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ABSTRACT 
n 

• In this paper it ispproved that for the RDE y"(t)- E pi(t) y(gi(t))= 
f(t), every bounded solution is oscillatory under certainiconditions imposed.  
on the functions pi,gi  and f for i=1,2,..,n. 

1. INTRODUCTION 

Functional-differential equations with retarded argument (RDE for short) 

provide a mathematical model for a physical system in which the rate of change 

of the L,ystem depends upon its past history. The oscillatory bechavior of 
RDE of .::-der larger than or equal to 2 had been the subject of many investi-

gations [2,4-7] just to mention a few. In this paper we consider the RDE: 
n 

y"(t)- E pi(t) y(gi(t)) = f(t), 	 (1.1) t=1 

with the following assumptions • 

•
(A1) pi, 	andfe C [C o,c0) , R] , 4 0, and pee  o,1=1,2,..0, and for 
some indei, i o 

	' 
, l( 

	n, pi 
o(t)> 0 for t ;0, 

(A2) gi(t),;t, and limt+. gi(t) =co for i=1,2, ...,n1 and we shall prove 
that every bounded solution is oscillatory.let OeCE[0,tO3 , ig and Ae R be 
given . Then(1.1) has a unique solution ye C2r 1( o, ), R3 which satisfies 
the initial conditions 
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y(t)= 4)(0, 	0 	 (1.2) 
and 

y l(t
o)= A 
	

(1.3) 

For more details the reader is refered to E1,2]. 

A solution of (1.1) is said to be oscillatory if it has arbitrary large 

zeros in R. Otherwise y(t) is said to be nonoscillatory. Let S denote the 

:set of all solutions of (1.1). The following sets are introduced: 

S 	={y(t) cS 	y(t) = lim y'(t) = +m as t-> + 001. 
- 00 
S 	={Y(t) ES :-y(t) ES+m}. 

S°  ={y(t) ES s y(t) A 0 and lim y(t) = lim y'(t) =0 monotonically as 
t+001. 

={y(t) ES :y(t) is oscillatory I. 

The following theorem gives a sufficient conditions for S to hhcthe 
+eo  union of the four disjoint sets S 	,S- e 

,o So and E.. 

THEOREM 1.1. If at least one of the following conditions : 
co .(C

1  ) for some index k 	n , gk(t) is nondecreasing and I g,(t)p
k
(t) 	• 

-oft =30 , 	 lc 

co 
(C2) Iik(t) f(t) dt = 

holds, Then, 

= S±c° U S U 	US 
Proof. Let y(t)E S-S . Then y(t) AO for sufficiently large t, say t;. tl. 
Case 1. y(t)> 0 for t>,. ti. Then, because of (A1) and (A2) there exists a 

t1  such that y"(0> 0 for t. t2. Therefore, y"(t) is of fixed sign for 
.sufficiently large t, say t>, t3>, t2. If y'(t)> 0 for t> t3  then y(t) 
•Indeed, lime 	y(t) =Do and limt 	y'(t) =y1(00) >0 exists. If y' (c0)<00 then 
integrating (1.1) from t3  to t and using (C1) or (C2) or both, we obtain 

t n 	 t 
y'(t) = y'(t3)+ I 	E pi(x) y(gi(x)) dx• + I f(x) dx 	(1.4) 

t i=1 	t3 3
t  

y(t3) + tf pk(x) y(gk(x)) dx + ft  f(x) dx 
3

t 
 

t 

	

y t(t3)+ y(gk(t3)) 	p (x)dx + I f(x) dx 	CO 

t3 	t3 
L 
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1 

ast-00. This contraduction proves that )0(00) =m. Hence y(t) eS. If, on 

the oth 	hand, y'(t)< 0 for t-J> t3  then y(t) EScl. To prove this first 

observe that both lim y(t) = y(0) and lim )0(0 = y'(co) 

	

t►e0 	 t —)-c° 
exist and y(0)>, 9 while y'(0).; 0 . We must prove that y(w) = y'(co) =0 . 

Assume 	(00) <0, Then y'(t)< y'(00), t, t3  and therefore y(t).4:y(t3) +y'(00) 

(t-t3) 	0 as t+mcontradicting the hypothesis that y(t)> 0'for t. t3. 

Hence y 1 (00) =0. Next assume that y( m)> 0. Then, integrating (1.1) from t3  

to t, we get (1.4) since y'(m) = 0, it follows from (1.4) that. 

y'(t3) = 	- fm 	Em  pi(x) y(gi(x)) dx- 
co
f 	f(x) dx . 	(1.5) 

t
3 

i=1 	 t
3 

Integrating (1.4) from t3  to t and using (1.5) we obtain 

n 
Y(t) = y(t3) -(t-t3) 	Ico 	E pi(x) Y(gi(x)) dx + 	f(x)dx] 

t
3 

1=1 	 t
3 

t 	- n 
+ I (t-x) 	E pi(x) y(gi(x))dx+ ft  (t-x) f(x)dx 

t
3 	

i=1 	3 

	

t 	n 
= y(t

3
) + f (t

3
-x) E p (x) y(gi(x))dx-(t-t

3
) I00 E00 p (x)y(g

i 
 00dx 

	

t
3 	

i=1 	 t 1=1 

t 

+ f (t
3
-x)f(x)dx-(t-t

3
) f f(x)dx. 

t
3 

t 	n 
.07(t

3) +t3fY 1 (t)-Y 1 (t3).] -I 	xEp(x)y(g (x))dx 
t
3 

i=1 

t 

- f x f(x) dx. 
t
3 

t 	 t 
y(t3)-t3y'(t3)- I g,

'`
(x) pk(x) y(gk(x))dx- I g(x)f(x)dx 

t
3 
	 t

3 	(1.6) 

choosing t4:t3  so large that y(g
k  
(x)))y(m)/2 for x. t4. Then, from (1.6) 

we get y(t) y(t3)-t330(t3)- Y(m)/2 It  gk(x)pk(x)dx-It  gk(x)f(x)dx 
t
4 	t

4 

In view of (C
1
) or (C

2) the right hand side of the last inequality tends to 

-m as t+m . This contradiction shows that y(m) =0 . Hence y(t)e S°. 

Case 2. y(t)< 0 for t. t1. A similar argumant shows that y(t) eS
-00 

 US
0 
 . 

The proof is complete. 
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2. OSCILLATION OF BOUNDED SOLUTIONS 

The following two theoremsoof D] are also true for the general case (1.1) 

with a little modification in the proofs. 

THEOREM 2.1 . Assume that there exists a nonempty set of indicesK 

...,k
r 	1 <k

1  <k2  < 	<k 
r <n 

gk C1 rE°'°°)' 	gic(t)<  
t 

(ii) lim sup 	E 	I 
kEK At) 

where et(t) = max
EK gk(t). Then every bounded solution of (1.1) is oscillatory. 

Proof. Let y(t) be a bounded nonoscillatory solution of (1.1). Then, without 

of condition (A
2) there exists a 

and i=1,2,..,n. In view of (1.1) and 

>0, y"(t) >0 and y(t) is bounded, 
itffollows that there exists a t2  t1  such that y'(t) <0, t> t2. From these 
observations, we conclude that y(t) is concave up and decreasing for t >t2. 
therefore, it 1Ieg above its tangent. That is, for any t,x 

y(t) + y'(t) (x-6 <y(x) . 

= { k
1'k2' 

(1) 

such that for tto 

t and g'k(t)> 0 for 

[ gk  ( t ) -gk  (x)I pk(x) dx >1 

keK (2.1) 

(2.2) 

loss of generality, y(t) >0 and because 

t1  >t such 1 0.  o 	that y(gi(t)) ?() for t >t 
' I 

(Al) we have y"(t) >0, t l ti. Since y(t) 

(2.3) 
• 

• From (2.3) and the fact that gk(04-coas t- we conclude that 

Y (gk(0 ) 	Y1(gk(0 ) Cgk (x) -gk ( t ) IY (gk(x)) 

for x,t sufficiently large, say x,t 	t2  and for all kc K. 

(2.3a) 

Multiplying (2.3a) by pk(x) and summinguup for all k EK, we get 

kE
E
K 

	

 Pk(x) y(gk(t))+ E 	y'(gk(t)) Egk(x) -gk(t)] pk(x) 
k.E-K 

E p
k(x) y(g (x))`

< E 	p
k
(x) y(g

k(x))+ f(x) = y"(x) Ice( 	k 	
k=1 

Integrating (2.4), with respect to x, from g*(t) to t, for t sufficiently 
large, we obtain 

E Y(gk(t)  ktK 

t 

p
k(x)dx+ E 50(gk(0) g*(t) 	kEK 

t 

I 	[gk(x)-gk(t)] dx 
g*(t) 

30(t)-y'(g*(0)• 

Since y'(t) increases and g'(t) 0 this inequality, 

becomes 
• • • 

44fter some manipulation, 

(2.4) 
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6 
t 

E .fgk(t)) I 	p
k(x)dx-y' (g*(0)[ E k E Kk eK g*(t) 

( t) 

t 
I 	[gk(t)-gk(x)j pk(x)dx-1J 
g*(t) 

(2.5) 

 

from (2 ') the left-hand side of (2.5) is nonnegative for sufficiently large 

t, white the right-hand side is negative, a contradiction. The proof is 

complete. 

.THEORFM 2.2. Assume that the hypotheses of theorems 1.1. and 2.1 are satisr  
fied. Then S=S+03 °° US 	US ( or equivalently S°= 0) 

+00 	 - Proof. By theorem 1.1 , S=S 	US
-00 

 US°  US . Let S°4 and y(t)e S°. Then 

y(t) is a bounded solution of (1.1) and by theorem 2.1 it should ascillate. 

This contradicts the defiention of So. Hence So  is empty and the proof is 
complete. 

COROLLARY 2.1. Consider the RDE 

yb() -p(t)y(t-T) = f(t), 	 (2.6) 

where p(t) >0 and continous, f(t)Coand continuous and T>0 constant and 

t 
lim sup I 	(t-x) p(x) dx> 1 tioo

t-T) 	
(2.7) 

then, 
41.0 

S= S 	US US . 

In particlar, every bounded solution of (2.6) is oscillatory,. 

?roof . Take n=1;g(t)=t-T .g*(t)Z-1LA.,y Theorem(2.2) So= Oand since sTats-c°  

consists of unbounded solutions it follows that every bounded solution of 
(2.6) osci_lates. 

;EXAMPLE 2.1. Consider the RDE. 

y"(t)-a y(t-1)-by(t-2) -Cy(t-11) -dy(t) = t 	(2.8) 
where a,b,c,d are constants such that 

0<a<2 , 0 <b< 	, 0 <c< 1, 	0 

a+b >2 , 

The hypotheses of Theorem 1.1 are satisfied with gk(t) =t-1 and pk(t) =d. +co 	o Hence, S=S US US US. 

L- Also the hypotheses Of Theorem 2.1 are satisfied with K=f1',21, • • • 
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p1(t)=a,p2(t)=b, g1(t)=t-1, g2(0=t-2, g*(0=t-1,g1(t)=1. In fact, 

a+b 
f (a+b)(t-s)ds= 2 

	>1 and the condition (2.2) is satisfied. Hence S(3 =.-(P 

and therefore t=.S--
4..

US-°''  US 

EXAMPLE 2.2. Consider the RDE. 

y"(t)-(k+1)y(t-10-K y(t) = 0 , K ;0 	 (2.9) 

• Then 

t 	k+1 
7
2
>1 f (K+1)(t-s)ds 2 

t-7 

and by Theorem 2.1 . every bounded solution of (2.9) is oscillatory. It is 

easily seen that Eq. (2.9) has the bounded oscillatory solutions C1  cost +C2 

sint for any real numbers C1  and C2. 
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