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Abstract:

Adaptive beamforming is used in many applications such as radar, sonar and wireless 
communications for separating desired signals from other unwanted signals. 
Beamforming is essentially applied to direct the pattern of the receiving antenna system 
towards the desired direction as well as to attenuate the received signals from unwanted 
directions. The process of adaptive beamforming is performed in two steps. The first 
step is assigned to estimate the direction of arrival of signals at the field of view of the 
receiving system. The second step is assigned to nullify the beam pattern in the 
directions of unwanted signals. To improve the performance of the adaptive 
beamforming, the number of array elements as well as the number of snapshots should 
be increased. However, this increase in both numbers of elements and snapshots leads to 
increase in the cost and the processing time. In this paper, a proposed iterative adaptive 
digital beamforming technique is presented to improve the array capability of 
interference cancellation while reducing the processing time. The proposed technique is 
based on the Jacobi theorem for iterative solution of a system of linear equation to 
determine the optimum weight vector at the array output. The proposed technique is 
compared with the optimal Minimum Variance Distortionless Response (MVDR) 
beamformer technique. Computer simulation is applied to verify the mathematical 
analysis that presented in the paper. The paper results show that the proposed technique 
can provide effective Co-Channel Interference (CCI) suppression better than MVDR, 
while increasing the strength of the desired signal.
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1. Introduction:

A major challenge for wireless communications systems is the limited capacity due to 
sparse radio frequency spectrum. The capacity limitation, in practice, is mainly 
determined by the capability of interference cancellation. One of the serious types of 
interference is the Co-Channel Interference (CCI) when the unwanted signals have the 
same carrier frequency of the desired signal. The matched filter (in temporal domain) is 
failed to solve this problem. As a remedy, the beamforming is proposed as spatial filter 
for the purpose of interference cancellation. Beamforming is a general signal processing 
technique used to control the directionality of the reception or transmission of a signal 
on a transducer array. The beamforming adjust the weighting vector of the array 
element to determine the optimum weight vector.

In the fixed weight beamforming approach the arrival angles do not change with 
time, so the optimum weight would not need to be adjusted. However, if desired arrival 
angles change with time, it is necessary to devise an optimization scheme that operates 
on the automatic changing  so as to keep recalculating the optimum array weight, that’s 
done by using adaptive beamforming algorithm [1],[2]. 

Interference cancellation is a simple multi-user detection technique, in which the
estimates of other users interference are subtracted from the received signal, in order to 
improve the desired user estimate [3], [7]. This process can be performed iteratively by
repeating the subtraction process, using estimates from previous stages to improve the 
estimates at subsequent stages. Iterative techniques, such as interference cancellation 
may be linear or non linear. Linear techniques use linear estimates of the interference, 
whereas non-linear techniques have no such restriction. 

Due to the system complexity, the fabrication cost and the operational 
expenditure, adaptive antennas are limited to base stations or military applications. 
Researchers are endeavoring to make low profile and low power consumption antennas 
for mobile terminals [11]. Some new approaches in adaptive beamforming techniques 
are proposed in [12–17].

In this paper, the linear techniques is only considered, a new low complexity 
iterative technique is proposed to steering null to the Co-Channel Interference (CCI) 
locations while forming beam to the desired direction without the use of temporal 
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reference signal. In this paper iterative techniques are used in spatial reference 
beamforming area.    

This paper provides analytic evaluation of the proposed technique for interference
cancellation as well as computer simulation for its behavior for different situations. 
Sections 2 and 3 provide brief description as well as analytic derivation of optimal 
Minimum Variance Distortionless Response (MVDR) beamformer technique and 
Iterative Null Steering technique for interference cancellation, respectively. Section 4
provides computer simulation results for the behavior of the two techniques and 
comparison between them. Finally section 5 provides conclusions and recommendations 
for future work. 

2. Optimal Beamforming

Consider K  received narrowband signals from different directions 1 ,…, K
impinging a uniform linear array  ULA  composed of M sensors. The outputs 
observation from the array elements, separated by the sampling interval of the process 
are denoted by )(,),2(),1( LXXX   each observation is a complex vector of M elements 
and it is called snapshot. The total number of available snapshots is assumed to be L
snapshots. The LM   array observation matrix is modeled as
                                   )()()()( tttX nSA                                                               (1)                                                                   

where, )](,),([)( 1 Kaa  A is the array response matrix, s(t) is the transmitted 

signals vector at time instant t and )(tn is the noise vector. The thm  column of the 

steering matrix is defined as:

                  Tmmmm Mjjj  1exp,...,2exp,exp,1 a ; Km1                          (2)  

where T[.]  denotes transpose and the inter-element phase shift is defined as  

mm

d 

 sin

2






 , where d  is the inter-element spacing of the array,  is the operating 

wavelength.

The spatial correlation matrix of the observed signal vector is defined as:

                                       ][ H
xx txtxER                (3)

where E[.] is the expectation matrix, H[.]   is Hermitian (complex conjugate transpose). 
Then substitute equation (1) into (3) and due to the signal and noise are uncorrelated:

                                     ])()([])()([ HHH
xx tntnEAtstsEAR                           (4)
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Assume that the noise vector is additive white Gaussian noise (AWGN) with zero mean 
and a variance of σ², then equation (4) becomes
                                      )(

2
M

H
Sxx ARAR                                                     (5)              

where Rs is the correlation matrix of the transmitted signals and I(M) is identity matrix of 
order M.
The array output is a linear weighted combination of the sensor outputs

                                           )()( tXWtY H
B                                                                       (6)

where W is the weight vector of the array outputs as shown in figure.1.

Figure 1. Block diagram of adaptive beamforming system

Suppose the desired signal is arriving from a direction 1 , then the optimal beam forming 

weight vector, BFw , is derived as follows:  

The array output vector for a single source coming from direction  1  can be written as:

                                            ttStx na  11
)1(                                         (7)
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Since the noise vector is (AWGN) and it is independent of the input signal vector, then 

the array output power is given by:

                      ])()([ )1()1(2

1 wtxtxwEtYEP TH
BBF              

                            = wIaRawwRw H
s

H
xx

H ])()([ 2
11

)1(

1
 

                            = wwwaRaw HH
s

H 2
11 )()(

1
                                                                 (8)

In case of multiple sources, the array output power is given by: 

                            wwwaRawwaRawP H
k

i
i

H
si

HH
s

H
BF i

2

2
11 )()()()()(

1
  



                 (9)

Since it is desired to steer nulls in the directions of sources is  ; i=2, 3,…k

while maintaining the output power due to the desired source as max, then this problem 

is equivalent to the constrained problem  

                                             )(min wRw xx
H

w                                                                  (10.a)
Condition that 
                                             1)( 1 awH                                                                     (10.b)

For a positive definite correlation matrix, the solution of equation (10) of the weight 

vector can be readily given by [4], [5].

                                      
)()(

)(

1
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1

1
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

aRa

aR
w

xx
H

xx
MVDR 



                                                           (11)  

The weight obtained by equation (11) is called the Minimum Variance 
Distortionless Response (MVDR). Using the weight vector MVDRw , the array output 
power spatial spectrum has the form:

                                          
)()(

1
)(

1
1

1 


aRa
P

xx
HC 

                                                         (12)

3. Iterative Null Steering                                                                           

In many applications the reaction for the information gathered by the array should 
be in real time and there isn't enough number of snapshots. Thus, a proposed technique 
is introduced to deal with minimum number of snapshots of the received signals and 
without the use of temporal reference signal to adjust the weight vector to the desired 
response. The proposed technique should have a lower processing time compared to the 
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MVDR beam former.   
For enhancement of the desired signal, arriving from direction 1 , and nullifying 

the other unwanted directions, the following system of linear equations, which is 
equivalent to the constrained optimization problem in equation (10), should be solved:

                                                                        (13)

The calculations of unknown vector Hw  requires in general )( 3nO operations (unless xxR

has some special property that makes it easily invertible). Equation (13) can be solved 
iteratively based on the Jacobi theorem [7] which derived in next subsection.

3.1 Jacobi Theorem

The system of linear equations is defined as 
                             Hx=b                                                                                      (14)

Could be solved using iteration technique, that
                                                                                 (15-a)       
                                                                 

where             ][1 ULDG                                                                                     (15-b)
 and                 C = bD 1                                                                                              (15-c)
The matrices D, L and U are the diagonal, strictly lower triangular and strictly upper 
triangular parts of H respectively. A sufficient condition for the method to be applicable 
is that H is strictly diagonally dominant or diagonally dominant and irreducible.

The sufficient conditions for Jacobi iteration to provide convergence are:
   1-The initial value ox  must be selected carefully to guarantee the sequence { kx } 
converge to the suitable solution.
   2- The spectral radius ( )  of the matrix G  in equation (15) must be less than 1. This is 
equivalent to say that, the magnitude of the largest eigenvalue max of H must be less 
than one.

The proof of the Jacobi theorem and convergence of the iteration technique could 
be explained as follows:
The solution of the system of equation (14) is given by 
                                           x=H-1 b                                                                           (16)
where H-1 is the inverse matrix of H, which satisfy the relation 

                                  H-1 =I /H


 I / I - E                                                                   (17)
where E is the processing error matrix. If the norm of the matrix E is less than one, then 
by applying Taylor series expansion of (17) we can write that   
                           H-1 = I + E + E2 + E3 + ………………..                                       (18)
Since the norm of E is less than one we can neglect the higher order terms of (18)

)( 1awR H
xx 

cGxx kk 1
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                                          H-1 ≈ I + E                                                                         (19)
      Consequently equation (15) is proved 

3.2 Application of Jacobi Theorem on the Adaptive Beamforming

In our case the iterative solution of equation (13) is
                                   )()( 1

11
1 aDwULDw kk


                                                 (20)

From the matrix algebra 
                                        )()( DRUL xx                                                                (21)
Assume that ID  ,then from equations (19) and (21) ,the equation (20) becomes   
                            )()( 11 awIRw kxxk       
                                 kxx wIRa )()( 1                                                                        (22)
The initial guess of )( 10 aw  leads to 

                           )()()1( 1
0

aIRw i
xx

k

i

i
k  



                                                                   (23)

The convergence of this iteration in equation (20) may be understood by 
considering the residual error in terms of the Taylor series expansion [7]

                                ,)()1(
0

1 i
xx

i

i
xx IRR  





        )( xxR <2                                             (24)

The convergence occurs if the spectral radius of xxR is lower than 2.
A simple generalization which improves on the Jacobi-style iteration is brought about 
by the introduction of a parameter or a sequence of parameters. By carefully selecting 
these parameters, the convergence speed can be improved.
A first order iteration is given by [7]:
                              ))(( 11  awRww kxxkkk                                                                (25)
where k  is step of convergence for iteration technique.                                                                         
As Rxx is symmetric positive definite, then the parameter that results in fastest 
convergence of the first order stationary iteration is

                                
maxmin

2





opt                                                                     (26)

where min and max  are respectively the minimum and the maximum eigenvalues of xxR .
A second order iteration that depends on last two estimates is given by:
                         ))(()1( 111  awRwww kxxkkkkkk                                            (27)

Where the best choice of  and   are given in [7]:
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2
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maxmin
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The Chebychev technique is another iterative technique in which the optimal k  is 
known for a given number of iteration steps. The optimum value for i    is given by [8]:

                         
21

2
1

cos
2

minmax
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minmax  
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
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
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

k

k
optk                     (29)

4. Simulation Results

Computer simulations are performed using MATLAB to verify the theoretical 
background obtained in the pervious sections. In the simulations two interference 
signals are located at -20o, 60o from the array bore sight and one desired signal is 
located at 20o from the array bore sight present in the instantaneous view of the uniform 
linear antenna array. The antenna array consists of 4 elements and the spacing between 
them is considered to be one fourth the wave length corresponds to the used carrier 
frequency. The signals are considered to be narrowband signals each signal possess a 
SNR=10dB.

Figures 2, 3 compare between performances of first order iterative technique after 
10, 50 snapshots respectively and the optimum MVDR beam former after 256
snapshots. One can see that the first order iteration provides deeper null than the MVDR 
beam former in second case, moreover as the number of available snapshots increase the 
deep of the nulls increase.

Similarly figures 4, 5 compare between performances of second order iterative 
technique for 10 snapshots and 50 snapshots, respectively, and the optimum MVDR 
beam former after 256 snapshots. Clearly the second order iteration achieves deeper null 
compared to MVDR and first order iteration. That is due to fast convergence of second 
order compared to first order iteration.

Finally figure 6 compare between performances of Chebychev iterative technique 
and the optimum MVDR beam former, results show that the Chebychev iterative 
technique achieves deeper null compared to MVDR, first order iteration and second 
order iteration, respectively.

In terms of the peak at 20 degrees and null at −20 and 60 degrees, the 
conventional optimum beam former method achieves the best nulls but the worst peak. 
The Chebychev method performs best, both in terms of Null and peak and in terms of 
providing a fast convergence.
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Figure (2): Comparison between the optimum MVDR beamformer after 256
snapshots and first order iterative technique after 10 iterations.
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Figure (3): Comparison between the optimum MVDR beamformer after 256
            snapshots and first order iterative technique after 50 iterations.
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Figure (4): Comparison between the optimum MVDR beamformer after 256
                  snapshots and second order iterative technique after10 iterations.
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Figure (5): Comparison between the optimum MVDR beamformer after 256
                   snapshots and second order iterative technique after 50 iterations.
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Figure (6): Comparison between the optimum MVDR beamformer after 256 snapshots 
and first order Chebychev iterative technique after10 iterations.

5. Conclusions

This paper presented a low complexity and computationally efficient iterative 
beamforming technique for interference cancellation. This technique is independent of 
the number of sources as shown in its mathematical model. The proposed iterative 
techniques are used to solve the limits of the conventional inverse matrix calculation. 
The simulation results show that this technique converges faster than the conventional 
MVDR beamformer with minimum number of snapshots. The iterative method dose 
not require reference signal. Rather it works on the real received data. We want to 
extent this work to determine the accuracy and resolution of the proposed 
beamformer. Also the effect of motion of the emitting source on the perform will be 
considered.   
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