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Abstract
In this paper, the multi-sensor data fusion technique based on fuzzy clustering is

used to fuse the data from low cost MEMS IMUs to build an INS model. Using this

model, the inertial navigation data PVA is extracted. The navigation data PVA is

integrated with the GPS data using Kalman filters to build an accurate navigation

system of an UAV. Simulation results show that the method can achieve higher

accuracy solutions with low cost IMU sensors and improve the performance of

integrated navigation system.
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1. Introduction

In recent years, obvious attention has been focused on multi-sensor datafusion

for military applications like automated target recognition (smart weapons),
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Navigation, guidance for autonomous vehicles, remote sensing, battlefield

surveillance, and automated threat recognition systems, such as identification-

friend-foe-neutral(IFFN)systems, also forcivilian applicationsas monitoring of

manufacturing processes, condition- based maintenance of complex machinery,

robotics, and medical applications.Data fusion techniques combine data from

multiple sensors and related information to achieve more specific inferences than

could be achieved by using a single, independent sensor[1].Fusion processes can be

categorized into three levels of modes (low, Intermediate, and Highlevel fusion), as

follows[2]:

1. Lowlevel fusion where several sources of essentially the same type of raw

data are combinedto produce a new data set that is expected to be more

informative and useful than the inputs.

2. Intermediatelevel fusion or featurelevel fusion which combinesvarious

features into a feature map.

3. Highlevel fusion or decision fusion which combines decisions fromseveral

experts. Methods of decision fusion are voting, fuzzylogic, and statistical

methods.

The integration between GPS and INS exploitstheir synergy in various approaches,

based on the useof KF, with the goal to mitigate the short time errorof GPS and

longtime error of INS[3]. Theresulting plant is a combined navigation system

thathas better performance than GPS or INS, consideredas stand-alone navigation

systems. In order to calculate the estimate of INS error,KF constantly updated by

the information from INS and GPS.Using multi-sensor data fusion algorithm to fuse

the raw data from several IMUsin INS will improve the integration process between

the INS and the GPS systems. In this paper the effect of using multi-sensor data

fusion algorithm on the INS/GPS process is studied using aerosonde UAV model

see Figure (1)[4].The reference navigation data (PVA), and gyroscopes (gyros) rates

and accelerations are extracted from the aerosonde UAV model.
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Figure 1 Aerosonde UAV Model

2. IMU Error Model

There are severalsources of INS errors that can be grouped intodeterministic

andstochasticerrors. Thedeterministicerrors

includesbiasoffset,scalefactorandaxesmisalignmenterrors. Thebiasoffsetisa

constanterrorwithinthesensormeasurement. Thescalefactoristherelationship

betweentheoutputofthesignalofthe sensorandthephysicalquantitybeing measured.

Theaxesmisalignment istheerrorresultingfromtheimperfection ofmounting

thesensors. This misalignmenth a s  adeterministic andastochastic error.

Thedeterministic errorsmentionedabovecanbecorrectedoncetheyhave

beenproperlydeterminedbystandardcalibrationprocedures. The stochastic

errorsinclude bias drift, bias stability, scale factor stability, noise and axes

misalignment errors.  Bias drift can be seen when the measurement drifts from the

observable with a relationship that may be linear, quadratic, or of a higher order.

The bias stability is the maximum expected drift in a sensor output. This can be

measured as a function of time or as a function of temperature. Scale factor stability

is the capability of the inertial sensor to accurately sense linear accelerations and

angular velocities. Deviations from the theoretical scale are due to system

imperfections. The noise results from the sensor itself that interferes with the output

signals.    Several  stochastic  models  are available  for  modeling these errors[5].

For simulating IMU measurement, the IMU noise model consists of (gyroscope

noise model + accelerometer noise model).
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• The gyro measurement model is[6, 7]:

Where: gb is the gyro bias, gs  is a diagonal matrix of gyro scale factors, gv  and gu

are zero-mean Gaussian white-noise processes with spectral densities given by

33
2

×Igv and 33
2

×Igu , respectively.

• The accelerometer measurement model is [6, 7]:

Where: ab  is the accelerometer bias, as  is a diagonal matrix of accelerometer

scale factors av  , and au  are zero-mean Gaussian white-noise processes with

spectral densities given by 33
2

×Iav  and 33
2

×Iau  respectively.

A discrete-time simulation of gyro model using the spectral densities is shown in

Error! Reference source not found.).

Where: ),0( 2=N denotes a zero-mean normal distribution with 2 . The same

model can be used for the accelerometer[6, 7].

gvg
b
ibg

b
ib bsI  +++= × )(~

33 (1)

gugb = (2)

ava
b

a
b basIa +++= × )(~

33 (3)

auab = (4)



Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE213 -

5

5

13

1

2 −
+∆

z

zt











∆ t

N g v
2

,0












∆+

∆
t

t
N g u

g v 2
2

12

1
,0 
 )( 0tb g

b
ib

b
ib

~ω

Figure (2)Gyro Error Model

3. Multi-sensor data fusion

data fusion techniques combine data from multiple sensors and related

information to achieve more specific inferences than could be achieved by using a

single, independent sensor[1].Using multi-sensor data fusion in aircraft navigation

applications has appeared in recent years with the advent of [Low cost, small size

and low mass navigation sensors (e.g. optical gyros, MEMS inertial sensors and

GNSS sensors][8].In this paper The multi-sensor data fusion technique is based on

fuzzyc-means (FCM).

4. FCM Algorithm

The FCM clustering algorithm is based on the minimization of an objective

function called C-means functional. This function can be defined as in

Eq.(6)[9-16].

(6)

The FCM algorithm shown in Error! Reference source not found.) computes with the

standard Euclidean distance norm, whichinduces hyperspherical clusters. Hence it can only
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detect clusters with the same shape and orientation, because the common choice of norm

inducing matrixis [13].
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U p d a t e  c l u s t e r  c e n t e r

E n d

Figure (3) FCM Algorithm

Three parameters in this algorithm have to be determined in the beginning which

they are  they represent the number of clusters, the weighting

parameter that represent the fuzziness of the system, and the ending threshold

respectively.

The Algorithm can be explained as follows:

For a given dataset

Step1 Enter

o Number of clusters 1 < c < N,

o The weighting exponent m >1,

o The termination tolerance >0.

o Initialize the membership matrix randomly
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Repeat for l = 1, 2….

Step 2Compute Cluster Centers

(7)

Step3 Compute Distances (Euclidian distance)

(8)

Step 4Compute the membership matrix

Repeat until

(9)

5. FuzzyClusteringas Data Fusion Technique

The data fusion technique using the fuzzy clustering algorithm is shown in

Error! Reference source not found.). This technique consists of three main parts:

1. Collecting data from the environment by using multiple sensors.

2. Separating the collected data by using the FCM algorithm.

3. The output from FCM applied to the fusion mechanism to produce a single

output.
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Figure 4 Data Fusion Mechanization

The first part is concerned with setting the sensors for measuring a particular

phenomenon from the environment ,the second part uses the FCM to separate the

data collected by the sensors to a certain number of cluster with membership matrix

and cluster centers ,the third part deals with the output clusters and membership

functions by generating a binary code this binary code is representing the

membership function of the clusters and generated by comparing the membership

function with a certain threshold value ,and the minimum binary code denote to the

cluster with the center that represent the fusion process output.

6. Selection of Cluster Number

According to the FCM algorithm it is required to predefine the number of

clusters (c), This number can be calculated with many methods such as the

validation parameters but only in offline mode, or by The smooth kernel density

estimator (SKDE) which is powerful in the real time and can be obtained as

follows[17, 18]:
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And (10)

Where : is the length of the estimation window.

The main idea is that the measurements values drifted in two directions around the

acceptable region of measurements as shown in Figure () ,so the number of clusters

have to be determined every instance of measurement .from the figure below the

partitions may be three (c=3) if the drift was in two directions from the accepted

region or may be two partitions (c=2) if the drift at any instance were to the left or

to the right direction (one direction drift)[19].

Figure (5) partitioning for the measurements

Smooth Kernel density estimator (SKDE) for a given inputs of measurements is

shown in Figure (), where the maximum peak in the figure is denoted as Max and

located by the dotted lines.
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Figure (6) SKDE Output

Subsequently, the number of clusters is determined according to the following two

rules, based on the maximum peak location of the kernel estimator:

1. If the maximum peak of the SKDE is left or right skewed then C= 2.

2. If the maximum peak of the SKDE is centered then C = 3.

7. Fusion Mechanism

After the clustering process as inError! Reference source not found.4) each

cluster membership function is represented as a binary code . The creation

of this code depends upon the membership functions for the clusters and a variable

threshold level such that[20].

 (11)

Where (  ) is given as follows:

 (12)

The first term in the equation above is used for mapping the values, while the

second term is an entropy measure for the resulted clustering process from previous

section. The fused output will be the cluster center that achieves the following

minimization argument for the generated binary codes:
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 (13)

8. Kalman filter

The Kalman filter can be divided into two stages, the time update (prediction),

and the measurement update (Correction). In the former as shown in Figure (), the

Kalman gain kK  is computed first, and then the state and the error covariance are

updated using the prior estimate −
k̂  and its error covariance −

kP  .In the prediction

the state is predicted with the dynamic model, and in the correction(update)

predicted value is corrected with the observation(measurement) model, so that the

error covariance of the estimator is minimized[21, 22].

The different INS error states can be described using the following 1st order state

equations:

uGF +=  (14)

Where: F is the dynamics matrix (state matrix),  is the state vector, u  is the

forcing vector function (input vector), and G is a design matrix (input matrix).These

terms are described in details as:
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Figure (7) Kalman Filter Algorithm

8.1 Lever-arm Correction

Since the sensors cannot be installed at the same place in the host. The

position and velocity of the IMU are different from those of the GPS. This is called

the lever-arm effect. The lever-arm correction for the position and velocity can be

written as [21]

And,
(18)
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Where:  is the height of moving object, is the meridian radius in meters,  is the

prime vertical radius in meters, is the offset vector of the GPS antenna or any

other IMU from the center of the IMU placed in the CG of the moving object in the

body frame,  is the transformation matrix from body to navigation frame, and

 is the skew-symmetric matrix of  that represents the projection of the

rotating rate vector of the B-frame with respect to the N-frame on the N-frame.

9.  The Proposed Scenario and Simulation Results

In this section the steps of the complete process is clarified in the block diagram

in Figure (8).

9.1 The Simulation Parameters and Results

1. The GPS

• Simulation time =300 seconds.

• Sampling time = 1 second.

• Masking angle = 5 degrees.

2. The simulation parameters that make the first IMU measurements be as

MEMS grade IMU are as follows:

o Simulation time T=300seconds and the sampling time

Ts=0.01seconds.

o Initial biases for the gyros are deg/hr10bg = .

o Initial biases for accelerometers are 2

a m/s0.003b = .

o The gyro noise parameters

[ 2 /1-7

gv rad/sec108.7266×=σ , 2 /3-7

gu rad/sec109.1989×=σ ].

o The accelerometer parameters

[ 2 /3-5

av m/sec101.5 ×=σ , 2 /5-5

au m/sec106 ×=σ ].
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3. The simulation parameters that make the first IMU measurements be as

MEMS grade IMU are as follows:

o Simulation time T=300seconds and the sampling time

Ts=0.01seconds.

o Initial biases for the gyros are deg/hr15=gb .

o Initial biases for accelerometers are 2m/s0.006=ab .

o The gyro noise parameters

[ 2 /1-6 rad/sec107.7266×=gv , 2 /3-6 rad/sec107.1989×=gu ].

o The accelerometer parameters

[ 2 /3-5 m/sec102.6×=av , 2 /5-5 m/sec107 ×=au ].

4. The simulation parameters that make the first IMU measurements be as

MEMS grade IMU are as follows:

o Simulation time T=300seconds and the sampling time

Ts=0.01seconds.

o Initial biases for the gyros are deg/hr02=gb .

o Initial biases for accelerometers are 2m/s0.009=ab .

o The gyro noise parameters

[ 2 /1-8 rad/sec109.7266×=gv , 2 /3-8 rad/sec108.1989×=gu ].

o The accelerometer parameters

[ 2 /3-5 m/sec101.9×=av , 2 /5-5 m/sec108×=au ].

5. Assuming that the Lever-arm between the used sensors is as follows:

• Lever-arm from the first IMU to GPS in body frame: X=1.72m,

Y=0.30m, Z=-1.49m

• Lever-arm from the second IMU to GPS in body frame: X=1.59m,

Y=0.30m, Z=-1.49m

• Lever-arm from the third IMU to GPS in body frame: X=1.99m,

Y=0.30m, Z=-1.49m
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And the first IMU is assumed is the one placed at the CG of the moving vehicle.

The process is also explained at the block diagram in Figure (8).
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Figure (8)Block Diagram of Applying the Fusion and the Integration Algorithms
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on the Navigation Process of Aerosonde UAV

9.1.1 Reference (P, V, A)

The reference position components in N-frame from the UAV model is

shown in Figure (9), the reference velocity components in N-frame is shown in

Figure (10), and the reference attitude components is shown in Figure (11).

0 50 100 150 200 250 300
0

5000

10000

t im e

P
x

0 50 100 150 200 250 300
-2000

-1000

0

t im e

P
y

0 50 100 150 200 250 300
-100

0

100

t im e

P
z

Figure (9) Reference Position Components in N-frame (Px, Py, Pz)
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Figure (10) Reference velocity Components in N-frame (VN, VE, VD)
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 Figure (11) Reference Attitude Components (Roll, Pitch, Yaw)

9.1.2 Calculation of (P, V, A) RMSE using the INS

a) The Position RMSE
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Figure (12) Position RMSE

b) The Velocity RMSE
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Figure (5) Velocity RMSE

c) The Attitude RMSE
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Figure (14) Attitude RMSE

9.1.3 Calculation of (P, V, A) RMSE using the INS/GPS Integration

a) Position RMSE Using Integration without Fusion and with Fusion
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Figure (15) Position RMSE of using kalman filter and the GPS and the Fusion
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b) Velocity RMSE Using Integration without Fusion and with Fusion
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Figure (6) Velocity RMSE of using kalman filter and the GPS and the Fusion
with kalman filter

c) Attitude RMSE Using Integration without Fusion and with Fusion
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Figure (7) Attitude RMSE of using kalman filter and the GPS and the Fusion
with kalman filter
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10. Conclusion

From the results it is clear that the use of  stand-alone  INS system imply large error

growth but when using the integration between the INS and the GPS the error has

been decreased , but when the multi-sensor data fusion algorithm  is used for fusing

the three IMUs measurements, the INS system has been Improved and also the

integration Results also improved by reducing the error of the navigation data

(PVA) ,So from the Results using the multi-sensor data fusion algorithm is

improving  the navigation process by improving the IMUs measurements,even

improve the integration between the INS and the GPS.
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