On Board Computer

1

operating System. Then, in section 3, hardware specifications in addition to communication
and interfacing protocols are presented.
In section 4, two proposals of the real time control system are introduced under two different
operating systems, MS-DOS and RT/Linux. Performance of the two proposals is evaluated
and a comparison between the two algorithms is introduced supported by the experimental
results. Finally the conclusion of this work is given in section 5.

1.1 Operating Systems

One of the major problems that takes place in real time operating system is the
deviation of task execution time from its planned value. For example, a task which is
supposed to be executed every 10 msec may be detected to be executing every 20 msec or
every 5 msec. This type of error is so complicated and hard to observe through any method
other than a timing analysis. A task that is running too fast might use critical CPU resources,
and causing other tasks to fail to meet timing constrains. On the other hand if the execution
period is slower than expected, the performance of the system might be degrading in control
system and this would result in a reduced accuracy of the application. This problem may
appear in the MS-DOS operating system with the multitasking and memory management.
Linux and RT/Linux context switch are slower than other operating system as VxWorks and
QNX but they are closed source and very expensive. Linux and RT/Linux exhibit the highest
operation throughput for all data around 10,000 operations / sec more than other operating
systems.

A real time operating system (RTOS) is multitasking operating system that is
intended for real time applications. Such applications include embedded systems, mobile
phones software, Robot control, aircraft, missiles, space shuttle, and satellites. The heart of
any real time OS is the kernel. The kernel is the central core of any operating system, and it
takes care of all the OS jobs as:

 Booting
 Task Scheduling
 Standard Function Libraries

RTOS is an operating system kernel that supports task scheduling, task dispatching
and inter task communication. In order to achieve these objectives, real time kernel design
follows one of the following strategies [2]:

 Polled loop system
 Interrupt driven system
 Multi tasking
 Foreground/ background system
 Full features RTOS

Commonly, On-board hardware consists of sensors, a computer with interfacing
electronics, a battery, and a power distribution module. All mechanical control actuation is
accomplished with standard RC servos. A Single Board Computer is plugged into a
backplane to provide for I/O cards.

A common configuration for very-high-volume embedded systems is a system on a
chip (SoC) which contains a complete system consisting of multiple processors, multipliers,
caches and interfaces on a single chip. SoCs can be implemented as an ASIC or using a
FPGA.

1.2 Schedulability Analysis / Rate Monotonic Analysis
Analysis of the schedulability for a system tasks plays an important role for real time

concepts. After an embedded application has been decomposed into ISRs and tasks, the tasks
must be scheduled to run in order so that they perform the required system functionality.
Schedulability analysis determines if all tasks can be scheduled to run and meet their
deadlines based on the deployed scheduling algorithm while still achieving optimal processor

2

utilization. The schedulability analysis only examines how systems meet temporal
requirements, not functional requirements.

Functional requirements for real-time systems are commonly analyzed using the
RMA method. In this method, the model is developed over a scheduling mechanism called
Rate Monotonic Scheduling; RMS, which is the preemptive scheduling algorithm with rate
monotonic priority assignment as the task priority assignment policy. Rate monotonic priority
assignment is the method of assigning a task its priority as a monotonic function of the
execution rate of that task. In other words, the shorter the period between each execution, the
higher the priority assigned to a task.

RMA is usually evaluated using one of two tests; Basic RMA Schedulability test and
Extended RAM Schedulalibility test.

 1.2.1 Basic RMA Schedulability Test

 Basic Schedulability RMA is associated with set of assumptions [4]. These
assumptions are:

1- All the tasks are periodic,
2- Tasks are independent of each other and that no interactions occur among tasks.
3- A task's deadline is the beginning of its next period.
4- Each task has a constant execution time that does not vary over time,
5- All tasks have the same level of criticality.

Aperiodic tasks are limited to initialization and failure recovery work and that these aperiodic
tasks do not have hard deadlines.
This Equation is used to perform the basic RMA schedulability test on a system .

൬
ଵܥ

ଵܶ

ଶܥ

ଶܶ
 ڮ

ܥ

ܶ
൰ ܷሺ݊ሻ ൌ ݊ ቀ2ଵ ൗ െ 1ቁ ሺ1ሻ

1 ݅ ݊
Where:
Ci= worst-case execution time associated with periodic task i
Ti= period associated with task i
n = number of tasks
U(n) is the utilization factor.

The right hand side of the equation is the theoretical processor utilization bound. If
the processor utilization for a given set of tasks is less than the theoretical utilization bound,
this set of tasks is schedulable. The value of U decreases as n increases and eventually
converges to 69% when n becomes infinite.

 1.2.2 Extended RAM Schedulability Test

Basic RMA test evaluation suffers from several shortcomings. For example, based on
the second assumption, basic RMA is impractical because tasks in real-time systems have
inter-dependencies, and task synchronization methods are part of many real-time designs.
Task synchronization, however, lies outside the scope of basic RMA.

Deploying inter-task synchronization methods implies some tasks in the system will
experience blocking, which is the suspension of task execution because of resource
contention. Therefore, the basic RMA is extended to account for task synchronization.
Equation provides the equation for the extended RMA schedulability test [5].

൬
ଵܥ

ଵܶ

ଶܥ

ଶܶ
 ڮ

ܥ

ܶ

ܤ

ܶ
൰ ܷሺ݅ሻ ൌ ݅ ቀ2ଵ

ൗ െ 1ቁ ሺ2ሻ

1 ݅ ݊
Where:
Ci= worst case execution time associated with periodic task I

3

Ti= period associated with task i.
Bi= the longest duration of blocking that can be experienced by I
n = number of tasks

1.3 Software Developing Tools

Generally, designers of OBC system use compilers, assemblers, and debuggers to
develop real time software. However, they may also use some more specific tools based the
application. In our case, an FPGA software development package is used to design , simulate
and implement a digital control circuit. This circuit is used to control the communication
(Arinc-429) between the OBC and other peripherals. In addition, it is also used to handle
ADC and DAC conversion, manage the interrupt service routine (ISR) and direct memory
access manipulation as well.

In this proposal two implementations for the suggested algorithm are provided. The
fist one is a real time control software that works under MS-DOS 6.22 operating system. This
implementation is accomplished using the Turbo C++ 3 tool [6]. The second version works
under RT/Linux real time operating system. This version is realized using GCC compilers
4.4.3 under the 2.6.28 Linux kernel [7].

2. The Developed Real Time AutoPilot Control System
Figure 1 illustrates a general overview of general real time auto-pilot control system. An

Auto-pilot control system represents an excellent practical example of a real time control
system. Necessity of RTOS in real time autopilot control systems stems from the several tasks
which need to be executed periodically in a very precise order within the specified periods.
Some of these tasks are; manage the execution of actuators control commands, acquiring
navigation sensors data, in addition to the navigation computations, as well. Definitely, a
RTOS is required to direct the execution of all those tasks since each task duration and
priority is different than the other.

Fig.1 The overall developed real time control

The main task among the jobs of the proposed RTOS is the calculation of the PID
controller whose output δ(t) is given by [8];

4

ሻݐሺߜ ൌ eሺtሻܭ ூܭ න e
୲

ሺτሻdτ ௗܭ
d
dt

 e ሺtሻ ሺ3ሻ

Where:
,ܭ ,ூܭ ௗ Gains, tuning parametersܭ

Subjected to the following constraints

 Autopilot-PID controller- calculation period of 10 msec
 Sensors data extraction with variable timing of 10 and 2.5 msec
 Range control calculation with period of 2.5 msec
 GPS data simulation at every 1 sec
 ADC & DAC operation
 Actuators control

On Board Computer (OBC) which has the embedded control algorithm that handles the
execution of the previously mentioned tasks consists of the following sub-systems:

 Acceleration and angle measuring sensors.
 FDM simulator which is used for testing.
 Actuation system.
 On board telemetry system.
 Test computer.

3. The Developed onboard Computer (OBC)
The developed OBC is enclosed in a sturdy metal container with the following boards;

as shown in figure (2):

a) Single Board computer (SBC)
 Pentium III class 800 MHz, 256 MB RAM, system memory with 100MHz

memory bus.
 512KB 16-bit wide integrated flash memory for BIOS and user programs.
 Communicates externally over the ISA bus, 33MHz PCI Bus and I/O ports.
 Generates on-board RGB video for CRT display systems.
 Plug and play BIOS with IDE auto detection, 32-bit IDE access, and LBA

support.
 256 MB IDE flash disk for program storage.
 Programmable watchdog timer.
 Power supply: 5VDC operation from the PC/104 bus or a power connector.
 Ruggedized for vibration and Extended temperature range operation: -40 to

+85°C.
b) A PC-104 backplane board

This board holds the SBC and communicates with other boards through the main
backplane.

c) Arinc-429 Communication board
It contains three Arinc-429 chips as a control and drivers for the transmitters

and receivers. FPGA chip is mounted on the board to control the ARINC-429
communication with the sensors, on-board telemetry and test computer.

d) DAC and ADC board
It is used to control the command and feed back of the actuation system and

FPGA chip is designed and implemented to control the function of the conversion. In
addition the control of discrete input and discrete output commands signal. This chip
is mounted on that board.

e) A Signal Conditioning board
It adapts the command and the status signals from 27 volt to 5 volt. The control

of this function is achieved from the last board.
f) Servo Control Loop board

g)

h)

T

via pe

4. Pr
DOS

4.1 S

includ
applic
catego

a) R

It ha
controls th
DAC.

) Power Sup
It ge

such as 27
) Main Bac

It is
data, cont
backplane

The proposed O
eripherals, suc

ARINC-42
RS-232
ISA and P
 Discrete I
Analog to

roposed Im
 and RT/Li

According
oftware Co

The softw
de the drivers
cation itself.
ories:

Real-time nucl
CP and OS
Program c
Task contr
Memory c
Interrupt c
Direct mem
Time servi
Task synch
Inter task s
Input/outp
CP periphe
File contro

as the real t
he commands

pply board
enerates all ne
, 5, 15, -15 vo
kplane board
the main boa

trol, status) a
and external

Fig. 2 On

On-board com
ch as:
29,

C-104 bus
O
Digital/Digit

mplementat
nux Operat
g to Quing [
mponents

ware consists
 needed to co
The propos

leus functions
S initialization
ontrol.
rol.
ontrol.

control (IRQ).
mory Access
ice.
hronization.
synchronizati
ut control.
eral equipmen
ol.

ime closed l
and the feed

ecessary DC v
olts.
d
ard that holds
and its conn
connection is

n board comp

mputer comm

al to Analog

tions of Rea
ting System
2],

of operating
ommunicate w
sed real tim

s:
n.

.
(DMA).

ion.

nt control.

loop for each
dback of the a

voltages for o

all others bo
nection. An i
s implemente

puter hardwar

municates with

(ADC/DAC)

al Time Con
ms

g system that
with other dev
e software c

h actuation c
actuation syste

other boards u

ards and tran
internal wirin
d.

re architecture

h and interfac

ntrol Softw

t has kernel
vices and user
consists of t

channel indiv
em controlled

using DC-DC

nsferring signa
ng connection

e.

ced to the outs

ware based

space functi
r space functi
the following

5

vidually. It
d ADC and

C converter

als (power,
n between

side world

 on MS

ions which
ions for the
g function

6

 Read/Write EEPROM support.
 Exclusive situation processing.
 Support of program debugging modes when interacting with workstation (WS)

hardware and software.

b) System function library:

 SP calling the functions of real-time nucleus.
 EEPROM access SP: read, write, deletion.
 Standard С/С++ language SP that are system-dependent.
 Other standard SP as part of the system-independent library.
 Of standard SP of the programming system.

c) Functional s/w needed for the devices

4.2 Calculations Management

The designed system is supposed to control and manage the assessment of the
following tasks;

4.2.1 Tasks performed on specified time schedule

That set of tasks composes the main calculated part. Two calculation cycles can be
emphasized: 400 Hz, 100 Hz. The cyclic tasks can be distributed as follows:
400 Hz cycle:

 Sensor (accelerometers) data sampling
 Velocity integration and range control
 Test of calculation cycle.

100 Hz cycle:
 Navigation algorithm
 Calculation of output parameters (navigation parameters)
 Autopilot calculations.
 Test of a system state.
 Generation of telemetric information

4.2.2 Tasks performed according to events -operation with peripheral equipment

The tasks performed depending on particular events define the logical management of
OBC functioning, as well as the interface with external systems.
 These tasks include:

 Time service (procession of time marks)
 ARINC-429 receivers and transmitters service
 supplied message (package) coding
 Received message (package) decoding

4.2.3 Tasks composing the cycle of background calculations

Background calculations are the tasks intended to provide monitoring of OBC state.
Here again the tasks of the recovery of system operability are fulfilled in different exceptions.
Background tasks are the most low-priority calculations which include: functional device test,
test task fulfillment (computer monitoring), CP RAM and ROM monitoring and other tasks
requiring no strict synchronization with real time or any events.

4.3 Software algorithm and tasks scheduling

 The proposed real time control algorithm is illustrated in the flow chart shown in
Figure 3.

algori

As pr
opera

From a m
ithm should m

Task 1: Au
Task 2: Pro
Task 3: Ra
Task 4: Ac
Task 5: Re

eviously men
ting systems.

Fig. 3. The f

managerial pe
manage throug
utopilot calcu
ofile generati
ange control c
ctuation comm
ead Feedback
ntioned, two d

flow chart of t

erspective, th
gh the real tim

ulations
ion
calculations u
mand control

ks (ADC)
different impl

the real time O

here are five
me control sch

using fixed ste
(DAC)

lementations a

OBC S/W co

e main tasks
heme which a

ep Runge Kut

are realized o

ntrol

s which the
are:

tta 4th order

on two differe

7

suggested

ent

The fi
R/T L
the ex
task.

On th
contro
from u

first one show
Linux kernel.
xecution of va

Fig. 4.1 Ta

he other hand,
ol algorithm i
using R/T Lin

wn in figure 4.
As shown in

arious tasks is

asks Schedule

, figure 4.2, i
is realized un
nux rather tha

1 is realized w
figure since R

s accomplishe

e Pseudo Con

illustrates the
nder MS-DOS
an MS-DOS.

with the GCC
R/T Linux is
ed on priority

ncurrent Execu

 sequential ex
S 6.2.2. This

C compilers 4
a multi-thread

y basis regardl

ution Single P

xecution of ta
s demonstrate

4.4.3 under th
ded operating
less of the ord

Processor Lin

asks when the
es the advant

8

he 2.6.28
g system,
der of each

nux

e proposed
age gained

Fig

5. Ex
The i
main
comp
senso
task a
The fo

Table
is per
utiliza

g. 4.2 Tasks S

xperimenta
implemented

operating sy
iler 4.3.3, Li
rs in real tim

and measure t
following two

A. Measure
1GHZ-4
oscillosc
addition

B. Measure

not avai
RT/Linu

e 1 illustrates
rformed to ch
ation should b

Schedule Pseu

al Results
real time co

ystems: MS-
inux. It’s test

me. The main
he performan
 methods wer
ement using
4 GHS/S; it
cope signal a

n, a software C
 outport (Buf
 (require
 outport (Buf

ement of exe
ilable while
ux:

clock_g

the execution
heck the sched
be calculated

5

udo Concurre

ontrol softwar
-DOS 6.22 a
ted using FD
objective of t

nce of the ove
re used for m
internal and
is the tim

and the rest i
C code is imp
ffer_Address,
ed task to me
ffer_Address,
cution time i
a real time

gettime (CLO

n time of sele
dulability. To
using Equatio

5.45 % ܷሺ

ent Execution

re is develop
and Ubuntu
DM simulator
this test is to

erall system.
easuring the e

d external ha
me elapsed b

is the wait p
plemented as:
, 0x0001);

easure executi
, 0x0000);
in MS-DOS 6
clock (RTC)

OCK_REALT

ected tasks for
o insure that t
on (1) as such

ሺ5ሻ ൌ 74.35

n Single Proce

ped using C l
9.04 kernel
r that genera
evaluate the

execution tim
ardware with
between risin
eriod as show

ion time)

6.22 with ord
) function ca

TIME, Time_a

r the real tim
the system is
h that:

5 %

essor MS-DO

language bas
2.6.28 with

ates the readi
execution tim

me:-
h Agilent os
ng-falling ed
wn in figure

der of micro-
an be provid

arg)

me system. An
always stable

9

OS based

sed on two
the GCC

ings of the
me of each

scilloscope
dge of the

7 [10]. In

-seconds is
ded by the

n RMA test
e, the CPU

10

Moreover, a RAM test is performed as in Equation (2) to check the schedulability in case of
dependence between task 1, task 2 and input-output bus resources. A blocking time for
task1and task2 with input-output bus B1, B2 are measured 15 µSec and 240 µSec
simultaneously as illustrated in figure 5. The results are as follows:

2.46 % ܷሺ1ሻ ൌ 100.0 %

0.12 % ܷሺ2ሻ ൌ 82.84 %

Fig. 5 Blocking time for two tasks using same i/o bus.

Table 1. Tasks periodic in mSec and execution time in µSec

Periodic
Task Period [T]

Execution Time [C]
 MS-DOS 6.22 RT/LINUX

Measurements Method A B A B
Task 1 10 11 N/A 6 5.485
Task 2 10 7 N/A 4.5 3.924
Task 3 2.5 9 N/A 9 8.273
Task 4 10 20 N/A 18 17.150
Task 5 10 490 N/A 480 470.893

Based on the results of Table 1 and the output of Equations 1 and 2 the selected tasks are
schedulable. The schedulable algorithm is used in this work is the preemptive priority.
The upper part of Fig 5 shows the frequency of the tasks of 400HZ and the lower shows the
tasks of 100HZ running in MS-DOS 6.22 operating system using the oscilloscope. They are
based on the occurrence of the ISR handling these tasks. The upper part of Fig 6 shows the
frequency of 400HZ tasks served in kernel domain moreover; the lower part presents periodic
execution time in user domain. The overall execution time for all tasks under RT/LINUX in
user domain is shown also in the lower part of Fig 6. The interrupt response time for the ISR
between the kernel and user domain for the developed real time system is 80 µSec as shown
in Fig 7. The data was saved for sufficient number of iterations.

Task 1
T1=10msec
C1=6 msec

Task 2
T2=10msec
C2=4.5 msec

IO
bus

B1=15usec

B2=240 usec

11

Fig. 5 The frequency of the tasks 400HZ and 100HZ running in MS-DOS 6.22

Fig. 6 The frequency of 400HZ tasks in kernel and user domain in RT/LINUX

12

Fig. 7 Interrupt response time for the ISR between the kernel and user domain

6. Conclusion
A real time control system simulation framework has been established under MS-DOS 6.22
and RT/Linux environments. This includes are all constituents of real time control system.
The performance was evaluated in these two operation system using hardware based
measurements as well as real time function for measuring the execution time for the system
tasks. The performed analysis shows that the developing of the real time system using
RT/Linux was substantially better than MS-DOS 6.22. However, RT/Linux is an open source
RTOS and active community, thus it was selected for simulation.
References

[1]. Lui, C.L. and J.W. Layland, ''Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment'', Journal of Association for Computing
Machinery 20, no. 1 (January 1973):46-61.

[2]. Quing L. and Caroline Y., “Real time concepts for embedded systems”,
published by CMP book and imprint of CMP media LCC, 2003.

[3]. Lehoczky, J.P., L. Sha, J.K. Strosnider, and H. Tokuda.1991.''Fixed Priority
Scheduling Theory for Hard Real-Time Systems.

[4]. klein,M.H, T. Ralya, B. Pollak, R. Obenza, and M.G Harbour.1993.A
Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-time system.Boston,MA:Kluwer Academic Publishers,ISBN
0-7923-9361-9

[5]. ''Foundations of Real-Time Computing,scheduling,and Resource
Management.Andre M. Van Tilborg,Gary M.
Koob,editors.Boston,MA:Kluwer Academic Pulishers,ISBN 0-7923-9166-7

[6]. Turbo C Reference Manual
[7]. P.N Daly, Interfacing Real-Time Linux And LabVIEW, 2nd RTL workshop and

conference, 2001.
[8]. Rafael Yanushevsky, “Modern Missile Guidance” CRC Press; 1st edition ,September

20, 2007
[9]. G. Tao, S. H. Chen, X. D. Tang, S. M. Joshi, Adaptive Control of Systems with

Actuator Failures, Springer, April, 2004 (ISBN 1-85233-788-5)

13

[10]. Tarun Uppal and Hemendra Arya, “ A Comparative Analysis of Real Time
Operating Systems on a Mini- Areal Vehicle Hardware in the Loop Simulation”,
Proc. Of the International Conference on Aerospace Science and Technology, 26-28
June, 2008, Bangalorie, India.

[11]. Vishisht V Gupta , Prasanna G Gandhi , Hemendra Arya, et al , “Hardware in
the Loop Simulator for Autonomus navigation of Mini-Areal Vehicle”, 2nd
international Conference of Computational Intilligence, Robotics, and Autonomus
Systems, “CIRAS 2003”, Singapore.

[12]. P. Sirkumar and C. D. Deori, 2000, Simulation of mission and navigation
functions of Nishant, In Proc., National Workshop on Aerospace Flight Simulation,
VSSC, TRIVANDRUM, INDEA.

