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Abstract
This paper presents algorithms for overcoming a common problem of gamma-ray

spectroscopy, namely the peak pileup recovery problem. Three different approaches are

studied and evaluated within a spectroscopy system. The first approach is a direct

search based on Nelder-Mead technique without any derivatives in order to find the

local minimum points. A Gaussian shape in conjunction with the peak height and its

position of each pulse are used to construct the pulse. Hence, the main pulse parameters

such as peak amplitude, position and width can be determined. The second algorithm is

based on the nonlinear least square method. In this paper another technique is tried.

This technique which is proposed as third algorithm is based on a maximum peak

search method combined with the first derivative method to determine peak position of

each pulse. Comparison among these approaches is conducted in terms of parameters

errors and execution time. This comparison based on a reference signal from 137Cs point

source acquired by data acquisition system. The third approach shows the best

accuracy, for determining accurate energy spectrum. Therefore, it provides better

isotope identification than other algorithms.

Keywords: Peak Pileup, Tail Pileup, Least-Square Fitting, Nelder-Mead Modified

Simplex.

1. Introduction
Spectroscopic gamma-ray detectors are used for many research, industrial, medical and

homeland-security applications [1-4]. The advantages of a digital system for gamma-ray
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spectroscopy in comparison with a classical analog system are reflected in the possibilities of

implementation of complex algorithms and simple and rapid modification of algorithms used

for signal processing. Using these systems the highest quality of measurements is achieved at

both low and high counting rates with various radiation detectors [5]. Thallium-doped sodium

iodide (NaI(Tl)) scintillation crystals coupled to photomultiplier tubes provide medium

resolution spectral data about the surrounding environment. These effects are hardware-

dependent and have strong effects on the radioisotopic identification capability of NaI(Tl)-

based systems. Pulse pileup distortion is a common problem for radiation spectroscopy

measurements at high counting rates [4-6]. Moreover, pileup is one of the most delicate

problems of any spectrometric method that is related to the extraction of the correct

information out of the experimental spectra.

In many applications as much as 80% of information can be lost due to the effects of dead

time and pulse pileup [7]. The effects of pulse pileup in applications of nuclear techniques

include the following issues. Imposing a fundamental limit on detector throughput (and

therefore source intensity), decreased spectral accuracy and resolution, as peaks in the energy

spectrum spread, reduced peak-to-valley ratios due to false detection of pulses, and causing

significant detector dead time in the system [7]. Therefore without a correction on the

response function of the detector system incorrect physical data are obtained from an analysis

of measured spectra [8]. The deconvolution methods are widely applied in various fields of

data processing and various approaches can be employed [8]. On one hand it must decompose

completely the overlapping peaks while preserving as much as possible their heights,

positions, areas and widths. The objective of this paper is to study different algorithms

implementing these methods. So, we discuss the performances of three different pileup

recovery algorithms; direct search, least square fitting, and first derivative combined with

maximum peak search algorithms. Our primary focus is the analysis of pileup signals

collected from detector systems to obtain high accuracy of the spectroscopy. The influence of

white Gaussian noise on the recovery performance in the direct search and least square fitting

algorithms is furthermore discussed. Pileup correction of gamma-ray spectroscopy using these

three different algorithms is studied. These algorithms have the advantages of decomposition

of multiple overlapping events into their original peaks. This paper is organized as follows:

Section 2 presents the spectroscopy system. The more interesting characteristics of pileup

recovery algorithms, and registration or rejection of the peak height are represented in Section

3. Comparison between the three algorithms and discussion are summarized in Section 4 and

we terminate our study by a briefly discussion and stating some important conclusions that we

noted from our obtained results.
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2. System Components
In this system, the components of the system for evaluation of different pileup recovery

algorithms are described. It contains the following elements; 137Cs point source, scintillation

detector, amplifier, data acquisition system and connection to a desktop personal computer

(PC). An 1.5 inches x 7.5 inches NaI(TI) scintillation detector is used to detect the radiation

signal from Cs137 point source. This detector is connected to amplifier through coaxial cable

which in turn connected to the PC through digital scope. The digital scope used for signal

digitization with sampling rate of 16 MS/s. MATLAB environment is used to perform pileup

correction and spectrum evaluation.

3. Evaluation of Pileup Recovery Algorithms

3.1 Pileup recovery using deconvolution [9]
The differential pulse height spectrum that is recorded from any radiation detector is the

convolution of its inherent response function and the energy distribution of the incident

radiation. The deconvolution is sometimes used for the process of resolving or decomposing a

set of overlapping peaks into their separate components by different techniques. Pulse pileup

is an important issue for radiation spectroscopy applications of scintillation detectors, since

the maximum counting rate is limited by pulse pileup. Radiation particles are emitted from a

source following the interval distribution as shown below [4, 9, 10]

( ) n t
nf t dt e dt − ∆∆ =          (1)

where λn, Δt, and dt denote the true average emission rate of the radiation, the time interval

between the current time pulse stamp and the relative origin of the time axis that is

conveniently the occurrence time of the previous pulse, and the infinitely small time interval

between Δt and Δt+dt. A certain amount of light collection time is necessary for good energy

resolution.

The probability P (N) for one pulse to occur without piling up with subsequent pulses may be

estimated by

( ) nP t e   −∆ > =                                                                                                                   (2)

where   is the first pulse width. Figure 1 shows the probability curve of absence of pileup

against true rate at different pulse widths. As illustrated in this figure for applications where

counting rate can be kept very low, pulse pileup distortion is not a problem. Also, the

probability of absence of pileup decreases with increases the width of the first pulse. From the

figure, we observe the dependency of pileup probability on both pulse width and true rate. In

the following, three different algorithms for the pileup recovery are investigated.
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3.2 Direct search method
Here, we are interested in resolving or decomposing a set of overlapping peaks into their

separate components. Nelder-Mead modified simplex technique is used for this purpose.

Direct search is a method for solving optimization problems that does not require any

information about the gradient of the objective function. As opposed to more traditional

optimization methods that use information about the gradient or higher derivatives to search

for an optimal point, a direct search algorithm searches a set of points around the current

point, looking for one where the value of the objective function is lower than the value at the

current point. We can use direct search to solve problems for which the objective function is

not differentiable, or even continuous [11].

Direct search is used to describe sequential examination of trial solutions involving

comparison of each trial solution with the "best" obtained up to that time together with a

strategy for determining what the next trial solution will be [12]. It remains popular because
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of their simplicity, flexibility, and reliability. Examples of direct search methods are the

Nelder-Mead Simplex method, Hooke and Jeeves' pattern search, the box method, and Dennis

and Torczon`s Parallel Direct Search Algorithm (PDS) [13].

The simplex algorithm is one of the earliest and best known optimization algorithms. This

algorithm solves the linear programming problems. The algorithm moves along the edges of

the polyhedron defined by the constraints, from one vertex to another, while decreasing the

value of the objective function at each step.

A modified simplex method for finding a local minimum of a function of several variables

has been devised by Nelder and Mead [14]. The Nelder-Mead modified simplex algorithm

succeeds in obtaining a good reduction in the function value using a relatively small number

of function evaluations. This method finds the minimum of a function of several variables

[15], starting at an initial estimate. This is generally referred to as unconstrained nonlinear

optimization. Search methods that use only function evaluations (the simplex search of

Nelder-Mead) are most suitable for problems that are very nonlinear or have a number of

discontinuities. Since, it is a direct search method it does not use numerical or analytic

gradients [11]. Despite its widespread use, essentially no theoretical results have been proved

explicitly for the Nelder-Mead algorithm [16].

For two variables, a simplex is a triangle, and the method is a pattern search that compares

function values at the three vertices of a triangle. The worst vertex, where the function value

is largest, is rejected and replaced with a new vertex. A new triangle is formed and the search

is continued. The process generates a sequence of triangles (which might have different

shapes), for which the function values at the vertices get smaller and smaller. The size of the

triangles is reduced and the coordinates of the minimum point are found. This algorithm is

stated using one time the term simplex (a generalized triangle in N dimensions) and other time

Nelder-Mead to find the minimum of a function of N variables. It is effective and

computationally compact [14]. In other words, if n is the length of vector, x, a simplex in n-

dimensional space is characterized by the n+1 distinct vectors that are its vertices. In two-

space, a simplex is a triangle; in three-space, it is a pyramid. At each step of the search, a new

point in or near the current simplex is generated. The function value at the new point is

compared with the function's values at the vertices of the simplex. Usually, one of the vertices

is replaced by the new point, giving a new simplex. This step is repeated until the diameter of

the simplex is less than the specified tolerance [11]. The MATLAB implementation of this

algorithm finds both local minimum and maximum for a function without derivative [11].

Figure 2 depicts the algorithm for pileup recovery peaks using Nelder-Mead direct search

method. As shown in this figure, this algorithm is applied to multiple overlapping peaks from

experimental setup. Nelder-Mead algorithm is essentially a way of organizing and optimizing

the changes in parameters to shorten the time required to fit function to the required degree of
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accuracy. The most general way of fitting any model to a set of data is the iterative method.

Consequently, iterative fit is performed. Iterative methods proceed in the following general

way as depicted in Fig. 3. This figure is illustrated as in the following [15]

1) Selects a model for the data;

2) First guesses of all the non-linear parameters are made;

3) A computer program computes the model and compares it to the data set, calculating

a fitting error;

4) If the fitting error is greater than the required fitting accuracy, the program

systematically changes one or more of the parameters and loops back around to step

3.

The pulse parameters; peak position, height and width are determined using this Nelder-Mead

modified simplex algorithm. The pulse shape is constructed using its peak shape as Gaussian

shape [17-20]. Consequently, the original peaks are recovered. Finally, the recovered peaks

are registered as described in the following subsection. This algorithm is applied to multiple

overlapping peaks from 137Cs radiation point source of the experimental setup as depicted in

Fig. 4. Two nonlinear parameters; peak position and width are determined using this

algorithm. A Gaussian shape in conjunction with the peak and its position of each pulse are

used to construct each pulse. The recovered peaks with both the input pileup peaks and sum

of the recovered peaks are shown in Fig. 4. However, the recovered peaks are shown in Fig. 5.

1) Input Pileup Signal Containing Multiple Overlapping Peaks

2) Applying Nelder-Mead Technique

A) Do Iterative Fit Routine

B)  Determine the Parameters of the Noisy Input Signal

3) Apply Recovery Peaks Routine

4) Detect Illusive Pulses (If Exist)

5) Register Actual Peaks

Fig. 2 Pileup recovery using the Nelder-Mead direct search algorithm
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Fig. 3 Flowchart of the iterative methodology
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Fig. 4 137Cs input pileup signal, sum of the recovered peaks and peaks recovery

using direct search algorithm.
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3.3 Least square fitting algorithm
Traditionally, least squares curve fitting is used because it is easy to implement. It provides

effective results in many fields of applications like signal processing, and noise cancellation.

For resolving pileup overlapping peaks, the standard least-square technique is used [21].

The least squares analysis is used to fit a set of m observations with a model that is non-linear

in n unknown parameters (m > n). Solution of least square fitting problem is an iterative

process, whose convergence speed is problem-dependent. This technique is employed for

initial guessing of peak parameters. These parameters are peak height, position, and width.

The objective of curve fitting is to find a mathematical equation that describes a set of data. A

simple and improved algorithm to resolve overlapped asymmetric pulses into its component

peaks using nonlinear least square fitting method is reported in [10, 22, 23]. Figure 6

illustrates this algorithm. Considering voltage waveform, multiple overlapping peaks are

characterized by the following equation after applying the fitting procedure

( )
( ) ( ) ( ) ( ) ( )52 4

52 3 4

1 3
1

1 2 3 4 5

T bT b T b T b T b
cc c c c

V T a e a e a e a e a e
 −− − − −        −− − − −         

         
 
 = + + + +
  

      (3)

where V(T), a1:5, b1:5, and c1:5 denote the voltage waveform of multiple overlapping

peaks as a function of time, the amplitude, position and the width of the first to the

fifth recovered peaks, respectively. For signal recovery step, the overlapped peaks

were assumed to be a convolution of its component peaks. It was characterized by

Gaussian shape [17-20]. Therefore, the obtained coefficients are fitted to match the

input signal. Consequently, the multiple overlapping peaks are recovered. As a final

stage the recovered peaks can be rejected or accepted as described in the following
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Fig. 5 Peaks recovery using direct search algorithm
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subsection. Figure 7 shows the 137Cs input overlapping peaks, sum of recovered

peaks, and the recovered peaks. However, the recovered peaks are shown in Fig. 8.
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Time (100 ms Real= 80 s in the Scale)
Fig. 7 137Cs input pileup signal, sum of the recovered peaks, and peaks recovery,

using nonlinear least square algorithm.
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1) Input Pileup Signal Containing Multiple Overlapping Peaks

2) Applying Nonlinear Least Square Fitting Technique

A) Do Iterative Fit with Gaussian model

B)  Determine the Parameters of the Noisy Input Signal

3) Apply Recovery Peaks Routine

4) Detect Illusive Pulses (If Exist)

5) Register Actual Peaks

Fig. 6 Pileup recovery using nonlinear least square fitting algorithm
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3.4 First derivative and maximum peak search algorithm

The third algorithm for pileup recovery is a proposed one that is presented in Fig. 9. The

detection of the peak and determination of the peak position can be realized in

successive steps, independent of each other. This algorithm is based on first derivative of

peak overlapping pulses, and a MATLAB routine implementing the maximum peak search

algorithm [24, 25, 26].

The differentiation of signals is used to facilitate the detection and location of partially

overlapped Gaussian peaks in a multi-component signal [27]. First derivative method has

been used because it has the capability of spectral discrimination [28-29].

For peak search process, most peak search algorithms for γ-ray spectrometry are based on

digital filters. The maximum peak is determined using the maximum peak search routine.

This routine search and find local maxima in the overlapping peaks.

For signal recovery step, the overlapped peak was assumed to be a convolution of its

component peaks. It was characterized by Gaussian shape as in [17-20]. Therefore, the

obtained coefficients are fitted with the detected input peaks. Consequently, the overlapping

peaks are recovered. As a final stage in Fig. 9, the recovered peaks can be rejected or accepted

as described in the following subsection.

The 137Cs input signal is shown in Fig. 10 (a). Figure 10 (b) shows the pulse derivative

amplitude against time for multiple peaks. From this figure, one can predict the shape of each

peak by recalling that the derivative is the slope of the original signal. The derivative of the

signal is positive as the signal slopes up. However, the derivative of the signal is negative as

the signal slopes down. If a signal has zero slopes, its derivative is zero. Consequently, the
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Fig. 8 Peaks recovery using nonlinear least square algorithm

A
m

pl
itu

de
 (3

V
 R

ea
l=

32
V

 in
 th

e 
Sc

al
e)



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE082 - 11

location of the maximum in a peak signal can be computed precisely by computing the

location of the zero-crossing in its first derivative.

The peak amplitude of the signal is determined by using a maximum peak search algorithm as

depicted in Fig. 11. The detected overlapping peak signals, the sum of recovered peaks, and

the recovered peaks are illustrated in Fig. 12. However, these peaks are shown separately in

Fig. 13.

1) Input Pileup Signal Containing Multiple Overlapping Peaks

2) Do the 1st Derivative Process to Determine Peaks Positions

3) Do Maximum Peak Search Routine to Determine Peaks Heights

4) Develop a Gaussian pulses shape using the obtained parameters

5) Apply Recovery Peaks Routine

6) Detect Illusive Pulses (If Exist)

7) Register Actual Peaks

Fig. 9 Pileup recovery using first derivative and maximum peak search algorithm
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Fig. 10 a) 137Cs input signal and b) First derivative result of double peak

overlapping signal.
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Fig. 12 137Cs input pileup signal, sum of the recovered peaks and peaks recovery

using first derivative with maximum peak search method

A
m

pl
itu

de
 (3

V
 R

ea
l=

32
V

 in
 th

e 
Sc

al
e)

0 5 10 15 20
0

20

40

60

80

100

120

137Cs Input Signal
Maximum Peak Height

Time (100 ms Real= 80 s in the Scale)
Fig. 11 137Cs input signal with maximum peak heights.
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4. Comparison between the Three Algorithms and Discussion
In this section, we present comparison between the underlined algorithms. This comparison is

based on the input pileup peaks and the recovered peaks. The error is found by the following

relation

i iError O S= −                  (4)

where Oi, Si, and i denote the input pileup peaks, the sum of the recovered peaks, and the set

of data, respectively.
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Fig. 14 Accuracy of the direct search algorithm a) The 137Cs input pileup peaks and

summation of the recovered overlapping peaks and b) The error that represents
the difference between the original detected and recovered peaks
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Fig. 13 Peaks recovery using first derivative with maximum peak search method
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In order to represent the accuracy and validity of these algorithms, comparison between both

the 137Cs input peaks and the recovered peaks are made. Figures 14-16 (a) represent the

difference between the original overlapped peaks and the sum of recovered peaks for the three

algorithms, respectively. On other hand, Figures 14-16 (b) show the error between the original

detected overlapped peaks and the recovered peaks for the underlined three algorithms,
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Fig. 15 Accuracy of the least square algorithm a) The 137Cs input pileup peaks and
summation of the recovered overlapping peaks and b) The error that represents

the difference between the original detected and recovered peaks
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Fig. 16 Accuracy of the maximum peak search algorithm a) The 137Cs input pileup
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respectively. From these results, we notice that the proposed algorithm has high accuracy for

identifying both peak height and position of multiple overlapping peaks than other algorithms.

Furthermore, the error signal is smaller than other two algorithms.

From computational point of view, the maximum peak search algorithm shows significant run

time improvement compared with other two algorithms as shown in Table 1.

Table 1 Execution time of the underlined three algorithms

Direct Search
Algorithm

Least Square Fitting
Algorithm

Maximum Peak Search
Algorithm

Execution Time
(s)

1.125000 2.4219 0.1094

4.1 Effect of pileup recovery algorithms on spectrum evaluation
Spectrums of 137Cs for 4- 8- and 16 channel number are depicted in Fig. 17-19, respectively.

For each spectrum, four different cases are illustrated with pileup recovery algorithms and

without pileup correction. For each spectrum, the photopeak corresponds to channel number

four, eight, and sixteen as shown in Figs. 17-19, respectively. From the obtained experimental

results, the proposed algorithm proves superior performance for spectrum evaluation.

Therefore, this algorithm demonstrates efficient solution of isotope identification. However,

the worst spectrum evaluation is obtained using the least square fitting algorithm. The number

of events that fall within any one channel will vary in proportion to its width. The content of a

typical channel varies inversely with the total number of channels provided over the spectrum.

The channels content with smaller number of channels is larger than that with larger number

of channels. Moreover, from Figs. 17-19, we notice that the resolution enhances with

increases the number of channels. As the number of channels increases, the FWHM

decreases. Resolution represents the FWHM with respect to position peak of the centroid.

Consequently, good resolution is obtained. Therefore, resolution enhancement is an essential

contribution especially at small number of channels.

The effect of the pileup recovery algorithms on four, eight, and sixteen channel spectrum is

depicted in Table 2. From this table, the maximum number of counts at photopeak of each

algorithm is demonstrated. Also, the proposed algorithm proves superior performance of

isotope identification.
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Table 2 Maximum number of counts at photopeak

Number of Counts at
Photopeak

Direct Search
Algorithm

Least Square Fitting
Algorithm

Maximum
Peak Search
Algorithm

Without
Pileup

Correction
Four Channels 2 2 6 3
Eight Channels 3 1 6 3

Sixteen Channels 2 1 6 2

5. Conclusion
Algorithms for overcoming the pileup problem of gamma-ray spectroscopy are

presented. Three different algorithms are studied for pileup recovery. The first one is a

direct search algorithm based on Nelder-Mead technique for determining both the peak

position and peak amplitude. The second algorithm is the least square fitting method

that is used to determine the peak height and position of the overlapping peaks. The

third algorithm is a proposed one which based on the first derivative of the signal

combined with maximum peak search algorithm. This approach uses first derivatives

for observing peak locations of pulses. Then, a direct search method for determining the

pulse parameters such as position, maximum amplitude, pulse width and area are

performed. From computational point of view, the first derivative combined with

maximum peak search algorithm shows significant speed improvement compared with

other two algorithms. From the obtained experimental results, the third algorithm

proves superior performance for spectrum evaluation. Therefore, this algorithm

demonstrates efficient solution of isotope identification.
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