MILITARY TECHNICAL COLLEGE

1 ‘ .
cA-20 | 213 W\ CAIRO - EGYPT

l |
- . MATRIX METHODS IN MAGNETOHYDRODYNAMICS
iy ' M.F.M.Hassan, F.I.M.Hammouda and A.M.A.Asser
3
4
_— i ABSTRACT
. The matrix form of magnetohydrodynamics (MHD) is
presented. The approach follows the recent development of .

matrix methods in optics. Haxwell's equations, Ohm's law, the
equation of continuity, the equation of motion with the.jxﬁ
body force and the energy equation were formulated in matrix
form without using vector or tensor analysis. These equations
were applied to describe the propagation of plane MHD waves

in conducting fluids. Two transverse modes were obtained due
to 2« coupling between viscous and magnetic diffusion and
Alfven wave. The ordinary acoustic waves was found to split
into fast, slow and intermediate magnetoacoustic waves.
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Magnetohydrodynamics (MHD) involve the interaction of

electrically conducting fluids and electromagnetic fields. The
result is a body force on the fluids. The fluids being consid-

ered are continuum, that is, conducting liquids and dense

ionized gases. MHD devices were employed in power generators[ﬂ,

propulsion units [2:] » Mmagnetic confinement [3] and others.
MHD interactions were usually described using vector and

tensor analys@&E@This paper presents the description of MHD

using matrices. Matrices become of great interest . .to physists

when Heisenberg [5] introduced the matrix form of quantum mechan-

ics. Their application to optics is more recent. The ray=-

transfer matanEﬂ could now be used to describe not only the

geometric optics of paraxial rays but also the propagation of a

diffraction limited laser beams. Following the recent developm-

ent of matrix methods in optics, the matrix form of MHD can be

devised. The fluid-electromagnetic field interaction results in

a body force which is expressed in terms of the stress tensor

whose components can be represented by a matrix. In order to

- see how this arises, without using tensor analysis, the matrix-

:form of MHD equations have been presented. Then these equations

were used to descibe the propagation of MHD waves in a perfect-

Ly conducting fluid.

Matrix Form of MHD Equations

Maxwell's Equations

The electromagnetic theory is described by Maxwell's equations.

Using the expressions fyr the matrix form of vector operations

which are introduced in the Appendix, these equations can be

written as
T

G™D

alp

AE =

. AH
where D is the

= ?e (l)
- 2B o
_ 2B (3)
?t
=7+ 2 (4)

displacment vector, B is the magnetic induction

vector, E is the electric field intensity, H is the magnetic
field intensity, ggis the space charge density and J is the

-
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current density vector. The constitutive equations can be h
6 written as
‘D =€ E (5)
B =puH (6)

where ¢ is the permittivity and m is the permeability of the
fluid which are scalar quantities.
Ohn's Law
ATJ = 5‘(ATE + vToc B) where ATv is the fluid velocity (7)
“and - . 6 is the electrical conductivity of the fluid which is
. & scalar quantity. For high conductivity & —we,0hn's law indic-
ates that for finite J, E = -vTu B and the current is
then determined from eq.(4) and not from eq.(7).
Continuity Egquation

2% 16Ty =0 (8)
where §¢ is the density of the fluid. For steady flow,
GTg v =20
and for incompressible flow GTv =0

LEcuation of Motion

223+ vTe(aTv) = caTep + AT aHwpn + 4Tot (9) ,
. where p is the pressure (normal mechanical stress)whieh is
considered a scéalar for the present situation,
AT AHux uH is the electromagnetic- body force in a conduct-
ing fluid (electromagnetic stress). This term can be
written as
AT aHaun = - 2Tg g32+ BTG (AT4H) .
The first term on the right side of eq.(10) is the irrotational
part of the body force and adds directly to pressure in eq.(9),
.and the second term is the rotational part which correspond to .
-the tension along the magnetic field lines. .
The ternm ATG'r in eq.(9) is the mechanical shear stress due to
the motion of a viscous fluid.
. Energy FEquation

g e -g% = ‘3‘% +KGGT + $ + J3/g (11)

where T is the temperature, k is the thermal conductivity.f is

a dissbat%on duetto shegg stress, Jzﬁg the joule heating and cp
is the %%a%g Eg%atggga01 Yy at constant bPressure,

L P =¢RT R is the ga:s,.cc.)n,stant (12) Nt
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Magnetic Transport Equation
Combining Eqs. (4),(6) and (7), then
AT H = £7 =6 (ATE + vIxp)
Taking the curl of the above equation and use Eqs.(2)and (3)

yields
2= pm - 1)E +a(TxB) (13)
where D = 1/64 is the magnetic diffusivity. Eq.(13) shows the

transport of the magnetic field by diffusion and convection. For
no metion v=0 the transport is entirely by diffusion, while for
6—»co the transport is entirely by convection. The magnetic field

lines is considered as being elastic and the flowing fluid drag
them until they are in static equilibrium. This is the case when
a magnetic field is induced which adds to the applied magnetic
field. The induced field is caused by the distortion of the a
applied field lines because of the fluid convecting them.

In expressing the above MHD equations, the displacement
current is assumed to be negligible compared to J, the forceggE
is negligible compared to JE&B and the electric stress and enegy
Proportional to ETD is negligible compared to HTB. All veloei tss
are small compared to the velocity of light.

.Propagation of Waves in MHD .

One of the consequences of electromagnetic field-fluid . °
interactions is the possibility of wave propagation in the fluid.
The approach is to assume that the wave cosistsof small pertur-
bations of the variables and then discuss plane wave propagation.
Assuming a uniform perfectly conducting fluid wWith pressure Po»
density P,and temperature To' at rest in a uniform magnetic
field ATHO. The system is now slightly pertubed by introducing
a small velocity pertubation A vy which gives rise to other per-

. turbations ATHl, Pq» 9l,and Tlin the magnetic field, pressure, .

.density and temperature, respectively,

! £ = % 7 Si
H=H0+Hl T=T0+Tl (14)
P =p, * P
We perturb the governing equations and linearize them,so that
d. = 2 To = 2.
g Tat f Ve =33

Consider first, the case of an incompressible fluid in which
the density remains constant. The linearized equations to(?)angl

b oL,
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(3) using eq.(7) for high éonductivity, yield 1
2V _
Y - -GPI + AHﬁ"Ho (s
4 AvyeuH, (16)
2t
LetATuF,[-\vl which is the fluid vorticity and apply to (15)
%curl and curl to (16 ), we obtain an equation forA’i;from the
resulting equations.l thus 2.,
2 = HNei(M-L ¥
?E"iif frei(M-L)y (19)
which is in the form of a wave equation. Assuming plane wave
R i(k'r-wt) T . )
solution Aq:oc e’ » where A"k is the wave vector and @ is
:the angular fr"'éqhency,and defining the phase velocity of wave
V"-ﬂ—. I !
P, ATk

l :

2 2 2.2

then l¢= (ulile,) cos & = C"cos®

where( = /UK* is the Alfven velocity. The waves are transverse,
since from (8) kTvl=O. The velocity of the wave is thus

o= +C o6 (8)
where 8 is the angle between the applied field H  and.the direct-
ion of propagation. Fig.l shows the polar digram for the phase

velocity, : %
g' Fig.l Polar giagram for
g - phase velocity of prop-
\ cC | agation of incompressible
) waves., .

Consider now the case of campressible fluid whieh is comp-

licated by the full equation of continuity. Without loss of
generality, the applied magnetic field is assumed to be
Hoa' Hog
Yoy
and the plane wave propagates in the x-direction. The y- and z=-

dervatives are then zero.The linearized set of equations are

the continuity equation 2{'—1—(?;?‘)%1;”:0 (19)
the equation of motion f’%x = %_g - -.,uﬂoy%%ﬂ + §+§v9°1§!;_1
; (-] X ” X
£ secend coufient o | o] | | | 2% - M
i Second CeerriCient of vscsa Wz 2 ye VY
YV Kinematic Vl‘scosffy g%t 0 NHoxfax 05;'5‘
: 2T
the energy equation OCP2T=2?§+K;':, [(Z':)
the equatio of state .E.,_- %.}.%L
the magnetic transport equation ’%_’iu =D?:%“ + 0
Y, ?
«%:%.1 D'f:-%{’f Hox#!-Hov,;‘é‘ (23)
2 Hoy 24 '
’A'%‘ D%x oX Bx

Esuming plane wave solution for each perturbation then nine
n

ohProt A Aacntremd @ me 0o B et
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fhine amplitude quantities ATQE.ATHE,pT,?;and Tf’can be obtaine;?

These equatiomﬁqare not linearly independent and the determin-
ant of &ge coefficignts of the variables' must be«zero.ﬁy@@%gwiﬁmt

Kewd 0 __ | g
LikK Hoy ~ (VRS ]T 0 H
ok e Yz
r l-ig k 0 o] o TivT O jvp

o ! [(+49g)hivg O katoy o o o [IWlg

2, '
: 0 i ° M T R
: : ~ikHoy iKHox  (PRi4jw) © O' B”
| I o o o % T |0
: | © (o] o ~iw  O(KK T;nJ :

there are three uncoupled terms. The first term indicates Hlx=0.
The second term is a 2x2 determinant which represents two transv-

erse modes as it is quadratic in k2.

vDK* 4+ [Cf+ i(v+D)w] Kimw?z0 C;F—,Z—cfr (25)
These modes are due to a coupling between viscous and magnetic
diffusion and the Alfven wave. For H=0(Cyglthen there is no coupling,
(DK™+iw)(v K w) =0

which(kzis imaginary) represents pure viscous diffusion and pure
magnetic diffusion. If there is no dissipation w=D=¢0 , then k
.is- real and the phase velocity Vp= iCx( + or - sign indicates a.
"foreward or backward wave) . .

The third term is a 6x6 determinant which represents a set
of coupled bngitudinal and tranfversetw%rés 2 3] oot e ok Kk 2
[ e i St -Gl
If there is no dissipation, that is.§u=D=K=o &e)

then (C:k!_w'l)[ (C:K:_MI)CCJK'_‘.;'IJ.. C;wlkl_] =0 (27)

where ¢ is the velocily of Sound -
.This equation shows that there are three waves;

a transverse wave identical to Alfven wave previusly obtained
with phase velocity VP=1C,‘ =2 C cosb (intermediate wave ) (28)
and two kngitudenal (magnetoacoustic)waves, a fast and slow ones

ith ph lociti i
T TS (v e f(chedS9GT] GeCanb (29

\{oslw=;t{[ (C+ M J(e+c'?7?C§ ] C,=Ccosb (30)

Fig.2 shows the polar digram for the phase velocities. For
propagation perpendicular to the applied magnetic field Ho’
there is only one wave, the fast magnetoacoustic wave. For N
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Fig.2 Polar diagram of phase velocities
of non-dissipative magnetoacoustic

waves.

Conculusion

llatrices provide wigh advantage an alternative method to
problems involving Magnetohydrodynamics. Expression for the
basic !/HD equations were obtained without using vector or

tensor analysis. Their application to the problem of propag-
ation oI MHD waves in conducting fluids gives the expressions
_ for the phase velocities in a straight foreward way. For furth-
. er study of the applications of the developed matrix methods
in UHD is to consider the case of anisotrpic pressure.

References

l. S. Petty, G. Enos, R. Kessler and D. Swallom, 18th inter-
society energy conversion, V.1, p.118, 1983,

2. G.W.Sutton,and A,Sherman, Engineering magnetohydrodynamics,
McGraw-Hill, New York, 1965.

3. E.W.Laing, Plasma Physics, Sussex University Press, 1976.

4. T.J.M.Boyd and Sanderson, Plasma Dynamics, Nelson London,
1969.

" Oa A.SéDavydov, Quantum Mechanics, Pergamon Press, New York
197 :

6. A.Gerrad and J.M.Burch, Introduction to Matrix Methods in
Optics, J.Wiley & Sons, London, 1979.




-

. &

’ . SECOND A.M.E. CONFERENCE

ca-20] 220 NN DR

6 - 8 May 1986 , Cairo

- s e “‘l
Appendix: Expression of vector operations in matrix form
A vector H of components H »H_ and HZ along cartesian
coordinates is written as H =1 H + jdy ¥ kH
where 1, J, and k are unit vectors in the x-,y-,and z-directims.

We define two column matrices: H=[H] » . = 5]
H -
p g ¥
and their traﬁpose. [H H H ] A =[1 J k] ‘
The vectr H can now be wrltten as ?I‘=[I'3 ‘] Hé] = A"H = H'A
H
HY
The scalar product of two vectors H.g can be expressed as

et T

BB = B.H = B, +H B 4 B, - HB = B'H
The vector product of two vectors JxB can be expressed as
TxB 1(JyB -J B ) + J(JZB -J B ) +k(J By -J B, )

y 2 2
& ( JB +kB ) +J (iB k ) + -iB +JB )
Y & T J - 7
=LI J JJ 0 % -3 =J NB uhm a=fp K =
K 0 T BX o 7
""'i'OBy >
. - = gkl ‘ J -1 0
Similarly JxB = B &« "J

Now, we may introduce for each matrix element a differential
operator remembering that, these operators follow the distrib-
utive law., The commutative law must not be assumed.

The gradlent of a scalar is expressed as

grad p = T2L- "2a+x?f'[ TEIf2 =7 R 7 F = =AGp G2

JJ 5
z ¥ 3

z
The divergence of a vector V is expressed as
div _’3& '3 @ i L
v DX ’by 'Dz 3%] VX —G'V
Yy
vy

The curl of a vector H is expressed as H :
curl H=T(3k - 30)+7 (3l - 2e) o — 28 -
=77 ;_7] = & [H ATAH where a=
;Z O 2 [Hy
..% ,?; o He
T..T T

Now, grad div v = grad(G'v) = 476G v = ATMv

2 z e
MH%%W

. . v Ao %ﬁ
Curl Curl H = A-a(aH) = A (M-L)H vor Ay A
where L =3 gtz

@15 3 Po
LB o
Q H S
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