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Abstract:

Empirical mode decomposition (EMD) was developed for analyzing non-linear and
non-stationary data. EMD decomposition is based on the local characteristic time scale
of data. EMD decomposes any data set into a finite and often small number of intrinsic
mode functions (IMF). An IMF is defined as any function having the same numbers of
zero crossings and extrema, and also having symmetric envelopes defined by the local
maximal and minima, respectively. The IMF also admits well behaved Hilbert transform
verified to be highly orthogonal. EMD is used in many applications such as signal
enhancements and data analysis. In this paper, the EMD is presented using computer
simulations. The complexity of classical EMD is calculated to determine the additive
complexity to any system uses the EMD.
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1. Introduction:
Empirical mode decomposition (EMD) is Empirical because it lacks theoretical
foundations. Mode relates to the intrinsic mode functions which represent the oscillation
modes embedded in the data. Decomposition refers to decomposing the original signal
to IMFs and residual.
The idea of EMD, which is also known as the Hilbert Huang transformation (HHT),
appeared in 1998 [1] and was the winner of the 2002 NASA Government Invention of
the Year [2]. It is recognized by NASA Headquarters inventions and contributions board
as “One of the most important discoveries in the field of applied mathematics in NASA
history”. Norden E. Huang who works for NASA Goddard Space Flight Center
reviewed the non-stationary data processing methods as the spectrogram, wavelet
analysis, Wigner-Ville distribution, evolutionary spectrum, empirical orthogonal
function expansion (EOF), and other miscellaneous methods, and then showed the
superior performance of EMD over these methods [3].
EMD is used in many applications such as: nonlinear wave evolution, climate cycles,
earthquake engineering, submarine design, structural damage detection, satellite data
analysis, turbulence flow, blood pressure variations and heart arrhythmia, non-
destructive testing, structural health monitoring, signal enhancement, or economic data
analysis [4-7].
In this paper, due to the wide use of EMD in many applications, the EMD complexity is
calculated to determine the overall systems complexity due to the usage of EMD.
The remainder of the paper is organized as follows. In Section 2, the classical EMD and
its decomposition algorithm is introduced. In Section 3, an example to understand
exactly how the classical EMD algorithm works is provided. In Section 4, the
complexity for classical EMD is presented. The paper is concluded in section 5.

2. Empirical mode decomposition
Classical EMD
EMD is a non-linear technique for analyzing and representing non-stationary signals
[8]. EMD is data-driven and decomposes a time domain signal ][nx into a complete and

finite set of adaptive basis functions which are defined as IMFs, ][)( nih , IMFLi ≤≤1 .
These IMFs are not predefined as in the case with the Fourier and the Wavelet
transforms.  The IMFs are oscillatory and have no DC component [9-11], so the signal

][nx can be represented as

∑
=

+=
IMFL

i

i nnn
1

)( ][][][ dhx
(1)

where ][nd is the residual.
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When a signal ][nx , that comprises a slowly oscillation relative to the sampling
frequency superimposed on a highly oscillation signal relative to the sampling
frequency (in our case additive interference noise signal), is applied to the EMD
algorithm, the first IMFs tend to contain the highly oscillation signal (noise) and the
remaining  IMFs contain the useful signal.  In applications such as low frequency noise
interference, the first IMFs in the EMD decomposition are the useful signal and the
remainder contains the main noise components. Thus apriori knowledge of the noise
characteristics in the EMD decomposed signal structure can be used to obtain the best
performance.
Each IMF is estimated with the aid of an iterative process called sifting that is applied to
the residual multi-component signal as shown in Fig. 1.
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During the ( 1+m )th sifting iteration, the temporary IMF estimate ][)( ni
mh is improved

according to the following steps:

Table 1: Temporary IMF estimate ][)( ni
mh  improving

1 While ][][)( nn m
i

m Mh −  is not sufficiently close to zero

2 Identify all extrema (maxima and minima) of ][)( ni
mh  .

3 Interpolate the extrema points of ][)( ni
mh to make upper and

lower envelope.

4 Compute the mean ][nmM of the two envelopes (upper and

lower).

5 Obtain the refined estimate ][)(
1 ni

m+h of the IMF by subtracting

the mean found in the previous step from the current IMF

estimate ][][)( nn m
i

m Mh − .

6 End
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Fig. 1 The EMD sifting process

3. Complexity Calculation of the Classical EMD

To understand exactly how the classical EMD algorithm works, the signal ][nx consists
of the linear chirp signal with the following parameters :- starting frequency of 5 Hz,
stopping frequency of 100 Hz, chirp period of 0.8 sec, and sampling frequency of 1
kHz; time window 5 sec, and the chirp start at 1.5 sec shown in Fig.2-A added to a
sinusoidal signal )200sin( t  with sampling frequency 1000 Hz (shown in Fig.2-B) to
form the combined signal shown in Fig.2-C .
Fig.3-A shows the interpolation for all maxima points and all the minima points of the
temporarily IMF ][)( ni

mh  on two different curves. Fig.3-B shows a zoomed version of
Fig. 7-A.

Fig.2 Combined chirp with sinusoidal signals
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The mean curve ][nmm  is calculated as the mean of the interpolated curves and it is
shown in Fig.3-C. The extracted mean ][nmm  is subtracted from the original ][nx and
whole sifting iteration process continues for m times until the mean ][nmm  is reaching
the stopping threshold criteria with nearly zero-mean. ][nmm reaches the stoping

criteria at the 1+m  iteration process and the temporarily IMF ][)( ni
mh  is considered

now as the 1st IMF ][1 nh . ][1 nh  is shown in Fig. 4 and contains nearly all the sinusoidal
signal )200sin( t due to the fact that the first IMFs always contain the signal’s high
frequency components. The sifting process starts again with input signal ][][ 1 nn hx − .
All the previous processing work is repeated until the number of maxima points or
minima points equal one (interpolation must be done at least between two points) and
the last IMF (IMF 9) is achieved as seen in Fig. 4. Note that the sum of the extracted
IMFs from the 1st IMF 1 ][1 nh  to the last IMF 9 ][9 nh  results in the combined
signal ][nx .

(A)

(B)
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(C)

(D)
Fig.3 Classical EMD algorithm steps

Fig. 4 The IMFs of  the combined signal
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4. Complexity Calculation of the Classical EMD
The complexity of the classical EMD is calculated using the EMD algorithm shown in
Table 1. The total EMD complexity calculation is shown in Table 2.

In Table 2, to identify all extrema (maxima and minima) of )()( ni
mh , it is needed nearly

N operations for the subtraction and
2

N
at maximum for the comparisons with ][nmM ,

where N is the number of samples of the decomposed signal. Six multiplication and
three addition operations are needed to interpolate the extrema points of )()( ni

mh to
make upper or lower envelope using cubic spline interpolation [12]. Thus the
complexity of this cubic spline interpolation can be approximated to N6 and it is
duplicated to N12 to make the upper and lower envelope. N computational cost is
needed to compute the mean )(nmM of the two envelopes (upper and lower) due to the

additive operation. The refined estimate )()(
1 ni

m+h needs N operation due to the

subtraction as shown in step 4 in Table 2. The difference )()()( nn m
i

m Mh − is repeated
Q  times until this difference can be considered as zero mean and fulfilled a stopping
criterion. Q take the value of 8, at the 8th loop this difference reaches nearly the value
of zero mean[13, 14]. Using classical EMD algorithms the maximum number of these
IMFs is )(log2 LO [15, 16]. Thus the total complexity for the classical EMD can be
calculated as seen in step 7 in Table 2

as 




 +≈





 ++++

2
15(log)

2
12(log 22

N
NQN

N
NNNNQN .

5. Conclusion
In this paper, the EMD is presented using computer simulations. The complexity of
classical EMD is calculated to determine the additive complexity to any system uses the
EMD. It is found that the classical EMD complexity can be approximated to






 +

2
15(log2

N
NQN , where N is the number of samples of the decomposed signal and

Q is a constant take the value of 8.
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Table 2: EMD complexity calculation
no EMD steps Complexity
1 Identify all extrema (maxima and minima)

of )()( ni
mh  .

N≈  (subtraction)

 +
2

N
at max comparisons

2 Interpolate the extrema points of
)()( ni

mh to make upper and lower
envelope.

2* N6  (6 multiplication and 3
addition) for cubic spline
interpolation [12]

3 Compute the mean )(nmM of the two
envelopes (upper and lower).

N (addition)

4 Obtain the refined estimate )()(
1 ni

m+h of
the IMF by subtracting the mean found in
the previous step from the current IMF
estimate )()()( nn m

i
m Mh − .

N (subtraction)

5 Repeat the loop from 1 to 4 until

)()()( nn m
i

m Mh −  can be considered as
zero mean and fulfilled a stopping
criterion.

Q  times (can be considered as 8)
Considering the IMF iteration reach
zero mean at the Q th iterations [13,
14]

6 Max no of IMFs N2log
7 Total complexity
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