
 

MILITARY TECHNICAL COLLEGE 

CAIRO - EGYPT CA-20 213 

  

I 

 

I 

MATRIX METHODS IN MAGNETOHYDRODYNAMICS 

M.F.M.Hassan, F.I.M.Hammouda and A.M.A.Asser 

ABSTRACT 

The matrix form of magnetohydrodynamics (MHD) is 

presented. The approach follows the recent development of 

matrix methods in optics. Maxwell's equations, Ohm's law, the 

equation of continuity, the equation of motion with the JxB 

body force and the energy equation were formulated in matrix 

form without using vector or tensor analysis. These equations 

were applied to describe the propagation of plane MHD waves 

in conducting fluids. Two transverse modes were obtained due 
to z,  coupling between viscous and magnetic diffution and 
Alfa --n wave. The ordinary acoustic waves was found to split 
into fast, slow and intermediate magnetoacoustic waves. 
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Introduction 

Magnetohydrodynamics (MHD) involve the interaction of 

electrically conducting fluids and electromagnetic fields. The 

result is a body force on the fluids. The fluids being consid-

ered are continuum, that is, conducting liquids and dense 

ionized gases. MHD devices were employed in power generators[1, 

propulsion units[2] , magnetic confinement Djand others. 

MHD interactions were usually described using vector and 

tensor analysislphis paper presents the description of MHD 

using matrices. Matrices become of great interest to physists 

when Heisenberg[lintroduced the matrix form of quantum mechan-

ics. Their application to optics is more recent. The ray-

transfer matrix [6] could now be used to describe not only the 

geometric optics of paraxial rays but also the propagation of a 

diffraction limited laser beams. Following the recent developm-

ent of matrix methods in optics, the matrix form of MHD can be 

devised. The fluid-electromagnetic field interaction results in 

a body force which is expressed in terms of the stress tensor 

whose components can be represented by a matrix. In order to 

.see how this arises, without using tensor analysis, the matrix. 
•• form of MHD equations have been presented. Then these equations• 

were used to descibe the propagation of MHD waves in a perfect-
ly conducting fluid. 

gatrix Form of MHD Equations  

Maxwell's Equations  

The electromagnetic theory is described by Maxwell's equations. 

Using the expressions frthe matrix form of vector operations 

.which are introduced in the Appendix, these equations can be 	• 
written as 

G
T
D = ?e 	 (1) 

GTB = 0 	 (2) 
ZB 

(3) ?It212 = J   
Vt 	 (4) 

where D is the displacment vector, B is the magnetic induction 

vector, E is the electric field intensity, U is the magnetic 
field intensity, fle3is the space charge density and J is the 
L. 	 _A 

• 111 	• 



r- 
curre_lt density vector. The constitutive 
written as 

• • • 

equations can be 

▪ and 	6- i the e electrical conductivity of 

a scalar quantity. For high conductivity 

ates that for finite J, E = -vTa B 
then determined from eq.(4) and not from 

Continuity Equation  

2f , ----TuT  v= 0 

where f is the density of the fluid. 
GT ? v = 0 

(8) 

For steady flow, 

the fluid which is 
6--.-co,0hmts law indic 

and the current is 

eq.(7). 

I
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- D =e E 
B =p H 

where c is the permittivity and /4 is the 
fluid hich are scalar quantities. 

Oh71's Law 

ATJ .d.r(ATE + vTa B) where Ar is thefluid velocity ( 7 ) 

(5)  
(6)  

permeability of the 

and for incompressible flow 	GTv = 0 
Er .ation of Motion  

• .at 	+ vTG(ATv) = -ATGp + AT AliapH + ATGV (9) 
'where p is the pressure (normal mechanical stress)which is 

?A v 

considered a scalar for the present situation, 

	

AT 	mil is the electromagnetic body force in a conduct- 
ing fluid (electromagnetic stress). This term can be 

written as 	
= - ATG AE

2
+ HTG(AT#H) 
	(10) AT aliapH 

The first term on the right side of eq.(10) is the irrotational 

part of the body force and adds directly to pressure in eq.(9), 

.and the second term is the rotational part which correspond to . 
:the tension along the magnetic field lines. 
The term A GT in eq.(9) is the mechanical shear stress due to 
the motion of a viscous fluid. 

Energy Equation  
d2 c 	L.1  

	

p dt 	dt +kGTGT + s6 + J 2  kr 	 (11) 
where T is the temperature,k is the thermal conductivity,* is 
a dissOlation due to shear stress, J2Air til-:ain!!! heating and is the molar Meat capacity at constant p State Equatioh  

p = ? RT 	R is the gas constant 	(12) L 
• • • 

cp  

-J 



no motion 

co the  

lines i s 
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Magnetic Transport Equation 
	 1 

Combining Eq$1.(4),(6) and.(7), then 

A l  H = YJ = 6 (ATE + vTaB) 

yields 
Taking the curl of the above equation and use Eqs.(2)and (3) 

at = D(M - L)H + •a• (vTrac B) 
	

(13) 
where D = lAa is the magnetic diffusivity. Eq.(13) shows the 
transport 

transport is entirely by diffusion, %idle for 

entirely by convection. The magnetic field 

them until they are in static equilibrium. This is the case when 

as being elastic and the flowing fluid drag 

a magnetic field is induced which adds to the applied magnetic 

field. The induced field is caused by the distortion of the a 

applied field lines because of the fluid convecting them. 

In expressing the above MHD equations, the displacement 
current is assumed to be negligible compared to J, the force %E 
is negligible compared to JeKB and the electric stress and energy 
proportional to ETD is negligible compared to HTB. All velocities 
are small compared to the velocity of light. 

.Propagation of Waves in MHD  

One of the consequences of electromagnetic field-fluid 

interactions is the possibility of wave propagation in the fluid. 

The approach is to assume that the wave cosistsof small pertur-

bations of the variables and then discussplane wave propagation. 

Assuming a uniform perfectly conducting fluid ,with pressure po, 
density 9 and temperature T 	at rest in a uniform magnetic T ° field A H

o. The system is now slightly pertubed by introducing 
a small velocity pertubation ATvl  which gives rise to other per-

. turbations ATH1, pl, ?1,and T1in the magnetic field, pressure, 
density and temperature, respectively, 

of the magnetic field by diffusion and convection. For 
v=0 the 

transport is 

considered 

v = 	Q= 	+ 91 H = Ho + H1 	 (14) 

p=p 
We perturb the overning equations and linearize them,so that 

8 _ , Tn  
= 

_ 	
T V V dt at at 

Consider first, the case of an incompressible fluid in which 
Lthe density remains constant. The'  linearized equations to(9)andi  • •  

T = T
o + T1 



 

(20) 

 

(21)  
(22)  

tissuming plane wave solution 
A aPhr.nin 

to."4 1 CA-20 
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r(3) using eq.(7) for high conductivity, 
gat- = Gpi  + He4id.10  

-at 
-DA = A INA 
which is the fluid 

and curl to (16), we obtain 
resultin equations, thus 2  

221 444 - L) y 
-at= — To 
	(I?) 

which it in the form of a wave equation. Assuming plane wave 
(T r-ot) solution Awa e Ic 	

, where ATk is the wave vector and co is 
the angular fr'equencyl and defining the phase velocity of wave 

V,,-- 
IATKI 

then 	9 (44ta,,,) cf,se C2 cote  

Where‘:=4/207 is the Alfven velocity. The waves are transverse, 
5'0 

since from (8) kTv1  =O. The velocity of the wave is thus 
Vpx: "±C cos 6? 	 (M) 

where 0is the angle between the applied field Ho  and. the direct- 
ion of propagation. Fig.l shows the polar dtgram for the phase 
velocit7, 

yield 1 

Let/J4;=,: 

Cud 

00 

(i6) 

vorticity and apply to (IS) 

an equation forRifrom the 

Fig.1 Polar diagram for 
phase velocity of prop-
agation of incompressible 
Waves. 

and the 

dervatives are then zero 

the continuity equation 

the equation of motion 

olo er now the case of cmpressible 
licated by 

generalit, 

C id 

the applied 
1-10  

43," 

Second COerfitl'eni or vise.... 
: konernatic viccosi.ty 

fluid which is comp-
of continuity . Without loss of 

magnetic field is assumed to be 

in the x-direction. The y- and z-
.The linearized set of equations are 

+ (Cot gRix =o 	(19) 'at 

+11411°Y1#t 

- Poat 
foifl. 	0  
›ort 	0 	Ulloxvx _ " 

171411 0  
,b145.1 	DaY 	ss 	"Inc (2'5- 
lsti 	Drip H I

va-Ft 

Va 
for each perturbation, then nine 

the 

the 

the 

the full equation 

plane wave propagates 

ite r d energy equation 	a r  -ar 
0 7'4 Tr — a X2  

equatio of state 	k= 2/..f.fk 
To 70 

magnetic transport equation 
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0 	rilmm amplitude quantities A T- 
vl,AT  Hi,p1, 1and Ti  can 

These equations lere not linearly independent and 

ant of the coefficients of the variables'must 

	

10+14 	0 	_ I 

	

- ri KT& liex-(vge+1•10)1 	 0 
Koe+iw) i k Hox 	1 r- - 

	

I 	Li fo k 	0 	0 	0 	w 
19Hoy 

	

0 I 	(tilvV+i,10  0 	1  

	

I 	 o 	fvfotz+hofc) i kp 14.y  

mine 

0 0 0 

0 0 0 

be obtained./  

the determin-

be +zero .Eq.(24)dimms that 
Hex 

o- 
v" iy 

there are three 

-Ay 

0 
0 

uncoupled terms. 

ilOpx  

0 
0 

The first 

which 

(00+110) 

O 	0 

o Ato,  

term indicates Hlx=0. 

represents two transv- The second term is a 2x2 determinant 

14; 

r 

TN 

erse modes as it is quadratic in k2. 
vD0 [c2+0+1))4)]}(2-4)1=0 

These modes are due to a coupling between viscous and magnetic 

diffusion and the Alfven wave. For H=O(Cethen there is no coupling, 
(DA- igo)(o fel. 	= 0 

imaginary) maginary) represents pure viscous diffusion and pure 

v=1)=0 , then k 

- sign indicates a: 

represents a set 

If there is no dissipation, that is,10,61:0=K=0 

(C)2,1c2-0)[(Cxe-toz)(ele-01)- C;t42 	=0 
Where C is bAt ve ocily o F sound 

,This equation shows that there are three waves; 

:a transverse wave identical to Alfven wave previusly obtained 
with phase velocity 	Vp  = I C74  = t C Cos 	(intennediate wave ) 
and two Dnatudenal (magnetoacoustic)waves, a fast and slow ones 
with phase velocities 

Vpica = - 	(Cz+ c2) + kC2+cgoliJr•21 	C, CAB (29) 
pof ±1 (C+ C3) 	 s.] 	cx-Cces9 (30) o= 

Fig.2 shows the polar digram for the phase velocities. For 

propagation perpendicular to the applied magnetic field Ho, 

Lore is only one wave, the fast aagnetoacoustic wave. For 

Cit= 
	

(25 ) 

magnetic diffusion. If there is no dissipation 

.is•real and the phase velocity V =( + or 
p - x 

foreward or backward wave). 

The third term is a 6x6 determinant which 
of coupled longitudinal and transverse waves 

E
„./ I 4.) .y4  ?kJ, diC • '4 kz-4/04+ catio,foto)kl-1-04'40-7,-,-645447° rst3c,+ 'Icy (3 VoJ 	5,0(1 	, 	ix 

(26)  

then 
(27)  

(28)  

• • • 
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rTropagation parallel to the magnetic field H o ,VPAL 	 Ps 
=400. 

. 	. 	• 

O 	 low  ICzte rt- 	 [C21- el 	 EC2tel
k
l 

C =c  C> c 

Fig.2 Polar diagram of phase velocities 

of non-dissipative magnetoacoustic 
waves. 

Conculusion  

iatrices provide wijah'advantage an alternative method to 
problems involving Magnetohydrodynamics. Expression for the 
basic 1:11D equations were obtained without using vector or 

tensor analysis. Their application to the problem of propag-

ation -f MHD waves in conducting fluids gives the expressions 

for the phase velocities in a straight foreward way. For furth-

er study of the applications of the developed matrix methods 

in IIHD is to consider the case of anisotrpic pressure. 
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Appendix:  Expression of vector operations in matrix form 

A vector H of components H ,H and H along cartesian x y 	z 
coordinates is written as H = i Hx + jHY 

 + kHz ...... 	....... 
where i, j, and is are unit vectors in the x-,y-,and z-directkris. 

We define two column matrices: H= Hx , . A = Ti  

[ 	] 

The4calar...pLoduct of two vectors H.B can be expressed as 

H.B = B.H = H xB x  +H yB y +H  zBz  = H
TB = BTH 

The vector product of two vectors JxB can be expressed as 

-1X-BP  = -r(J B -J z  By)  + j(J zB x  -J xB z  ) -117(J xBy  -J B ) 

= Jx(-jB +kB ) + J (TB 
z -17B ) + J z (.1.B +jB x ) 

_[J J . J 	
y 

7,1 0 Kg 	B 	
m 

B wher
y 

 e of =10  x y 	V. 0 37 
L
B XI  

T Tp-r 0 BY ' 
Similarly 7.17 
Now, we may introduce for each matrix element a differential 

operator remembering that, these operators follow the distrib- 

. utive law. The commutative law must not be assumed. 	• 
• • The gradient of a scalar p is expressed as 

9racif wiSP + -ta 	=r; 	=r; 1.‘) 	p = ATGp lx 4 -ay 	z L 	111 

The divergence of a vector v is expressed as 
div 1.1 ..,.. '6 . '' -"z I4 z 	T  a X 

I- -21-v — L x - 1 Y x  =  ,V 

V2  
-0. 

• The curl of a vector.H is expressed as 
• Curl 1-1.=-1.(t& - Pik)  ) ..tj (1.1--6  'ka) t ic.  CIA- — .1&) /Y... 15z 	/X (DX 	IX 	'Y 

= I-7 j ^a ° le 1 [1 = /fat/ L&Acre v= 0 -,ei 1- i.  a -az 0 —,st I4.y 
-ia- 4- 0 wz 11  X 	

4'-z. o A -,, 4,7  19.  iv 0  .... 
Now, grad div v = grad(GTv) = A

T
GG
T
v = ATMv 

taut. H 

	

	 12  =`,..4i 47.6-,iiz  v-074-  
2L7 4.iia  
-1-40%.ng  1,21-1  Curl Curl Tr. 44(,,,H) = AT(M-L)H 

where L =ca..  t 44,1i 0 1 o I 0 

r 
and their transpose: HT  =LH H H I , AT41 

x y z 
The veciw H can now be written as 	H 	H 	= ATH = HTA /i  x 

z HY 

Hy 

o 
j 	0 
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