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Abstract: In recent years, the machine-learning field, deep neural networks has been an important topic of research, used in 
several disciplines such as pattern recognition, information retrieval, classification and natural language processing. Is in the 
last that this paper it’s going to be our principal topic, in this branch exist an specific task that in literature is called Sentiment 
Analysis were the principal function is to detect if an opinion is positive or negative. The paper shows how use this subset of 
the machine learning knowledge and use it for give us an insight in the question: what is the perception in a business or a 
product by means of the opinion of the consumers in social networks? 
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INTRODUCTION 

In a globalized world the market competition has been increased and become stronger, the technology sector it 
is one with greater growing behavior in the last years, by that this economy sector has been gaining a lot of 
dynamism; thereby the companies became forced to launch new products in a shorter period. Therefore, 
nowadays it’s a necessity make a profile of the market, analyzing the social perception of the company and 
their products with the objective of improve the business policies and by that way gain a bigger segment of the 
market. The social networks have an incommensurate potential, because could bring us a psychological profile 
of the users; that information can help or even replace classical market analysis such as ethnography, 
statistics, polling etc. That potential remains undeveloped, impeding the access of this   knowledge to the 
CEOs to overcome weak commercial strategies an enhance the positive ones, this kind of knowledge could be 
give an important competitive advantage over another companies.  
 
A common application of Natural Language Processing is a Sentiment Analysis, whose goal is to extract the 
sentiments and emotional content in text. This have many useful such as business intelligence, where we 
know about consumer reactions to a specific product detecting in online comments. Extract this kind of 
knowledge is possible with the use of machine learning techniques, such as presented by [1], [2], [3], these 
techniques are based in the Bag-of-Words paradigm, this paradigm works rating every word in a language; this 
rating varies between positive and negative but have a drawback that don’t take in account the context of the 
phrase in which the word appears. For example employing a Naive Bayes classifier such as the 
implementation shown in [19] using the word ”bad” in a different context we would obtain the same negative 
result i.e. ”it’s bad” return a probability of 0.8 to be a negative sentiment, but if we change the context given the 
phrase ”it’s not bad” remains with the same probability although we know that it’s a positive sentence, if we use 
a highly positive context like ”it’s not bad at all” the probability of be a negative sentence remains.  
 
This behavior can be explained because the word ”bad” have a high negative weight in the English language 
with comparison with the rest. Another similar perspective that attempt to preserve the semantical information 
of the phrases is the Bag-of-n-grams this technique treat several words as only one, then for the combination 
of words only have a unique score; but this improvement have the drawback that only preserve an small 
amount of the semantical information, we can try a longer combinations let’s say 5 words (Bag-of-5-gram), but 
then we need to store near to the 5 permutation scores of the entire English language, and this perspective 
don’t improve in a substantial way the results.  

 
This paper is organized as follows, in the section 2, we show the related work in this topic, in the section 3 the 
mathematical background behind the Word2Vec, in the section 4 we explain the experimentation framework 
that we used and the results derived from the experimentation and in the section 5, we discuss the conclusions 
and the future work. 
 



RELATED WORK 

In recent years, many works has been done in the field of Sentiment analysis. This field started since the 
beginning of the century and it was intended for binary classification, which assigns opinions or reviews to 
bipolar classes such as positive or negative, i.e. the opinions was assigned into two classes such as positive or 
negative. Nowadays, one of the most used models are neural networks, as a work presented by Mikolov in [4] 
using Recurrent Neural Network language model (RNNLMs). Other works implements a classical feedforward 
neural network language models such as [5], [6], [7], [8], [9], that unlike (RNNLMs) this not maintain a hidden-
layer of neurons with recurrent connections to their own previous values. A characteristic of neural network 
language models is their representation of words as high dimensional real valued vectors, i.e. the words are 
converted via a learned lookuptable into real valued vectors, which are used as the inputs to a neural network. 
The first proposals of distributed word representations, was including by [11], [12] in the 90’s and most 
recently, studied in the context of feed-forward networks by Bengio in [5] though a linear projection layer and a 
nonlinear hidden layer, used to learn jointly the word vector representation and a statistical language model. 
Later in RNNLMs by Mikolov, demonstrated outstanding performance in terms of word-prediction. Today, Le 
and Mikolov proposed in [13] a Paragraph Vector, an unsupervised algorithm that learns fixed-length feature 
representations such as paragraphs, sentences and documents, achieving a new state of art results on 
sentiment analysis tasks. We apply these methods to perform a sentimental analysis based on some 
comments from twitter.   
 

3 PRIOR KNOWLEDGE 3.1 Feed-Forward Neural Network  
 

This was proposed by Bengio in [5] as a language model. It consist in an input layer, a hidden layer with an 
output layer interconnected by modifiable weights, represented by links between layers as in the Figure 1. 
Furthermore exists, a single bias unit that is connected to each unit other than the input units. These networks 
compute a series of transformations between their input and their output and the activities of the neurons in 
each layer are a nonlinear function of the activities in the layer below. The input units represent a feature 
vector components and signals emitted by output units will be discriminant functions used for classification. In 
[5], consist in a N previous words that are encoded through 1-of-V coding (V is the size of vocabulary).   
 

 
Figure 1. Feed Forward Neural Network 

 
Each hidden unit realize the weighted sum of its inputs to form its (scalar) net activation, i.e. the net 
transference is the inner product of the inputs with the weights at the hidden unit, as can be seen in Equation 
1. 
 

𝑧 = 𝑏 + ∑ 𝑥𝑖𝑤𝑗𝑖𝑖=1 = 𝑏 + 𝑊𝑇𝑥 (1) 

 
Where 𝑤𝑗𝑖 denotes the input to hidden layer weights at the hidden unit j and b is the bias. 

 

𝜙(𝑧) =
1

1+𝑒−𝑧  (2) 

 
3.1.1 Activation Function 



The activation function of a neuron defines the output of that neuron given an input or set of inputs. The most 
common activation function used is the logistic function, also known as the sigmoid function.  
 
3.2 Backpropagation  

Is one of the most general methods for supervised learning of multilayer neural networks, proposed by 
Rumelhart, Hinton and Williams in [14]. This algorithm is based on delta rule and it looks for the minimum of 
the error function in weight space using the method of gradient descent. The method calculates the gradient of 
a loss function with respects to all the weights in the network. The gradient is fed to the optimization method 
which in turn uses it to update the weights, thus be able to minimize the loss function.  
 
The error is a scalar function of the weights such that the network outputs match the desired outputs, it is 
minimized. To reduce this measure of error, the weights are adjusted. The training error is defined by the 
equation 3: 

𝐸(𝑤) =
1

2
∑ (𝑡𝑛 − 𝑦𝑛)2

𝑛𝜖𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔     (3) 

 
Where 𝑦 is the network output and 𝑡 is the target output. As the backpropagation is based on gradient 

descendent, the weights are updated in a direction that will reduce the error: 

 

Δ𝑤 = −𝜀
𝜕𝐸

𝜕𝜔
=  −𝜀 ∑ 𝑥𝑖

𝑛𝑦𝑛(1 − 𝑦𝑛)(𝑡𝑛 − 𝑦𝑛)𝑛   (4) 

 
Where 𝜀 is the learning rate which indicates the variation in weights. To actualize the weights used a recursive 

algorithm, starting with the output neurons and working backwards to the input layer, adjusting weights for the 
𝑚 iteration it as follow:  
 

𝑤(𝒎 + 𝟏) = 𝑤(𝒎) + 𝚫𝒘(𝑚)  (5) 

 
Finally, the error regarding weights is: 

 
𝜕𝐸

𝜕𝑧𝑗
=  

𝜕𝑦𝑖𝜕𝐸

𝜕𝑧𝑗𝜕𝑦𝑗
= 𝑦𝑗(1 − 𝑦𝑖)

𝜕𝐸

𝜕𝑦𝑗
  (6) 

𝜕𝐸

𝜕𝑦𝑗
= ∑

𝜕𝑧𝑗𝜕𝐸

𝜕𝑧𝑗𝜕𝑦𝑖
𝑗 = ∑ 𝒘𝑖𝑗

𝜕𝐸

𝜕𝑧𝑗
𝑗     (7) 

𝜕𝐸

𝜕𝜔𝑖𝑗
=

𝜕𝑧𝑖𝜕𝐸

𝜕𝑧𝑗𝜕𝜔𝑖𝑗
= 𝑦𝑖

𝜕𝐸

𝜕𝑧𝑗
   (8) 

 
3.3 The Skip-gram and Continuous Bag-of-Words (CBOW) Models  
Distributed representations of words was proposed by Rumelhart in [16] and have become extreme successful. 
The advantage of this model is that the representations of similar words are close in the vector space. They 
showed that in distributed representation of words are many types of similarities among words that can be 
expressed as a linear translations. For example, vector operations ”king”-”man”+”woman”= ”queen” [17].  
 
Two models for learning word representation proposed in 2013 by Mikolov [15] was the Continuous Bag-of-
words (CBOW) and Skip-gram models. In CBOW the goal is to predict one target word given the surrounding 
words. Similarly, the training objective of the Skip-gram model is predict a context, a window of word given a 
single word. This two models are based on artificial neural networks [5], [7].  
 
3.4 CBOW 
 



 
Figure 2: Continuous Bag-of-words architecture 

 
The Figure 2, shows the architecture of this models, the input of CBOW are vectors with one-hot encoded 
vector, i.e, V is the vocabulary vector and the input is a vector with size V; the values of input represents the 
times to appears each word of the context in the vocabulary. The weights between the input and the output 
layer are represented by a 𝑉𝑥𝑁 matrix W. Each row of W is a vector v with dimension N, that represents the 

associated word of the input layer. Given a context, then  
 

ℎ =
1

𝐶
𝑾(𝑥1 + 𝑥2 + ⋯ + 𝑥𝐶)  (9) 

ℎ =
1

𝐶
(𝑣𝜔1 + 𝑣𝜔2 + ⋯ + 𝑣𝜔𝐶)  (10) 

 
where 𝜔1 + 𝜔2 + ⋯ + 𝜔3 are the words in the context and 𝑣𝜔 is the input vector of a word 𝜔. The hidden layer 

to the output layer have the weight matrix 𝑾′ = {𝜔′𝑖𝑗} with size  . Using this weights, the score 𝑢𝑗can be 

calculated for each word in the vocabulary. 
 

𝑢𝑗 =  𝒗′𝜔𝑗
𝑇 ∗ 𝒉    (11) 

 

Where 𝒗′𝜔𝑗 is the j-thcolumn for the weights matrix W’. Using soft-max, we can obtain the posterior distribution 

of words. 
 

𝑝(𝜔𝑗|𝜔𝐼) = 𝑦𝑖 =
exp (𝒗′

𝜔𝑂
𝑇

𝒗𝜔𝐼)

∑ exp (𝒗′
𝜔′𝑗

𝑇
𝒗𝜔𝐼)𝑉

𝑗′=1

      (12) 

 
Where 𝑦𝑗 is the output of the j-th node in the output layer.  𝒗𝜔 is the input vector and 𝒗′𝜔 is the output vector of 

the word 𝜔. 

 
The loss function is E 
 

𝐸 =  − log 𝑝(𝜔𝑂|𝜔𝐼,1, … , 𝜔𝐼,𝐶)  (13) 

 
=  − 𝑢𝑗∗ + 𝑙𝑜𝑔 ∑ exp (𝑢𝑗′

𝑣
𝑗′=1 )   (14) 

 

=  −𝑣′
𝑤𝑂
𝑇

∗ ℎ + 𝑙𝑜𝑔 ∑ exp (𝑣′
𝑤𝑗
𝑇

∗ ℎ𝑣
𝑗′=1 )   (15) 

 



the goal is minimize 𝐸. 𝑗∗ is the index of the actual output word in the output layer. The prediction error 𝑒𝑗 of the 

output layer is given by the derivative of E 
 

𝑒𝑗 = 
𝜕𝐸

𝜕𝑧𝑗
= 𝑦𝑖 − 𝑡𝑗   (16) 

 
where 𝑡𝑗  is 1 only when the j-th node is the actual output word, in other case is 0. To obtain the gradient on the 

hidden to output layer weights is necessary to take the derivative of loss function on 𝜔𝑖𝑗 

 

𝜕𝐸

𝜕𝜔′𝑖𝑗
=

𝜕𝐸 𝑢𝑗

𝜕𝑢𝑗𝜕𝜔′𝑖𝑗
= 𝑒𝑗 ∗ ℎ𝑖    (17) 

 
The weight updating equation for hidden to output weights is calculated using stochastic gradient descendent 
 

𝜔′𝑖𝑗

(𝑛𝑒𝑤)
= 𝜔′𝑖𝑗

(𝑜𝑙𝑑)
−∈∗ 𝑒𝑗 ∗ ℎ𝑖  (18) 

 

𝑣′𝑤𝑗

(𝑛𝑒𝑤)
= 𝑣′𝑤𝑗

(𝑜𝑙𝑑)
−∈∗ 𝑒𝑗 ∗ ℎ, 𝑓𝑜𝑟 𝑗 = [1, … , 𝑉]  (19) 

 
Where ∈ is the learning rate and ℎ𝑖 is the 𝑖-th node in the hidden layer. We obtain the update of the input to 

hidden layer wights as: 
 

𝑣′𝑤 𝐼,𝑐

(𝑛𝑒𝑤)
= 𝑣′𝑤𝐼,𝑐

(𝑜𝑙𝑑)
−

1

𝐶
∗∈∗ 𝐸𝐻, 𝑓𝑜𝑟 𝑐 = [1, … , 𝐶]  (19) 

 
Where  

 

𝐸𝐻 =
𝜕𝐸
𝜕ℎ𝑖

= ∑ 𝑒𝑗 ∗ 𝜔′
𝑖𝑗

𝑣
𝑗=1   (19) 

 
Where ℎ𝑖 is the output of the 𝑖-th node in the hidden layer and EH is the sum of the output vectors for all words 

in the vocabulary, weighted by the prediction error 𝑒𝑗. 

 

3.5 Hierarchical Soft-max 

It was first introduced by Morin and Bengio [18] in the context of neural network language models. It uses a 
Huffman tree representation of the output layer based on word frequencies with the V words as it leaves and 
for each node, represents the relative probabilities of its child nodes. Each step in the search process from root 
to the target word is a normalization. The final probability for finding the target word is the continuous 
multiplication of probabilities in each search step. 

 
Each word 𝜔 can be reached by an appropriate path from the root of the tree. Then the hierarchical softmax 

defines the probability of a word being the output word 𝑝(𝜔𝑂|𝜔𝐼)as follows:  

 

𝑝(𝜔|𝜔𝐼) = ∏ 𝜎[|𝑛(𝜔, 𝑗 + 1) = 𝑐ℎ(𝑛(𝜔, 𝑗))|] ∗ 𝑣𝑛(𝜔,𝑗)
′ 𝑇

ℎ
𝐿(𝜔)−1
𝐽=1    (22) 

 
Where 𝑛(𝜔, 𝑗) is the 𝑗-th node on the path from the root to word 𝜔. 𝐿(𝜔) is the length of the path. So, 𝑛(𝜔, 1) is 

the root and 𝑛(𝜔, 𝐿(𝜔)) is 𝜔. 𝑐ℎ(𝑛) is a left child of 𝑛 and [|𝑥|] is 1 if 𝑥 is True or -1 in otherwise. 𝜎(𝑥) =
1

(1 + exp(−𝑥)), 𝑣𝑛(𝜔,𝑗)
′  is the vector representation for the inner node 𝑛(𝜔, 𝑗) and h is 

𝟏

𝑪
∑ 𝒗𝝎𝒄

𝑪
𝒄=𝟏   for the 

CBOW model. 
 
3.6 Word2vec  

Word2vec is an efficient implementation of the CBOW and the Skip Gram model for computing vector 
representations of words. It was developed by Google in 2013. This tool takes a text corpus as input and 
produces the word vectors as output. It first constructs a vocabulary from the training text data and then learns 
vector representation of words. The resulting word vector file can be used as features in many natural 
language processing and machine learning applications. This means that the model learns to map each word 
into a low dimensional continuous vector space from their distributional properties observed in some raw text 
corpus.  



4 EXPERIMENTS 
The Figure 3 shows the implemented process to carried out the experiment. The text corpus was a Google 
News Dataset with 100 billion words in representation vectorial. This is our vocabulary. 
 

 
Figure 3. Experiment process 

 
To train the model, we use Sentiment 140, a Stanford’s Tweeter Dataset with 1’600.000 tweets, 800.000 
positive and 800.000 negatives, that they have been classified by humans. The format of this database 
consists of 6 fields: 
 

- Polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) 
- ID of the tweet 
-  Date of the tweet 
- The query. If there is no query, then this value is NO QUERY. 
- User that tweeted 
- Text of the tweet 

 
As the tweets have a symbols, links, etc., is necessary tokenize each tweet and then, obtain the vector 
representation of each one of them. As we mentioned above, the vector representation is for a word, for this 
we have to obtain the representation for a single word and then calculate the average for all words in the tweet. 
In this way, we obtain the vector representation for the full tweet.  
 
The next step, as can be seen in the Figure 3, is to normalize where we move our dataset into a gaussian 
distribution with a mean of zero and standard deviation 1, meaning that values above the mean will be positive, 
and those below the mean will be negative. 
 
Finally as shown in Figure 3, a classifier is used. For this experiment we used Logistic Regression, Support 
Vector Machine and Random Forest. 
 

PARTIAL RESULTS TABLE 

Algorithm Accuracy 

Logistic Regression 0.746 (+/- 0.009) 

Support Vector Machine 0.748 (+/- 0.010) 

Random Forest 0.672 (+/- 0.005) 
 
 



5 CONCLUSIONS  
 
The results of this naive experimental framework offers a performance far from the state of the art algorithms, 
but taking in account the lack of preprocessing over the twitter database such as removing the misspelling, 
removing urls, treat in a special way the emoticons that clearly express sentiments, and another techniques 
that can remove noise from the data we can introduce all of this enhancements to achieve better results in 
future work. Also provide another sources of knowledge such as topic related information, with the aim to offer 
a better semantical meaning, moreover the syntactical information isn’t taking in account this kind of 
information can give to the model another perspective that helps to define more accurately the meaning not 
only of the window of the neural network but also about the entire context of the tweet phrase.  
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