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Abstract:

This paper presents a new speech enhancement method. This method based on wavelet
filters via multistage convolution with Reverse Biorthogonal Wavelets (RBW) in the
high and low pass band frequency parts of the speech signal. In this method a speech
signal is decomposed into two parts; a high-pass and a low-pass, the noise is then
removed in each band individually in different stages via wavelet filters. The proposed
method provides good results where it does not cut the speech information, which
occurs when utilizing conventional thresholding. The proposed method is tested and the
objective evaluation is used to compare the results with the other used methods. The
new proposed method shows superiority over Donoho and Johnstone thresholding
method and Birge-Massart thresholding strategy method.
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1. Introduction:

The principal aspiration of speech enhancement is to improve the quality and
intelligibility of speech signal, as perceived by human hearing process.  Speech
enhancement is an essential procedure within the field of speech and signal processing,
which impacts on many computers based speech and speaker recognition, coding and
mobile communications. The quality of such applications is decidedly dependent on
how much the noise is eliminated.
There exist a large variety of algorithms addressing the speech enhancement problem,
such as spectral subtraction, Wiener filtering, Ephraim Malah filtering, hidden Markov
modeling, or signal subspace methods [1-7]. A non Gaussian model based on Ephraim–
Malah filter was evolved. This model is implemented by spectral amplitude estimation
based on the generalized Gamma distribution (GCD) of speech and MAP estimator [8].
Md. Kamrul Hasan [9] presented an improved thresholding technique for speech
enhancement in the discrete cosine transform (DCT) domain, where the signal-bias-
compensated noise level was used as the threshold parameter. Speech classification into
voiced and silent frames is essential in many speech processing applications, as well as,
segmentation of voiced speech into individual pitch epochs is necessary in several high
quality speech synthesis and coding techniques. Veprek P. and Michael Scordilis [10]
introduced criteria for measuring the performance of automatic procedures performing
this task against manually segmented and labeled data, where five basic pitch
determination algorithms (SIFT, comb filter energy maximization, optimal temporal
similarity and dyadic wavelet transform) were evaluated. A new pitch determination
method based on Hilbert-Huang Transform (HHT) was presented in [11]. Qinghua
Huang et al. [12] proposed a Variational Bayesian learning approach for speech
modeling and enhancement. They used time-varying autoregressive process to model
clean speech signal and used Variational Bayesian learning to estimate the model
parameters. The majorities of these methods deal with short-time spectral attenuation of
the noisy effect and are capable to eliminate background noise powerfully but distorting
artifacts remain in the enhanced speech signal. These artifacts are recognized as
‘‘musical noise’’ due to their tonal spectrum.
The idea of the wavelet started with the Gabor Transform [13]. Later on, the subject of
multi-scale signal decomposition has been tried by applied mathematicians for a number
of years. The papers of mathematicians Mallat [14,15] and Daubechies [16,17] directed
the attention of signal processing researchers in the theory of wavelet transforms, as
well as its engineering applications. These papers established the theory of multirate
filter banks basing on wavelet transforms. The idea of the noise removing by wavelet
transform started early in 90's, particularly basing on the singularity information
analysis [18] and the thresholding of the wavelet coefficients [19].
Mallat and Hwang [18] proposed an iterative algorithm to remove the noise via proving
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that the modulus maxima of the wavelet coefficients give a comprehensive
representation of the signal. Donoho and Johnstone [19-22] proposed a well-known
universal wavelet threshold to remove White Gaussian Noise.
This paper presents a wavelet filters enhancement method (WFEM) via multistage
convolution by Reverse Biorthogonal Wavelets in high and low pass bands speech
signal parts of frequencies.

2. Wavelet Transform Thresholds and Reverse Biorthogonal Wavelets:

In literature there are so many algorithms, which utilize different thresholds.  Generally,
these algorithms can be summarized in the following steps: decomposing the signal by
wavelet transform, thresholding remaining signal and finally, reconstructing the clean
signal by Inverse Wavelet Transform (IWT).
Soft thresholding function was expressed as follows [20-22]:
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Where kw  is the wavelet coefficient and is the universal threshold for WT proposed by
the same authors

(N)log2  (2)
Where 6745.0MAD  is the noise level, MAD is the absolute of median estimated on
first scale, and N is the length of the enhanced (de-noised) signal. For Wavelet Packets
Transform the threshold calculated by

N)(N 2loglog2  (3)
Johnstone and Silverman [23] investigated the correlated noise situation to define a
level-dependent threshold

(N)jj log2  (4)

Where the noise level is 6745.0jj MAD , and jMAD is the absolute of median

estimated on the scale j .
Birgé, L. and P. Massart [24] proposed a level-dependent threshold based on Birge-
Massart strategy, which can be explained by the following sequent concepts:
 LC, is the wavelet structure of the decomposed signal to be enhanced (de-noised), at
level 2)(  Llengthj .  and M  are  real numbers greater than 1. T  is a vector of
length j ; )(iT  contains the threshold for level i . KEEPN  is a vector of length j ; )(iNKEEP

contains the number of coefficients to be kept at level i .
The strategy definition:
1- For level 1j , everything is kept.
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2- For level i  from 1 to j , the ni  largest coefficients are kept with )2( ijMni  .
Typically  =3 for de-noising. Recommended values for M  are from )1(L  to )1(*2 L .The
scale-adapted threshold was suggested in [25]. For a given sub band k , the matching
threshold is defined by

(N)kk log2      (5)
Where the noise level is 6745.0kk MAD , kMAD is the absolute of median estimated on
the sub band k .
In this paper, Reverse Biorthogonal Wavelets RBW shown in Fig.1 are used. This
family is generated from the biorthogonal wavelet father   and mother   [26]. RBW
are compactly supported biorthogonal spline wavelets for which symmetry and precise
reconstruction are probable with FIR filters. Has arbitrary number of vanishing
moments and arbitrary regularity. It is well known in the subband filtering region that
symmetry and exact reconstruction are incompatible if the same FIR filters are used for
reconstruction and decomposition, then two filters should be used.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
Low Pass Reverse Biorthogonal Filter

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1
High Pass Reverse Biorthogonal Filter

0 2 4 6 8 10 12
-0.5

0

0.5

1
Low Pass Quadrature Mirror Filter

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1
High Pass Quadrature Mirror Filter

Figure (1): Reverse Biorthogonal Wavelets

3. Proposed Method:

For many signals, the low-frequency content is the most important part. It is what gives
the signal its identity. The high-frequency content, on the other hand, imparts flavor or
nuance. If you remove the high-frequency components, the voice sounds different, but
you can still tell what's being said. However, if you remove enough of the low-frequency
components, you hear gibberish. But for high quality enhancement the high and low
parts should be filtered carefully. In this work wavelet filter based speech enhancement
method is presented. The method contains multistage wavelet filtration based on
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convolution with Reverse Biorthogonal Wavelets. The proposed method is based on
filtration the low frequency and high frequency parts separately, without thresholding
(cutting) the values, which leads to losing the essential speech information.

For wavelet filters, we start with the scaling function   If nw  is the coefficient of the
linear combination given by:
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Where nw is given by [14,15 ]:
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Clearly if   is compactly supported, the sequence nw is finite and can be viewed as a

filter. The filter nw (scaling filter) is a low-pass Finite Impulse Response (FIR) filter, of
length N2 . A low digital filter's output )(ky  is interrelated to its input )(ks  by
convolution with its impulse response )(kw .
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In general, the z-transform )(zY  of a digital filter's output )(ny  is related to the z-
transform )(zX  of the input by
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Here )(zW is the filter's transfer function., Where the constants )(ib  and )(ia  are the filter
coefficients and the order of the filter is the maximum of n  and m . Therefore )(ky  is the
low pass output signal. To accomplish better final results two addition low pass filters
are applied

)()()(1 kykwky   and )()()( 12 kykwky                    (10)
Now for high pass frequency filtration, high pass wavelet  filter must be generated form
mother wavelet
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A high pass digital filter's output )(ku  is related to its input )(ks  by convolution with its
impulse response )(kh .
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)(ku  is the high pass output signal. To accomplish better final results two addition low
pass filters are applied

)()()(1 kukwku  and )()()( 12 kukwku              (14)
)(2 ky and )(2 ku present clean low frequency part and high frequency part of the speech

signal )(ks , respectively. The length of these signals is nearly equal to the length of )(ks

signal. Therefore, decimation operation must be implemented before giving to
reconstruction process.  The length of each filter is equal to N2 . If n  is the length of s ,
the signals )(ky  and )(ku  are of length 12  Nn . So it's very important to eliminate these
redundant samples from the beginning and from the end of each convolution results to
guarantee optimal s  signal reconstruction. In reconstruction as shown in Fig.2,

quadrature mirror filters are used
k)N( w)(-(k)h q

k
q  121  for N, ...,,k 221                   (15)

afterwards, the clean speech signal is accomplished by zero-padding operation as will as
summation of convolution the low and high parts )(2 ky and )(2 ku  with quadrature mirror
filters )(kwq   and )(khq ,  respectively
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Figure (2): Enhanced signal of SNR -3.7631 dB, by WFEM and clean signal via
iteration 1, 3, 5, 7 and 11, with improved SNR: 4.3603 dB, 3.3839 dB, 5.1238 dB,

5.5211 dB and 5.7370 dB, respectively.
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The reconstruction error is calculated by the difference of the two victors s  and s~

sse ~                         (17)
After 5 iterations the highest Signal-to-Noise ratio is  accomplishing where
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and the minimum Mean Square Error is given by:
])~[( 2ssEMSE                        (19)

The proposed method presents new approach of speech signal enhancement by using
wavelet filters particularly RBW. As we mentioned above the method based on filtration
the low frequency and high frequency parts separately, without thresholding (cutting)
the values, which leads to losing the essential speech information.

4. Objective Evaluation:

Different methods are used for speech enhancement systems evaluation. All of these
methods based on extracting an original signal to enhanced signal ratio measure or
distance measure. The most popular measure, which gives a measure of the signal
power improvement related to the noise power is SNR  and segmental SNR (segSNR).
From spectral domain evaluation algorithm we can mention Weighted–Slope Spectral
distance (WSS) [27]:
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Where ),( mjW is the weight placed on j th frequency band, K is the number of bands
and M is the number of frames in the signal. ),( mjsC  and ),( mjs p spectral are slope of the
clean and enhanced signals, respectively. In [28] K is proposed as 25.
Cepstrum distance has been used in [28,29] as a difference of original signal cepstrum
and enhanced signal cepstrum
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where CC


and PC


are original signal cepstrum and enhanced signal cepstrum vectors,
respectively.
In literature, LPC-based objective measures have been utilized such log-likelihood ratio
(LLR) [30]:
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where Ca


 and Pa


are LPC vectors of the original and enhanced signals, respectively
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and CR  is autocorrelation of original signal.
In [28] composite evaluation is proposed, which was obtained as a correlation between
objective and subjective evaluation by using two merits correlation coefficient and
standard deviation.
In this paper a new evaluation measure is proposed by Continuous Wavelet Transform
(CWT). This   measure is obtained by calculated the differences between CWT of
original signal  and enhanced signal over three levels, low, medium and high. And then
average of standards deviation is obtained

 
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d   for 15and10,5j     (23)

Where )~) s(CWT(sCWTC jjj  and C is the mean value. The level determination as 5, 10
and 15 is according to the sampling frequency of the speech signal. These levels present
low, medium and high pass bands of the signal frequency. So that, the utilizing this
measure helps studying the difference between filtered and clean signals via three
bands, instead of  whole signal overlapped bands.

5. Results and Discussion

Tested speech signals were recorded via PC-sound card, with sampling frequency of
16000 Hz, over about 2 sec. time duration. Each speaker recorded Arabic expression
"besme allah Alrahman Alraheem" that means in English "In the Name of God" that
was recorded one time by the speaker. The speaker recorded 26 utterances. 4 females 18
males got a part in utterances recording. The recording process was provided in normal
university office conditions.
The experimental part of this research is introduced by utilizing several objective
measures such as CWTd , modified Cepstrum distance
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and the modified LPC-based log-likelihood ratio LLRMd
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where )(nas  and )(~ nas are the LPC of the original and enhanced signals, respectively.

sR , s~R  are autocorrelation of original and enhanced signals. The modification is done
to make the two measures more suitable for our research.  Correlation coefficient and
MSE are also used.
The used objective evaluation based on White Gaussian Noise (WGN).
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The Gaussian Density function is given by
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Where   is the mean value and   is the standard deviation of the random variable X .
The results are obtained via different SNR levels and shown in Table (1). The proposed
method WFEM is compared with two wavelet conventional thresholding methods. The
first method is Donoho and Johnstone thresholding method (DTM) in (Eq.2) and the
second method is Birge-Massart thresholding strategy method (BMSM) presented in
section 2. The soft (S) and hard (H) thresholding are utilized. DTM and BMSM are used
in the optimal condition related to the used parameters according to literature presented
in section 2 and experimental observations. Table 1 presents the SNR of the enhanced
signal by three methods WFEM, DTM (S and H)  and BMSM (S and H). The SNR of
corrupted signal utilized in the experiment ranges from -5.6 dB to 14.08 dB. Proposed
method is tested over fifteen iterations, where maximum SNR is taken for each
corrupted SNR level trail. WFEM improves the SNR practically 10dB (-5.628 to 5.065).
The results illustrate that WFEM is superior in SNR improvement.

Table (1): Improved SNR by WFEM, DTM and BMSM with WGN

Corrupted
SNR
dB

WFEM
SNR
dB

DTM (S)
SNR
dB

BMSM
(S)

SNR
dB

DTM
(H)

SNR
dB

BMEM
(H)

SNR
dB

14.088 19.561 17.257 15.691 17.780 16.552
7.183 13.58 12.589 17.839 12.867 9.426
5.300 12.036 10.987 12.371 9.963 7.100
1.584 9.237 7.793 10.673 8.255 5.309
0.462 8.741 7.117 7.525 6.468 4.077
-1.804 6.873 5.300 6.731 5.448 3.270
-2.945 6.296 4.653 4.950 4.396 2.198
-4.866 5.358 3.043 4.336 4.312 2.393
-5.055 5.492 2.781 2.801 4.100 2.14
-5.628 5.065 3.081 2.672 3.016 1.212

Five different objective measures are used, the correlation coefficient  , MSE , CEPMd ,

CWTd  and LLRMd . The results are shown in Table (2). WFEM is tested over 15 iterations,
where maximum  and minimum of MSE , CEPMd , CWTd  and LLRMd  are taken for each
corrupted SNR level trial.  The result of each method is taken as an average of the
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results of the 10 SNR levels from -5.6 dB to 14.08 dB. The objective measure results
indicate the superiority of WFEM in White Gaussian Noise case as shown in Fig. 3.

Table (2): Objective evaluation with WGN

Objective
Measure

WFEM DTm
(S)

BMsm
(S)

DTm
(H)

BMsm
(H)

ρ 0.915 0.863 0.852 0.853 0.757
MSE 0.0011 0.0030 0.0015 0.0031 0.0023

MdCEP 0.314 0.341 0.349 0.307 0.504
dCWT 0.056 0.069 0.070 0.073 0.067
MLLR 0.721 2.6205 0.646 2.139 0.886
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Figure (3): Enhanced speech signal using WFEM, DTM and BMSM with WGN
(SNR=7dB)
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6. Conclusions:

In this Paper, a new wavelet filters speech enhancement method (WFEM) is proposed.
The proposed method in this study depends on two steps: Filtration using Reverse
Biorthogonal Wavelets filters, and reconstruction the clean signal by quadrature mirror
of Reverse Biorthogonal Wavelets Filters. The method improves the SNR in some cases
about 15 dB. The new method is compared with Donoho and Johnstone thresholding
method and Birge-Massart thresholding strategy method. The proposed method is tested
by objective measures via Gaussian noise probability distribution functions. The new
method shows superiority over Donoho and Johnstone thresholding method and Birge-
Massart thresholding strategy method.
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