
1

FPGA Implementation of RSA Encryption Algorithm
for E-passport Application

KhaledShehata (1), HanadyHussien (1) and Sara Yehia (2)

1. Arab Academy for Science and Technology, Cairo, Egypt.
2. Lecturer in the Higher Institute of Engineering, New Cairo, Egypt

ABSTRACT: Securing the data stored on E-passport
is a very important issue. RSA encryption algorithm is
suitable for such application with low data size. In this
paper the design and implementation of 1024 bit-key
RSA encryption and decryption module on an FPGA is
presented. The module is verified through comparing
the result with that obtained from MATLAB tools. The
design runs at a frequency of 36.3 MHz on Virtex-5
Xilinx FPGA. The key size is designed to be 1024-bit
to achieve high security for the passport information.
The whole design is achieved through VHDL design
entry which makes it a portable design and can be
directed to any hardware platform.

Keywords: RSA, VHDL, FPGA, modular
multiplication, modular exponential.

1. Introduction

E-passport is a passport that includes a smart card
embedded in the back. This card contains the traveler’s
personal data. Many countries adopted e-passports to
facilitate people traveling and Visa issuing. About 53
different countries including the United State (US) and
Canada have used e-passport [1]. However, the security
and integrity of the e-passport are very critical. The
International Civil Aviation Organization (ICAO)
created sets of e-passport standard [2, 3]. 1024-bit RSA
is one of the recommended algorithms used for Active
Authentication (AA) protocol. This protocol is used to
prevent e-passport cloning [4].

The RSA is a public key encryption algorithm
invented by (Rivest, Shamir, and Adleman) in 1977.
RSA operation is based on modular exponentiation
which requires repeated modular multiplications.
Moreover for security reasons RSA operand sizes is
recommended to be 1024 bits or more [5]. As a result
the modular operations for 1024 bits or higher make RSA
is difficult to achieve a high throughput. To address this
problem many algorithms are invented such as add and

shift, Montgomery multiplication and carry save adder
(CSA) [High speed rsa 2]. [6,7]

This paper presents the implementation of RSA
encryption/decryption algorithm with 1024-bit key length
on FPGA. RSA algorithm adopts square and multiply
algorithm for modular exponential. The modular
multiplier is implemented using add and shift algorithm
presented.

The paper is organized as follows: section II explains
RSA algorithm, section III explains the mathematical
algorithms used to execute RSA algorithm. Then in
section IV, discuss the RSA implementation and shows
the simulation results. Finally, section V draws the
conclusion.

II. RSA Algorithm

RSA is a public encryption algorithm which has a
public key for encryption (e) and private key for
decryption (d). RSA algorithm is summarized to three
main steps [Mobile,8]

a) Key Generation
In this step the private and public keys are generated as
shown in Fig.1. by :

1. Choose two large prime numbers p and q.
2. Compute modulus number n = p x q.
3. Calculate the Euler function φ(n) = (p-1) x (q-1).
4. Select an integer number e randomly as a public

key. It should satisfy Greater Common Divisor
GCD(e, φ(n)) = 1, 1< e < φ(n).
5. Compute the private key d such that d x e =1(mod

φ(n)).

b) Encryption
In RSA both plain text (M) and cipher text (C) are
blocks with length less than [log2n]. In encryption, the
cipher text is generated by

C= Me mod n. (1)

2

c) Decryption
The decipher text is recovered using the privete key

(d) by

M = Cd mod n (2)

Figure1.Block diagram of RSA encryption and
decryption algorithms

III- RSA Mathematical Operations

The RSA encryption/decryption algorithm is based on
computation of modular exponentiation operation. The
strength of RSA depends on the difficulty of factoring
the modulus n to get the prime numbers p and q. Hence,
the larger prime numbers the harder the factorization of
modulus n. Therefore the modular exponentiation
operation becomes harder to accomplish on a hardware
platform. This section details the main modular
mathematical operations used for hardware
implementation.

A. Modular Exponentiation Operation.

Modular exponentiation for large numbers is
considerably difficult to compute. Therefore, this
operation can be simplified into series of modular
multiplication and squaring operations [9, 10]. This
algorithm is known as square and multiply algorithm.
In this algorithm the exponent number e is scanned
either from Left to Right (LR) or Right to Left (RL). In
LR method, which is common used, if the scanned bit is
logic zero a squared operation is performed. However

if the scanned bit is logic one a multiplication operation
is computed. This operation is performed k-time where
k is the modulus length. The square and multiply
algorithm is described by the following code [9, 10, 11]

Input: m, e and n.
 Output: c = me mod n, e > 1

Initialization c = m if ek-1 = 1 else c=1
for j = k -1 downto 0 do

c = c * c mod n
if (e[j] == 1) then
c = c * m mod e

end for
return c

B. Modular Multiplication Operation.

The modular multiplication operation is essential to
compute the exponentiation modular as shown in
previous algorithm. Shift and add algorithm is one of
the algorithms used to perform modular multiplication.
This algorithm computes y × z (mod n). The numbers y
and z are k-bit integers and yi and zi are the ith bit of y
and z respectively. The detailed algorithm is described
as follows [11,12]

Input: y, z, n
Output: Mul = y × z mod n

Initialization Mul = 0;
For i = 0 to k

Mul=Mul +(y×zi)
if Mul0 = 1 then

Mul = Mul / 2;
else
Mul=(Mul + n) /2;

return M;

IV. Simulation Results of RSA Encryption/
Decryption Hardware Implementation

The RSA Encryption / Decryption modules with key
length 1024 are designed and implemented based on
VHDL code. The design adopts the square and
multiply algorithm for modular expatiation. The
modular multiplier is performed based on add and shift
algorithm. The public and private keys are generated
using C# program. The results are stored in ROM.
There are two different ROMs, one is used to store (n,
e) keys and the other is to store (n, d) keys. The design
is simulated using Xilinx ISE 12.3 targeting Virtex-5
XC5VTX240T-2FF175 FPGA from Xilinx.

3

a. Add and shift algorithm simulation results.

As discussed before add and shift algorithm is used to
perform modular multiplier. It computes Mul = y x z
mod n. As shown in figure 2, the algorithm inputs are
‘mpand’, ‘mplier’, and ‘modulus’ each with length
1024 bits. These inputs represent y, z and n
respectively. The algorithm output is ‘product’ signal
which represents ‘Mul’ output. As shown in figure 1
mpand = e hex, mplier = 3hex, modulus = 21hex and
product = 9hex (9 = e x 3 mod 21). At clock: 209.048ns

Figure 2: Simulation results of add and shift
algorithm.

b. Square and multiply algorithm simulation
results.

Figure 3: Simulation results of square and multiply
algorithm.

Similarly the square and multiply algorithm is
designed and tested. This algorithm computes c = me

mod n. As shown in figure 3 the applied inputs are
‘indata’, ‘inexp’, ‘inmod’ and the output delivered is
‘cipher’. These signals represent m, e, n and c
respectively. From the simulation results shown in
figure2, indata = 11hex, inexp=903ad9hex, inmod =
3b2c159hex the output cipher = 36cf344hex (36cf344 =
11903ad9 mod 3b2c159). At [6,771.000ns] clock

c. RSA Encryption/ decryption algorithm

The whole system is tested by applying 1024-bit
plain text. The used public keys are loaded form ROM
module. The simulation result is shown in figure 4. By
applying the generated cipher text on the RSA
decryption algorithm the deciphering output is identical
with the original plain text as shown in figure 5.

Figure 4: Simulation Results of RSA encryption
algorithm

Figure 5: Simulation Results of RSA decryption

TABLE I
THE RESULTS OF ENCRYPTION AND DISSCUSSION

Reference Clock
Frequency

(MHz)

Chip(plate
form)

Key generation

R.SRINIVASAN
[13]

54.7
Alter a Apex
0KE
EP20k200E
BC356

64 bits

MOSTAFIZUR
RAHMAN

[14]

100Mhz
Xilinx’s
vertex II pro
FPGA

8bits

Sushanta Kumar
Sahu
[12]

101.06MHZ XilinxISE10
.1
3s100evq10
0-4

128 bits

Proposed 36.290MHz Xilinx’svirte
x5
xc5vtx240t-
2ff175

1024 bits

4

The algorithms in Table (1) are used firstly
R.SRINIVASAN [13]: Square and multiply algorithm
is used for modular exponent and the Montgomery
algorithm is used for modular multiply. The
R.SRINIVASAN uses 54.7 MHz clock frequency.

 Secondly, MOSTAFIZUR RAHMAN [14]: Square and
multiply algorithm is used for modular exponent and
the add and shift algorithm is used for modular
multiply. The MOSTAFIZUR RAHMAN uses 100
MHz clock frequency.

Thirdly, Sushanta Kumar Sahu [12]: Square and
multiply algorithm is used for modular exponent and
the Montgomery algorithm is used for modular
multiplier. The Sushanta Kumar Sahu uses 101.06 MHz
clock frequency.

It is clear that when the number of bits is increased; the
frequency is decreased, compared with other works.
The previous work is much more complicated than the
present work; because of the length of RSA public key
and private key under1024- bit are insecurity. There are
certain procedures in the selection of the p,q and e in
addition to the generation of public key apart from the
need for a high speed computer.

In this proposed technique, the Xilinx’svirtex5
xc5vtx240t-2ff175is used, number of slice (LUTS) used
is 28,350, while the available (LUTS) is 149,760 so the
proposed technique utilizes 18%. The key generation is
1024 bit, it is the most security code compared to
previous work in the latest papers.

V. CONCLUSION

In this paper, a detailed implementation technique
for 1024- bit RSA encryption/decryption algorithm is
presented. The modular exponential for encryption and
decryption process is performed by using square and
multiply algorithm. The add and shift algorithm is used
to perform the modular multiplier. All these algorithms
are implemented using VHDL code targeting Virtex-5
XC5VTX240T-2FF175 FPGA from Xilinx. The whole
design is tested using Xilinx ISE 12.3 tool. The system
speed achieved is 36.3 MHz which comply with the
speed of smart card used in e-passport.

REFERENCES

[1] Sungbae Ji, Zeen Kim, Kwangjo Kim,” Design of
an RFID-embedded e-ID System for Privacy
Protection”, Symposium on Cryptography and
Information Security,Miyazaki, Japan, Jan.pp. 22-25,
2008.

[2] Albert B. Jeng, Lo-Yi Chen, “ How to enhance the
Security of e-passport”, Proceedings of the Eighth
International Conference on Machine Learning and
Cybernetics, Baoding, pp. 2922-2929, 12-15 July 2009.

[3] Saeed, M.Q., Masood, A. ; Kausar, Firdous,”
Securing e-Passport System: A Proposed Anti-Cloning
and Anti-Skimming
Protocol”, 17th International Conference on Software,
Telecommunications & Computer Networks, 2009.

[4] Zdenek Riha,Vashek Matyas,”Privacy issues of
electronic passports” Journal of medical informatics
and technologies, Vol. 17, ISSN 1642-6037,2011.

[5] Na Qi Jing Pan Qun Ding “The implementation of
FPGA –based RSA public key algorithm and its
application in mobile –phone SMS encryption system”,
International Conference on Instrumentation,
Mesurment,Computer,Communication and Control
volume 21-No.5,pp.700-703,2011.

[6] Ridha Ghayoula, ElAmjed Hajlaoui, Talel Korkobi,
Mbarek

 Traii, Hichem Trabelsi, “FPGA Implementation of
RSA Cryptosystem”, International Journal of
Engineering and Applied Sciences pp 2-3, 2006.

[7] Chiranth E, Chakravarthy H.V.A,
Nagamohanareddy P, Umesh T.H, Chethan Kumar
M.” Implementation of RSA Cryptosystem Using
Verilog ”in International Journal of cientific &
Engineering Research Volume 2, Issue 5, May-2011,
1ISSN 2229-5518

 [8] Vibhor Garg, V.Aruna chalams.”Architectural
analysis of RSA crypto system on FPGA
“International Journal of Computer Applications “,
Volume 26-No8, July 2011.

[9] Chiranth E, Chakravarthy H.V.A,
Nagamohanareddy P, Umesh T.H, Chethan Kumar

5

M.,“Implementation of RSA Cryptosystem Using
Verilog”, International Journal of Scientific &
Engineering Research Volume 2, Issue 5, pp.1-7,
May-2011

[10] Muhammad I. Ibrahimy, Mamun B.I. Reaz,
handaker Asaduzzaman and Sazzad Hussain, “FPGA
Implementation of RSA Encryption Engine with
Flexible Key Size”, International journal of
communication, Issue 3, Volume 1, pp. 107-113, 2007

 [11]Rahman, M., Rokon, I.R., Rahman, M., “Efficient
hardware implementation of RSA cryptography”,
3rd International Conference on Anti-
counterfeiting, Security, and Identification in
Communication, 20-22 Aug. 2009, pp. 316-319,
Hong Kong, 2009.

[12] Sushanta Kumar Sahu, Manoranjan Pradhan,”
FPGA Implementation of RSA Encryption
System” International Journal of Computer
Applications”, Volume 19– No.9, pp. 10 –12 ,
April 2011.

[13]
R.srinivasan,Dr.v.vaidehi,J.balaji,S.heema”Asingle
chip efficient FPGA implementation of RSA and
DES for digital envelop heme” Madras Institute of
Technology Campus, Anna University, Chennai –
600 044 .INDIA.2011.

[14] Mostafizur rahman, Iqbalurrahmanrok on and
Miftahurrahman “Efficient hard ware
implementation of RSA cryptography”2009.

