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Abstract:

The testing and verification technology for system HDL models, focused to the
significant improvement of the quality of design components for digital systems on
chips and reduction the development time (time-to-market) by using the simulation
environment, testable analysis of the logical structure HDL-program and the optimal
placement of assertion engine is proposed.
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1. Introduction:

The novel testing and verification technology for system HDL models allows searching
for errors in the HDL-code with a given thoroughness for an acceptable time by means
of the introduction assertion redundancy to the critical points of the software model,
which are defined by the synthesized logic functions of the testability. The
controllability and observability criteria, used in hardware design and test, are applied to
estimate the quality of software code in order to improve it and effective diagnose
semantic errors.
The objective is improvement of the testing and verification technology for digital
systems to diagnose and correct of errors for HDL-models by sharing of the assertion
engine and testable design technologies.
The research tasks: 1. Assertions based verification and testing environment for system
HDL-model. 2. Development of testability evaluation metrics on the basis of new logic
testability function. 3. Application of a technological assertion model to verify an IP-
core filter on the basis of discrete cosine transform. 4. Practical results and directions for
further research.
The research sources: 1. Technologies and tools of test and testbench creation are
represented in the papers [1-3]. 2. Models and methods for verification of the system
models on the basis of assertions are described in [4-7]. Testable software design uses
the IEEE standards [8-10], as well as innovative solutions to verify and testability
analysis for the system HDL-models [11-18].

2. Infrastructure of Design Verification

The verification model can be represented as a generalized equation for fault detection
LST   at the system level or more detail in the components:

.L)A,S()F,T( s

Here F,T are test patterns and functional coverage of  the reference model with expected
responses; A,S  are testable HDL-model and assertion engine for the verification and
exact diagnosis of errors in software code. Hardware testing is based on utilize the
analytic expression hL)B,S()T(  , where B is the boundary scan register defined by
the IEEE 1500 standard and used as a complement of the model to obtain the desired
diagnosis thoroughness. At that hs L,L  are lists of errors and faults, obtained on the
stages of design verification and product testing.
Verification and testing strategies have different models of technology application,
focused to reduction of time-to-market. The iterative verification process seeks to
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correct the errors of system level HDL-model, obtained from the project specification
(Fig. 1). The end result is a netlist or debugged HDL-model of register level. The
subsequent iterative process is synthesis and implementation of a design in silicon chip.
Here the testing checks the correction of hardware implementation for HDL-model to
the register or gate level in an FPGA. For ASICs such technology would not be practical
because the reprogramming of errors would cost up to one million dollars.

Figure (1): Strategy of project designing

Taking into account the definitions and explanations model of the environment or
macroprocess of verification for software stage of a project is focused to reduce the time
of product creation and increase the yield for the use of code redundancy in the form of
assertion engine and use testbench in conjunction with the metrics for determining the
quality of the test or the functional completeness.
Testing and verification infrastructure for HDL-model is shown in Fig. 2, where the
specification of a design described in the formal high-level programming language, is
the initial information for the follows: creation of the metrics for the estimation of test
quality as functional coverage, HDL-model of a design, testbench, assertion structure
that is complement to the basic model (it is necessary to accelerate testing and
debugging of a design).
The verification environment is presented by simulation system (for instance, Questa,
Mentor Graphics), test system (Testbench), assertion engine and system code of the
model by using languages VHDL, Verilog, System Verilog. Testbench sets input stimuli
and reference responses for them, defined in the HDL-languages, focused to
functionality check (variables, functions, sequences), parameters of which are defined in
a functional bin.
Assertion engine is model redundancy, complementary testbench to verify the time
internal design status, represented by input-output assertions and designed to accelerate
the testing, verification, diagnosis and correction of design errors in the system code.
Assertions can be generated not only by specification, but also by HDL-model,
removing the unnecessary construction, and the rest need to be modified to the assertion
form. At the same time there is the probability of software error recurrence in an
assertion, which will not be identified in the simulation.
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Figure (2): Design verification environment

A simplified interaction structure for the assertion engine and other components of the
verification and diagnosis environment is presented in Fig. 3. Testbench is a reference
model of design object in the form of input and output responses. Often, already proven
and accessible model of another company, which is checked on the Model Under
Verification (MUV), is used instead of testbench. In this case, a generator of input
sequences or testbench without output responses is required. Assertion Engine is a
superstructure for the modules Testbench and MUV and it is designed to compare the
simulation results in order to create a binary output response vector (assertion state
vector):

}X,1,0{A,STA),A,...,A,...,A,A(A iiiini21  .

Figure (3): Assertion utilize technology for design verification

Sequence of operations for creation the verification environment is interesting. Here
sole argument is a design specification; all other is derivative from it. The
interconnection structure for the design and diagnosis with subsequent correction of
errors in the HDL-code is shown in Fig. 4.
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Figure (4): Design verification flow

3. Analytical Model of Verification Infrastructure

For identification of a generalized state of HDL-model the reference signatures are
formed for critical points (variables, registers, memory) in time and space. Then the
analysis of HDL-model for its diagnosis is performed by comparing the reference and
experimental signatures to form the assertion vector describing the comparison state
(reference and real) for the object components in time and space. It is advisable to form
the assertion vector regardless of design HDL-model. Assertion and functional models
are processed concurrently and independently of one another by simulation
environment.
Assertion model determines the deviations from the behavior of the object in significant
points of the space-time reference structure. The assertion format must conform to the
format of the HDL-model. Assertions are focused to the diagnosis of semantic errors for
HDL-model by means of Testbench and MUV.
The analytical model of the verification infrastructure is represented by the following
expressions (P– design specification, S– soft-model, A– assertion model, T– Testbench,
F– functional bin, D – module for error diagnosis and C – conditions for error
diagnosis):
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Here, the expression 6 defines the conditions of test confidence for functional bin
concerning the specification. Line 7 defines the function of determination the design
errors in the transition from the system level to register one, using all attributes of
verification infrastructure. The function 8 regulates the detection of faults in operation
stage of digital system-on-a-chip.
The assertion redundancy is a function of critical points of HDL-model, the maximum
number of which may be equal to the number of time frames for functional components
identified by the specification.
A priori, the coordinates of the assertion vector are assigned the value X. Then the
critical coordinates are identified, a number of which would be sufficient to carry out a
verification experiment in the search for faulty software blocks with specified diagnosis
thoroughness. These coordinates are identified by the unities. In the process of
simulation vector coordinates are modified to reduce the unities. Each coordinate of the
vector A is in compliance with a list of all nodes- ancestors of software transaction
graph. The reachability matrix of a transaction graph or lists of nodes- ancestors
correspond to the vector coordinates.
For the actual binary state the elements of the vector A unconditional diagnosis
procedure is performed for the list L to diagnose faulty software blocks d (A), defined
by the following expressions [18]:
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The system of equations is to search for single and multiple errors by using the assertion
state vector. The length of assertion vector is equal to the number of nodes in a graph or
the number of program blocks in the functional-logical structure of HDL-code. Vector
model for verification environment is presented below:
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In the simulation the comparison of responses for testbench and HDL-model is carried
out; it forms the coordinate states of assertion vector.

}X,1,0{A,ST)S,T(fA iiiiii 

Then, essential (0,1)- coordinates of an assertion vector mask a reachability matrix for
obtaining a list of program blocks with errors by performing one of the procedures set
out in (2).

4. Testability analysis for software HDL-models

Substantial redundancy of the HDL-model assumes its efficient use in order to improve
testability of structure for designed code. Existing standards for hardware testable
design can be adapted to verify the HDL-code of system and register software models.
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S.G. Sharshunov’s register or transaction transfer graph that provides information about
interrelations between Boolean and register variables, memory and interface buses, can
be used. This data can be obtained automatically, by analyzing the syntax of HDL-code
lines. Generated graph should cover the functionalities of the software model
components and define all the existing links for the reception, transmission and
transformation of information between the nodes of a transaction graph (TG). For
integral estimating the testability Q of transaction graph the following criteria are
introduced:
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Controllability and observability is the metrics for testability estimation not
interconnections, but components of HDL-code, such as: registers, counters, memory or
arrays, input-output buses, vectors, logical or arithmetic variables.

These characteristics have a functional dependence on the structural granularity of a
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software. Testability Q, presented in (4), depends on the controllability U, observability
N, as well as model redundancy (Z) provided by the components: metrics of the
functional coverage (F), testbench (B), assertion engine (A). The controllability
(observability) is a function of the number of operators, incoming into the node
(outcoming from the node) of a transaction graph, as well as the structural granularity of
the element – the distance from the inputs (outputs) or the number of time cycles,
required for the component control (observation) in given state in the time axis.
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This testability criterion can also be used to estimate the quality of the control flow
graph for computational processes. Only the statement nodes, loaded with the input
conditions, as well as the node position relative to the beginning or the end of control
circuit are considered. The position of the statement node is correlated with control
cycle of computational process. Number of conditions for the execution of an operation
set at each node, joint by operation Or, increases the testability of a graph in
controllability. Similarly the observability is determined, on which affect not only the
structural granularity, but the power of conditions, created by the functional operations
And, Or. The testability of a node for oriented graph may be described by logical
function, defined as a conjunctive normal form CNF. At that the testability
(controllability and observability) will be determined by Quine estimation of CNF
computational complexity. In general, the logic functions of controllability and
observability for current node of the transaction graph are determined by conjunction of
the disjunctive terms – the first line of (5):

).T(N);T(U)2

);T(N);T(U)1

y
ij

n

1j

y

1i

f
r

x
ij

n

1j

x

1i

f
r

y
rij

y

1j

n

1i

f
r

x
rij

x

1j

n

1i

f
r

y
ir

x
ir

i
y
ri

x
r









. (5)

Here the controllability f
rU  (observability f

rN ) function is determined by conjunction

of all nodes-ancestors
x
rn  (successors y

rn ), where each of them have ix  incoming ( iy
outgoing) arcs-transactions connected by disjunction signs.
The power of disjunctive terms corresponds to the number of arcs incoming into the
node, but the number of conjunctions is the structural granularity of the component
location.
Then the conjunctive form is transformed to DNF – the second line of (5), where the
number of terms for the controllability (observability) function )y(x rr  is equal to all
possible ways of forming the state for a node, and the length of controllability

(observability) term )n(n y
i

x
i  is a condition for the reachability of a node – the structural

granularity from the inputs (outputs).



Proceedings of the 7th ICEENG Conference, 25-27 May, 2010 EE005 - 10

The interesting solution when the controllability and observability for the current node
of transaction graph is determined on the basis of the logical functions of the
observability and controllability ( ii N,U ) and the integral testability estimation (Q), when
using the apparatus – the algebraic form of graph representation [18]. The formulas for
calculating these criteria are the following:
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where x
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max t,k,n,t are the conjunctive term of maximum length for determining

the controllability criterion; a number of terms in a logical controllability function; a
number of transactions (letters) in current function term; power of the transaction in a
term. Similar designations are used for calculating the observability criterion for each
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5. Verification of DCT IP-core, Xilinx

The proposed verification models for software HDL-code are tested on a real project
Xilinx IP-core in order to determine the presence of errors. At that the positive result
about the semantics of the program is obtained for subsequent correction of the code.
Fragment of the discrete cosine transform module is presented in Listing 1
[Xilinx.com]. The whole HDL-model consists of 900 lines of System Verilog code.

Listing 1.
module Xilinx
`timescale 1ns/10ps
module dct ( CLK, RST, xin,dct_2d,rdy_out);
output [11:0] dct_2d;
input CLK, RST;
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input[7:0] xin; /* input */
output rdy_out;
wire[11:0] dct_2d;
………………….
/* The first 1D-DCT output becomes valid after 14 +64 clk cycles. For the first 2D-DCT output
to be valid it takes 78 + 1clk to write into the ram + 1clk to write out of the ram + 8 clks to shift
in the 1D-DCT values + 1clk to register the 1D-DCT values + 1clk to add/sub + 1clk to take
compliment + 1 clk for multiplying +  2clks to add product. So the 2D-DCT output will be valid
at the 94th clk. rdy_out goes high at 93rd clk so that the first data is valid for the next block*/
endmodule

In accordance with the rules of testability analysis described above, the transaction
graph is designed presented in Fig. 5, which for the module Xilinx has 28 nodes-
components (input and output buses, logic and register variables, vectors and memory).
Arc identifier has the upper index meaning the number of transactions in the program
between the outcoming and incoming nodes. For each node the logical function of
controllability and observability are constructed. Example of the controllability function
for the node 2B  is the following:
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For the node 1L  DNF of observability function is presented in the following form:
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The result of calculating the controllability, observability and testability for the graph
(Fig. 5) is shown in Fig. 6.
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Figure (5): Transaction graph for Xilinx model

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

L1 B1 R6 R8 R16R19 R1 R2 R3 R4 R5 W1 R7 R9 R10 W2 M1 W3 R11R12R13R14R15R17 W4 R18R20 W5 B2

U(S)

N(S,N)

Q(S)

Figure (6): Testability curve for Xilinx model
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After determination of controllability and observability for transaction graph nodes the
calculation of the generalized testability criterion for each component of software code
is carried out in accordance with expression (6). For the Xilinx model such estimation is
equal to 0,382. It describes the quality of the design variant, which is very important
when comparing several alternative solutions. As an example of the positive use of
developed models and methods the testability analysis for software code of discrete
cosine transform from the Xilinx library is performed. It was done construction of
transaction model, calculation of the testability characteristics, and identification of
critical points.

6. Conclusions:

1. An universal model of software component in the form of transaction graph, which
can be used to solve the problems of testability analysis in order to obtain the required
diagnosis granularity for HDL-code is presented.
2. The logic testability functions for HDL-models on the basis of transaction graph are
proposed in order to determine the testability estimates (controllability and
observability) for software components and HDL-design as a whole.
3. Examples and testability curves (controllability and observability) for software
models represented by transaction graphs are made.
4. The practical significance of the proposed methods and models is the market appeal
and high interest from the technology companies to the innovation solutions of the
effective testing and verification of hardware and software components for system-level
design in order to reduce time-to-market and raise yield.
5. Further research will be focused on the development of standard interfaces for
integration of models, methods and software in the technological design flows of digital
systems on chips.
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