
Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 1

Military Technical College
Kobry El-Kobbah,

Cairo, Egypt

8th International Conference
on Electrical Engineering

ICEENG 2012

Direct mapping of digital PID control algorithm to a custom FPGA-
based MPSoC, the parallel digital PID (PDPID) controller

By

Mohamed Moanes * Hassan A. Youness* Mahmoud Khaled*

Abstract:

New applications of digital embedded control systems require more advanced
techniques that can fulfill increasing control requirements and to meet control
constraints, such as reaching RT deadlines, while trying to achieve additional tasks like
auto-tuning of the parameters of control algorithm, conducting diagnostic-based
operations or executing a fault-tolerance algorithm. Hence, Multiprocessors System on
Chip (MPSoC) has been proposed as a promising solution. The main purpose of this
paper is to put a step towards enhancing the legacy digital PID control algorithm by
exploiting its inherent parallelism. We propose a direct-mapping design of the
sequential digital PID to a custom Quad-Core Master-Slave MPSoC design, built-up
using an enhanced FPGA Soft-Core microcontroller.

Keywords:

MPSoC, Embedded Control Systems and FPGA

ـــ
* Faculty of Engineering, Minia University, Egypt

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 2

1. Introduction:

Recently, field-programmable gate arrays (FPGAs) have become an alternative solution
for the realization of digital control systems, which were previously dominated by
general purpose microprocessor systems [1]. Modern system-on-chip (SoC) designs
show a clear trend toward integration of multiple processor cores and most of the
current embedded applications are migrating from single processor-based systems to
multiprocessor systems [2]. Such Multiprocessors SoC (MPSoC) systems are exploited
by inherently parallel algorithms leading to improvements in data throughput at reduced
clock speeds. In this paper, a direct mapping design is introduced to map the legacy
sequential digital PID control algorithm to a custom homogenous Master-Slave Quad-
Core Multiprocessor SoC (MPSoC) architecture. Then, a restructured algorithm is
proposed from the digital PID control algorithm to be executed as parallel as possible on
the proposed architecture. This paper is organized as follows. [Section 2] shows the
inherent parallelism in the digital PID control algorithm. [Section 3] describes the
hardware architecture of the proposed MPSoC platform.[Section 4] describes the
parallel application designed to exploit the parallelism of the sequential algorithm.
Further performance improvement is shown in [section 5] using the pipelining
approach. Finally, conclusions and future work are presented in [section 6].

2. IT IS INHERENTLY PARALLEL ALGORITHM:

The proportional, integral, derivative, or more popularly, the PID, is probably one of the
most popular controllers in use today [3]. The following simplified equation describes
the basic operation of the digital PID controller:

The controller input is the measured error signal of the controlled process, E(K). The
output of the controller is the control command, U(K). I(K) and D(K) represent integral
and derivative of the Kth error sample respectively. Kp, Ki and Kd represents the
proportional, integral and derivative controller parameters respectively. Fig.1 describes
the structure of the digital PID controller:

Figure (1): Structure of the digital PID controller.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 3

In order to be implemented within a microprocessor or a microcontroller and to be
executed iteratively, the system is represented in a sampled-data form. The main three
branches of the system consume the most of the calculations of the algorithm. The first
branch is computed by simply multiplying the error sample with the Kp parameter. The
second and third branches takes more time to execute as they need to compute the
integral and derivative of the error sample numerically with an accepted accuracy.
The digital PID control algorithm is usually implemented with a sequential algorithm.
Fig.2 describes the operations of the sequential digital PID control algorithm:

Figure (2): Operations within the sequential PID algorithm.

It is clear that the sequential PID controller is inherently parallel algorithm executed
sequentially. The main three tasks within the controller are calculations; the P, I and D.
These tasks are independent and ready to be parallelized.

3. MPSOC ARCHITECTURE:

Before restructuring the sequential digital PID control algorithm, a customized MPSoC
architecture is proposed to manage the parallel execution of new algorithm. Fig.3 shows
the top design of the MPSoC system architecture. It consists of two main components
(1) The EPM (Enhanced Picoblaze Microcontroller) and (2) The Quad-Port Memories.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 4

Figure (3): Top Level Design of inner MPSoC System.

The EPM is the main building block of the system and will be described in the next
subsection. The system contains two types of Quad-Port memories; a RAM for data
exchange between the four cores and a ROM for the shared program memory. Each core
is assigned a unique HWID (Hardware Identifier) which is used to assign the
appropriate task to each core. A Master-Core is required to manage the system work-
flow and to synchronize Slave-Cores' tasks. Three Slave-Cores are required to calculate
the three parts of the PID algorithm concurrently and to save their results in the shared
RAM. The Master-Core should collect resulting calculations and compute the controller
output.

A. The EnhancedPicoblaze Core

Programming control sequences in software is often easier than creating similar
structures in hardware but microcontrollers are typically limited by performance. Each
instruction executes sequentially. As an application increases in complexity, the number
of instructions required to implement the application grows and system performance
decreases accordingly [3]. By contrast, performance in an FPGA is more flexible. For
example, an algorithm can be implemented sequentially or completely in parallel,
depending on the performance requirements. A completely parallel implementation is
faster but consumes more FPGA resources. A microcontroller embedded within the
FPGA provides the best of both worlds. The microcontroller implements non-timing
crucial complex control functions while timing critical or data path functions are best
implemented using FPGA logic.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 5

Fig. 4 shows the main building component of the system, the Enhanced-PicoBlaze
Microcontroller (EPM). The EPM is shown in its simplest form, a single input port and
a single output port while the used version incorporates many input/output ports. Xilinx
PicoBlaze, a Soft-Core Microcontroller [5], has been enhanced by adding (1) input
multiplexing logic for input port extension, (2) output decoding logic for output port
extension and (3) a fast four stage pipelined floating-point unit [6] to enable floating-
point operations within this microcontroller. The selection of such small microcontroller
is duo to the fact that it was designed for efficiency and low deployment cost as it
occupies just 96 FPGA slices. Even with such resource efficiency, it performs a
respectable 44 to 100 million instructions per second (MIPS) depending on the target
FPGA family and speed grade. The connected FPU is modified to only perform the
following basic floating-point operations: (1) Addition, (2) Subtraction and (3)
Multiplication.

Figure (4): The Enhanced PicoBlaze Architecture.

B. Quad-Port Memories

Based on the Xilinx Application-Note #228 on how to create quad-port memories using
existing dual-port memories [7], we propose a Quad-Port RAM and a Quad-Port
program ROM. The quad-port RAM is used for data exchange and to enable
communications within the system with a predefined memory map known to all cores.
Instead of using a separate ROM for each core of the system, a single shared quad-port
ROM is used by all cores. The application embedded within ROM is designed to be
executed by all cores, each with a different behavior, using the predefined hardware
identifier (HWID). As stated in Xilinx note, each Quad-Port memory is organized using
two Dual-Port memories. Within each Dual-Port memory, the user can Read or Write to
and from each port independently (with the exception of simultaneous Read and Write

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 6

to the same address). Such limitation does not affect the proposed design, as the shared
RAM is organized to enable communication between a maximum of two cores.

C. The Complete Picture

Now, all pieces are connected together to form the customized MPSoC based parallel
digital PID (PDPID) controller. Fig.5 describes the complete parallel digital PID
(PDPID) controller system architecture. The developed Quad-Core Master-Slave
MPSoC is used within the PDPID controller.

Figure (5): Top Level Design of The PDPID Controller.

The input, error signal, is distributed to all cores, allowing each core to read the error
sample and accomplish its defined task. As the system manager, the Master-Core can
(1) Allow new samples of Error-Signal to be pass, (2) Collect data stored in shared
RAM by all Slave-Cores and (3) Calculate and output the control signal (U). The system
was designed to only allow the Master-Core to handle output of the PDPID controller.
Although this design limits future fault-tolerant benefits, design requirements were to
(1) enhance the control performance and to (2) save hardware space.

Table.1 describes the used FPGA hardware resources during different stages of system
development:

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 7

Table (1): FPGA Resource usage during different stages.

Xilinx
PicoBlaze

EPM
+ ROM PDPID

Slices 92 1630 6511
Slice FFs 76 603 2572

4 input LUTs 181 3134 12465
BRAMs 0 1 2

4. THE SHARED PARALLEL APPLICATION:

For software developers, the new hardware development toward multicore architectures
is a challenge, since existing software must be restructured toward parallel execution to
take advantage of the additional computing resources. In particular, software developers
can no longer expect that the increase of computing power can automatically be used by
their software products. Instead, additional effort is required at the software level to take
advantage of the increased computing power [8].
A new parallel application, settled in a single shared ROM, is designed to perform all
control tasks in parallel. Executed by Master-Core and Slave-Cores, the shared parallel
application needs a mechanism for task allocation and synchronization. Fig. 6 describes
the operations within the shared parallel application algorithm. Using the predefined
hardware identifiers (HWIDs), task allocation is accomplished while task
synchronization is performed using signals passed between different cores.

Figure (6): The Shared Parallel Application..

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 8

The application uses the HWIDs to distinguish between different cores as a mean of
task-allocation. First, The HWID is used to coordinate tasks at boot-up. HWIDs are
used within Slave-Tasks to identify each Slave-Core’s task.
The synchronization between Master-Task and Slave-Tasks is performed with
(READY) and (START) signals. The Slave-Task must wait for a (START) signal to
read a new Error-Sample and compute its result. The Master-Task will wait for all
(READY) signals from all Slave-Tasks. Such behavior will produce an application that
is parallel in the phase of Slave-Tasks. The Master-Task is not in parallel with the
Slave-Tasks. Fig.7 describes this behavior. The numbering of each task indicates the
current Error-Sample. Flags indicate delivery of control outputs.

Figure (7): Master-Task is not in parallel with Slave-Tasks.

5. THE PIPELINED APPROACH:

Modification within the parallel application has been made to increase the throughput
using pipelining. The Task-Loads have been distributed to make all tasks within a close
execution time as possible. Within the Master-Task, if (START) signals were sent
immediately after receiving all (READY) signals, this will make the slave signals
continue with the next Error-Sample while the Master-Task continues with calculations
of previous Output. When the Master-Task finishes its output computations of
sample(K), and because of the close execution time, the Slave-Tasks will have been
finished computing their results of sample(K+1). They will meet again to synchronize
when the Master-Task is waiting for all (READY) signals. Such behavior results in
pipelined-based parallelism between Master-Core and Slave-Cores. Fig.8 describes such
behavior.

Figure (8): The Pipelined Approach.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 9

6. CONCLUSIONS AND RESULTS:

This paper presents the effect of damping constant and rotor inertia constant of the
machines on the behavior of electromechanical wave propagation in a one-dimensional
ring power system. The analyzed system is continuum, and it is discretized for
simplicity of analysis. From the simulation results, it is clear that the higher oscillatory
wave vanishes with the increase of damping constant and it suppresses the disturbance
wave from its propagation through the entire network. Also, the increase of rotor inertia
constant leads to the electromechanical wave propagation velocity decrease.

In this paper, a custom FPGA-based MPSoC architecture is designed to meet the
requirements of the new proposed parallel digital PID algorithm. The sequential digital
PID algorithm was restructured, because of its inherent parallelism, to run concurrently
into the four cores of the proposed architecture. The new parallel algorithm is directly
mapped to the customized MPSoC architecture using the means of predefined hardware
identifiers. Modifications to the algorithm have been made to propose a two-stage
pipelined approach of the system. The system was implemented using VHDL,
synthesized and simulated using Xilinx tools. Table.2 shows the simulation results for
different implementations during the development process of the PDPID controller. For
each implementations of the PDPID controller, the reduction ratio compared to the
sequential digital PID controller is shown.

Table (2): Execution times for different implementations.

EPM with
RAM/ROM
[Sequential]

PDPID
with shared
RAM/ROM

Pipelined
PDPID with

shared
RAM/ROM

Avg. PID
Loop

Instructions
349 249 158

Max. PID
Loop Clock

Cycles
698 498

-28%

316

-54%

For future work, we hope to implement a self-tuning algorithm for control parameters
while keeping the system parallelism unaffected. This new self-tuning feature may be
implemented within the Master-Task but will affect its performance heavily. We may
then replace the Master-Core with a faster microcontroller resulting into a
heterogeneous system.

Proceedings of the 8th ICEENG Conference, 29-31 May, 2012 EE116 - 10

References:

[1] Y. Fong Chan, M. Moallem, andits W. Wang, "Design and implementation of
modular FPGA-Basede PID controllers," IEEE Trans. Ind. Electron., vol. 54, no.
4, pp. 1898-1906, Aug. 2007.

[2] Katalin Popovici, Frédéric Rousseau, Ahmed A. Jerraya and Marilyn Wolf,
“Embedded Software Design and Programming of Multiprocessor System-on-
Chip”, Springer, 2010.

[3] Jim Ledin, "Embedded Control Systems in C/C++: An Introduction for Software
Developers Using MATLAB", 2004.

[4] Massimo Conti, Simone Orcioni, Natividad Martínez Madrid and Ralf E. D.
Seepold, "Solutions on Embedded Systems", Lecture Notes in Electrical
Engineering Vol. 81, Springer, 2011.

[5] Xilinx Userguide UG129, “PicoBlaze 8-bit Embedded Microcontroller User
Guide”, V2.0, 2010.

[6] Rudolf Usselman, "Open Floating Point Unit", The Free IP Cores Projects:
http://www.opencores.org, 2000.

[7] Xilinx Application Note, "Quad-Port Memories in Virtex Devices", V1.0, 2002.
[8] Thomas Rauber, Gudula R¨unger, "Parallel Programming For Multicore and

Cluster Systems", Springer, 2010

http://www.opencores.org

