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ABSTRACT  
• 
•Based on Euler equations, an implicit time-dependent method is 
applied for the calculation of the transonic blade-to-blade 
flows with strong shock waves. The ntmerical method is based ' 
on a fully implicit time difference scheme. The stabilizing 
correction method is utilised as an ADI sequence to break down 
the two dimensional operator into two operators. These opera-
tors are selected so that at each time step the variables are 
determined independently of each other. The work presented 
here is an adaptation, to turbomachinery flows, of the basic 
method previously publicized and well applied in the internal 
nozzle flow. 

The purpose of this paper is to examine the ability of this 
method to predict the blade-to-blade transonic flow with strong 
shock waves. Detailed studies of the grid system and corresp-
onding problems related to the boundary (inlet,exit and perio- 
dicity) conditions. Results are presented for the ECDEV tran-
sonic compressor cascade with prescribed pressure ratio and 
with a strong passage shock. The results obtained are compared 
with those obtained by an explicit method utilised at ONERA - 
:FRANCE. 
• 
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INTRODUCTION 

In the practical'  design of transonic cascades, the designer 
usually assume6 the shape of the shock according to the expe-
rimental investigation or the computational prediction. Acco- 
rdingly, the shock loss and flow downstream of the shock are 
estimated [1] . 

In the experimental investigation of transonic cascades, the 
shock configuration obtained by optical measurement appears as 
a band rather than a line. Thus, the shock position is not cl-
•early defined. 

In the computational prediction, the solution is generally di-
fficult because of the mixed hyperbolic-elliptic character of 
the problem. Even though, two families of approaches are empl-
oyed to calculate such transonic flow problem; the mixed diff-
erence approach using the steady state formulation and the ti-
me dependent approach using the unsteady formulation. 

In the mixed difference approach, the potential function and/ 
or the stream function are used to express the flow field. The 
main advantage of this approach is to reduce the unknown vari-
ables to one or two variables. The difficulty of the stream 
function method, which is the non uniqueness of density, has 
been overcome recently either by integrating the velocity gra-
dient equation to determine the velocity distribution [2-3] or 
.by splitting the velocity vector into a potential (compressi-
ble) and a rotational (incompressible) part [4. 

In the time dependent approach, the unsteady form of Euler eq-
uations are integrated until steady state is reached. This sy- 
stem of equations is of hyperbolic character with respect to 
time. 

The solution of the Euler equations is the most common way of 
computing the transonic flow with strong shock waves, since it 
is not generally possible to assume irrotational or isentropic 
flow. 

Using finite difference techniques, the unsteady Euler equati-
Ons may be solved by either explicit or implicit schemes. 

The explicit schemes, which are easy to implement, suffer from 
long computational times due to the time step limiting stabil-
ity criterion (CFL). 

The implicit schemes, which are free from this restriction on 
the time step, is difficult to implement because of the non 
linear form of the equations. 
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In the present paper a two dimensional inviscid transonic flow 
in cascade is presented. The time dependent approach with an 
implicit finite difference technique i8 used. The method is 
an extension of the approach recently developed [5] and appli-
ed to the internal flows in convergent divergent nozzles [6-71. 

GOVERNING EQUATIONS  

Considering the unsteady inviscid flow, the conservation equa-
.tions of mass, momentum and energy can be written as follows 

Continuity  

Momentum • FT (P) 
	div(p-1,) = 	0 

A(4) + div(412-1!) + 
Energy 

A(pH-p) + div(pH-/). = 0 

grad p = 0 

where the character m designate the tensorial product of two 
vectors. The flow properties are velocity V, density p and pr- 
essure p. The total enthalpy H for a perfect gas and constant specific heats, is defined by 

H - 	+ 1  V2 	 (1.d) Y-1 p 2 where y is the specific heat ratio. 

.For the calculation of a steady flow, it is now classical to -simplify the solution of the Euler equations by replacing the 
unsteady energy equation by the condition of constant total enthalpy, 

H = Const. 
(1.e) 

This assumption is a central feature of the pseudo-unsteady 
method [81 which becomes exact even in the presence of shock 
waves as long as the flow becomes steady. This simplification 
reduces the system to three equations in the two-dimensional 
case, which saves computing time and memory. 

In the numerical solution of fluid flow problems using finite 
difference techniques, the treatment of field boundaries not 
-coincident with coordinate surfaces involves complex and ina-
ccurate procedures. To correctly treat these boundary condi- 
tions, coordinate surfaces are chosen so that all body surfa-
ces are bring onto coordinate surfaces. 

With respect to an arbitrary curvilinear coordinates c .The 
continuity and the momentum equations (1.a and 1.b) cant 
expressed as 

(F) + G = 0 3t 	 (2) 

L 
• 
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where 

with 

F 
Fo 
F 
1 
F 
2 
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and G = 

G
o 

G 1 
G 
_ z. 

(F6) and Ga. A(KVF)+el/g A(P)+0, (WF0) 
:The Christoffel symbolr:4  is defined by 

eq 
4 1 	 3 	a 	a 

= 2 g
am  
 {53(qqa)+ 0q) T (g4)/ 

In these equations superscripts or subscripts indices take on 
the values 1,2, and the Einstein's summation convention is em-
ployed. 

The covariant and contravariant components of the metric tens-
or (4, ,and g ) are expressed in terms of the first derivativ-
es of—the mapping functions 

(x) 

defining the system of curvilinear coordinates 04=1,2) as 
function of the cartesian coordinate system xz(z=1,2). 

-g is defined by the determinant of the matrix Igaz  1, and v 'denoting the contravariant velocity components. 

NUMERICAL METHOD 

For the numerical solution, the system of equations (2) are 
discretized between two time levels using a backward time dif-
ference scheme 

Fn+1 = Fn - T Gn+1+ 0(T2) 
	

(3) 

.where the superscript n represents, here, the time level and 
is the time step. It is assumed that the solution isn own 

at the n level, t , and is desired at the n+1 level, t 

Gn+1 represents a non linear differential function in which 
the non linear terms (F F /F0  ) are linearized as follows 

a z 

(F F /F0  )n+1= (F F /F0  )n  +{ 	(F F/F0)P f 
4 .6 	A 	 a 	,3 	4 

, for all q= o,a andz . 

ionfl_ io n 

F =pig 	Fa= pit ✓g 

1 
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The system of equations (3) can be written in the form 

{ I + TB)f = - TGn 
	

(4) 

where B represent a matrix operator in which the spatial deri-
vatives a/a i  and a/c2  are replaced by an approximate diffe-
rence operators Oland (52using a suitable second order three 
points in space along each direction. 

The solution of these three difference equations using one 
step solution requires an important storage location and tends 
to be time consuming. In order to obtain an economical scheme, 
:the ADI method of stabilizing correction type is used as foll-
ows 

{ I + TB)f = - TGn  
1 

{ I + TB}f = f 
with 	 2 

131 + /32 = 
where I is the unit matrix. 

The coefficients of the matrices Bi and B2  are chosen so that the 
unknown variables fo , fi and f2  are determined independently 
of each other at each fractional steps. For more detail see[71. 

BOUNDARY CONDITIONS 

1_ Inlet and outlet flow conditions 

In order to avoid the problem of overspecification or undersp-
ecification of the inlet/outlet conditions, the number of spe-
cified dependent variables at these boundaries is determined 
by the theory of characteristic. From this theory, it is cle-
ar that the number of boundary conditions required should be 
determined by the origin of the characteristic lines pointed 
from the outside to the inside of the calculated region. 

Let the inlet and outlet boundaries coincide with the lines 
along which the coordinate c lis constant. The syStem of equa-
tions (2), after decoupling @/a ci  , can be rewritten as 

(F) + A 3- (F) = C 
S a  

where, 
0 	1 	0 

	

A = -1/1v1  +R2  gn  ( 2H+V 2) 	21/1  -2132  el, 	_2Ne1, 

	

_v1v2 +Ft, g12  ( 2H+V2) 	v2  -213,2  e2, 	v1_2,e2v2  

and C is the sum of the r.2-derivative terms and the source term 
vl and v2  are the covariant vcdocity components. R2 is defined 
by 

- i.. 1 / 
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The slope of the characteristic lines in the (t-C ) plan, A=dc/ 
dt , is obtained by solving the equation 	1 	1 

det.( A-XI ) = 0 

where I is the unit matrix. It is clear that XI,A2  and 	,the 
three roots of this equation, are the slopes of the three cha-
racteristics which carry the information necessary to define 
Fo, Fland F 2  at every point. 

For the form of the unsteady Euler equations considered in 
•this work, the eigenvalues of the coefficient matrix A are 
• 

A 1=  v i  , 	A2= vl(R ± 	)  1 	1 
where 

  

k = R ✓  1 +(.9.1  - 1)/yR 2  
' 

with R1 =(y+1)/2y 0  a is the local speed of sound. 

From the above equations, it is clear that 

X> 0 	,. 	X >0 1 	 2 
and 	X < 0 	if (v l/ e) <a 	(Subsonic B.) 3 
or 	X > 0 	if 	(v1/411)>a 	(Supersonic B.) 3 
This result can be interpreted physically by considering the 
:plane made up of the cicoordinate and time . From figure (1), 	

• dt can be seen that the point ails fed information from the 	• 
time level t=tn along the lines ga, ca and da. 
The following table summarizes the number of the boundary con- 
ditions which must be imposed at the inlet and outlet boundar-
ies. 

Boundary subsonic supersonic 
inlet 

outlet 

2 

1 

3 
0 

For subsonic inlet and outlet boundaries, three variables must 
•be specified , two at inlet and one at outlet. 	• 
For cascade flow computation, it is convenient to specify the ' 
total pressure and the flow direction at the inlet, and the 
static pressure at the outlet boundary. 

2- Periodicity condition 

On the bounding lines upstream and downstream of the blade row, 
this condition is easily satisfied by treating points on these 
linos as interior points and then equating values at correspon-
ding points on the two boundaries. 
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This periodicity applied immediately downstream of the trailing 
edge is found to be sufficient to satisfy the Kutta-condition 
at the trailing edge and then no explicit Kutta-condition need 
to be applied. 

3- Blade surface condition 

The blade surfabe is taken as a surface of c2=const. Along this 
surface flow tangency is imposed by putting the normal velocity 
component (v2/VT) equal to zero, then 

F = p✓i v2= O. 
2 

GRID GENERATION 

It is well known that a carefully constructed mesh is essential 
in transonic computations in order to obtain a sufficient reso-
lution for capturing shocks. 
In a blade to blade surface, it is possible to construct one of 
the three types of the grid meshes shown in figure 2 . A comp- 
arison between these types is illustrated in the following tab-
le 

type Inlet/exit 
surfaces 

grid 
shape 

N°of 
grid 

points 

application 
of periodi- 
city cond. 

all inlet 
variables 

are imposed 
1 to the ..._ orthog- 

onalcr 
too 
large 

approximate 
(by interp.) 

if axial Ma- 
ch N°> 	1 axial dir. 

2 

	

.__IL. 	to 	the 
tangent of 

	

L.E 	& 	T.E. 

pseudo, 
orthog- 
onal. 

ble 
, 

suita-approx. or 
exactly 

if relative 
Mach N°> 1 

3 ....IL 	to 	the 
axial dir. 

distor- 
ted 

suita- 
ble 

exactly if axial Ma- 
ch N°> 	1 

APPLICATIONS AND RESULTS 

In order to evaluate the effectiveness of this method, the pre-
:sent code is applied to .a test case and the results are compar-: 
•ed with the results obtained by another operational code 191. 	• 
The ECDEV profil cascade (figure 3), utilised at ONERA as a 
test cascade, is taken as a test case. 

Two flow conditions are computed: 
1) P. R = O. 7 	& 	2) P.R = O. 66 

• where P.R is the ratio of the static exit pressure to the total 
inlet pressure. 
The computed results, shown in figures 4,5 and 6, represent re-
spectively the static pressure distribution on the blade surfa- 
00H, the 	rend the ino-hnr contours on the blade to bla- 
11 14 11400w 	Lho two cases of the pressure ratio. 



CA-24 j 258 1 
SECOND A.M.E. CWI'EAENCE 

6. - 8 May 1986 , Cairo 

 

    

r 

 

• • • 

 

1 

For these two conditions, the shock close completely the blade 
to blade passage (choked flow). In the case of P.R=0.7, the 
shock intersect the upper and lower surfaces at a distance (X) 
approximately equal to 0.75 and 0.2 from the leading edge. 
In the case of P.R=0.66, the shock is moved downstream and it 
intersect the uppet surface at the trailing edge, and the lower 
surface at (x/c)=0.4. 

The solution obtained by the present implicit method is compar-
ed with the Euler explicit code 191 utilised in ONERA. Figures 
4.c and 6.b show the static pressure distribution on the blade 
.surface and the isobar contours on the blade to blade passage 
.obtained by the explicit code for the case of P.R=0.66. 

It can be seen that the shock position obtained by the two me-
thods agrees very well. Compared with the explicit method, a 
better shock thickness is obtained by the present implicit code 
(see figure 6). 
The results presented here are obtained on a CYBER 170/750 at 
ONERA research center using 86X11 mesh points. The computation 
time and the number of iterations needed by each method is de-
picted in the following table 

Code N°of iter. 
to 	s.s.• 

total time 
(sec) 

time/iter/ 
point 	(sec) 

time/point 
to 	s.s(sec) 

explicit 1500 560 0.0004 0.6 

implicit 100 220 0.0023 0.23 

Thus the present implicit method is approximately 2.5 times fa-
ster than the explicit code 191. 

CONCLUSION 

The present implicit time dependent method can give good resul-
ts for the solution of transonic choked flow throu cascades. 

Compared with other numerical results, it seems to us that our 
results have a better shock capturing properties and it conver-
ges rapidly. 

Writing the set of equations with an arbitrary curvilinear coo-
rdinates, the programing code can be adapted to various types 
of flow problems and have high flexibility. 
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in the (C1-t) plan. 
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Fig.3-Geometry of the 
ECDEV profil cascade. 
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Fig.2-Different types of mesh 
arrangements1 for the blade to 
blade computation. 



Po a) 

0 0 
0 0 

t 	I 	J 	1 	1 	I 	t 	1 	I '03 	 ID 0 

P-∎  C.) 

a.  e 	 • 
re 

a In • 

       

ICA-24 
  

261 I 
SECOND A.M.L. CONURENC. 

6 — 8 May 1986 , Cairo 

      

r 

     

0 	ci: 
	VI 	

vro 
To 	•.0 

• 
0 

a) 

a 
0 

I 	I 	I 

-P 
OD 

rd 
0 

• 
	 • • 	 H 

a, 
J 	I II I I 	

'.0 

	

s.0 
	

0 
N r1 

_ Zit 	-P 0 	Z 
t 	

.+1 II 	.0 

	

0 X 	•■-.1 
3 	+ 	•r-I • 	F..4 
0 	 H Al 	-I 3  - 
H 	 a 0 ••• 	Ei Pt 	•1-1 • F-• 	 n -r-I 0 	'V 0 a) 	 • 	ci-i 	a) 

. 	....
•

-P 	o o P. 	 g rEl 	.+1 0 Z 	 CD 0 	-P CI-I 
Cfl 

	

-P 	F-■ 

	

PI a) 	rn 

	

as 	o. 

as 	 a) c) 
CD +) 
P m 
0.E1 

cd 



	
ellSt 	SECOND A.M.E. CONCENCE 

ICA-24 1262 l 	 M. . 6 - 8 May 1986 , Cairo 

1 

O 

CD▪ • 
• 

s/D 
a) ■0 

•r-▪ I • rin 	• 
C., 41 ai o 
•r.1 	II 
r-i 
fL 
7C 4a 	 p, 
O 

-P 
r0 	0 

O 4-1 
0 

Ell 
rn b.a 
Fa ctl 

O En' 
+, CO 

•H 	0 PI 
0 

rl 	0 (1) 
H 	27 

• 	

Fi cd 
oci H 

•H 	rO 
0 

▪ 	

• 01 0 

• 	

r0 H +) 
(1) 0 

.W I 
a) -4,  ■C) 
F-1 a) 

Ian 
■■ •H 
• 4-1 

O 	t) 

fZ 	0 • En 
tn 

cn cd 
;-f 

O • a) 

c• d 
o 

cd 
X 0 
I rd 
o cc 

0 	CO 1-1 
II 	I-1 0 

-J 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

