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— . ABSTRACT
. n
. in this paper it isnproved that for the RDE y'"(t)- L pi(t) y(gi(t))=

f(t), every bounded solution is oscillatory under certa%ﬁlconditions imposed

on the functions P28y and f for i=1,2,.,,n.

1. TNTRODUCTION

Functional-differential equations with retarded argument (RDE for short)
provide a mathematical model for a physical system in which the rate of change
of the system depends upon its past history. The oscillatory bechavior of
RDE of rder larger than or equal to 2 had been the subject of many investi-
gations [2,4~7] Just to mention a few. In this paper we consider the RDE:

n

y'(t)- I pi(t) y(gi(t)) = f(t), (1.1)
i=] :

]
with the followitlg ‘assumptions :

oy -(Al) Pys By and fe C [[' 0,%) , R:I » £2 0, and pi>, O,i=1,2,..,n, and for

some index io' 1g ios n, Pio(t)> 0 for t 20,

(Az) gi(t)st, and limt+w gi(t) =» for i=1,2, ...,n! and we shall prove
that every bounded solution is oscillatory.let ¢€C[[0,té] 3 g] and A€ R be
given . Thea (l.1) has a unique solution yE szkto,w Ys RJ which satisfies

the initial conditions
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y(e)= ¢ (t), 05 tisto (1.2)
and
' —3
y'(t )= A (1.3)

For more details the reader is refered to [lﬁﬂ.

A solution of (l.1) is said to be oscillatory if it has arbitrary large
zeros in R. Otherwise y(t) is said to be nonoscillatory. Let S denote the

«set of all solutions of (1.1). The following sets are introduced:

5™ =(y(t) €S :lim y(t) = Lim y'(t) = +» as t+ + «}, .

—

S °°={y(t) €S :=y(t) eS+°°}.

g? ={y(t) €S t+ y(t) # 0 and 1lim y(t) = lim y'(t) =0 monotonically as

o).

S ={y(t) €S :y(t) 4s oscillatory }.

The following theorem gives a sufficient conditions for § to hacthe
4 -_ -
union of the four disjoint sets § +S ? So and S ,

THEOREM 1.1. If at least one of the following conditions :
.(Cl) for some index k 1Ig k§ n , gk(t) is nondecreasing and fm%,(t)pk(t) .
. : 4 .

'dtm, ‘ .

(€)) fg (e) £(t) de = ,
holds, Then,

s* = 5™y sy s° uf .
Proof. Let y(t)e S-S5 . Then y(t) #0 for sufficiently large t, say t2 tl.
Case 1. y(t)> 0 for t> tl. Then, because of (Al) and (A2) there exists a
ty2 t; such that ¥"(t)> 0 for t3 t,. Therefore, y"(t) is of fixed sign for
.sufficiently large t, say t> ta% t,. If y'(t)> 0 for t3 t3 then y(t) ES+m.
:Indeed, limt*m y(t) = and limt+m y'(t) =y'(®) >0 exists. If y'(®)< then , ,

integrating (1.1) from t:3 to t and using (Cl) or (C2) or both, we obtain

t n t
y'(t) = y'(t3)+ L - & P, (x) y(g(x)) & + J f£(x) dx (1.4) .
t, 1=1 t

3t _ . 3

2 y(ty) + té P(x) y(g (%)) dx + ft3 f(x) dx
t t
% ¥ (£)+ y(g, (£5)) (t P (x)dx + i £(x) dx » @
3 3
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+<o
6 as t=. This contraduction proves that y'(®) =w. Hence y(t) €S . If, on

the oth hand, y'(t)< 0 for ¢t t3 then y(t) es®. To prove this first

observe that both lim y(t) = y(®) and lim y'(t) = y'(®)
troo t -
exist and y(®)3 0 .while y'(»)$ 0 . We must prove that y(®) = y'(®) =0 .
Assume , (©) <0, Then y'(t)< y'(»), t> ty and therefore y(t)ﬁzy(t3) +y ' (»)
\ i \
(t—t3) » =0 as t»ocontradicting the hypothesis that y(t)> 0 for t> tye
Hence y'(®) =0. Next assume that y( «)> 0. Then, integrating (1.1) from t

3
: to t, we get (l.4) since y'(w@) = 0, it follows from (l.4) that.
y'(e) = =07 T ) y(g () dx- ST £(0) dx . (1.5)
t3 i=1 t
3
Integrating (l.4) from ty to t and using (1.5) we obtain
n
y(t) = y(ty) —(e-t,) [ 7 Z op;(x) y(g (x)) dx + e f (x)dx]
o i=1 =
3 3
t - n I
+ [ (t=x) T pi(x) y(gi(x))dx+ S (t-x) f£(x)dx
= i=1 t3
3
t n .
= y(t,) + f (t-x) I p, (x) y(g, (x))dx-(t-t,) /° = p.(x)y(g.(®)dx
; TR . Yt oqm d S
t . |
+ f (t3—x)f(x)dx-(t—t3) J f(x)dx.
t t
3
t n
sy(eg) +e,ly'@)=y' (e )] =/ x & p ()y(g(x)dx
t3 i=1
t
-/ x f(x) dx.
t3
t t
< y(t3)—t3y'(t3)— I g (%) p(x) y(g, (x))dx~ /' g(x)£f(x)dx :
t3 £3 (1.6) '

ghoosing t,2t, so large that y(gk(XXE>y(«0/2 for x» t,. Then, from (1.6)
we get y(t)g y(tg)=tay' (ty)= y(x)/2 J gk(x)pk(x)dx-ft 8, (¥) £(x)dx
t4 t
4
In view of (Cl) or (CZ) the right hand side of the last inequality tends to
- as t»>»® ., This contradiction shows that y(x) =0 . Hence y(t)e So.
Case 2. y(t)< 0 for t3> - A similar argumant shows that y(t) es™ us®.

The proof is complete.
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2. OSCILIATION OF BOUNDED:SOLUTIONS

The following two theoremscof @] are also true for the general case (1.1)

with a litlle modification in the proofs.

THEOREM 2.1 . Assume that there exists a nonempty set of indicesK = {kl,kz,
kb 1<kl<k2<... <k_gn such that for t 3to

(i) 8 le[Ofn), @ . gk(tk: t and g’k(t)> 0 for keK (2.1)
t
D (di) lim sup g g (t)-g (x)] p,(x) dx>1 (2.2)
. L k€K g'(t)[k & ] &

where g®(t) = max gk(t) Then every bounded solution of (1.1) is osc1llatory.
Proof. Let y(t%sbe a bounded nonoscillatory solution of (1. 1). Then, without
loss of generality, y(t) >0 and because of condition (A ) there exists a

tl >t such that y(gi(t)) >0 for t >t1 and i=1,2,..,n, In view of (1.1) and
(Al) we have y'"(t) >0, ¢t 3t Since y(t) >0, y"(t) >0 and y(t) is bounded,
itffollows that there exists a t, 2t such that y'(t) <0, £ t,. From these
observations, we conclude that y(t) is concave up and decreasing for t }tz.

therefore, it l;eé above its tangent. That is, for any t,x >t

2’
y(E) +y'(t) (x-t) gy(x) . (2.3)
. From (2.3) and the fact that gk(t)+was t>o we conclude that :
Y& () + 3" (g () [, (x) -2 (6)|5y (g, (%)) (2.3a)

for x,t sufficiently large, say x,t >t3, 2 and for all ke K.

Multiplying (2.3a) by pk(x) and summinguup for all k €K, we get

I P (x) y(g (£))+ kg y' (g (£)) [g, () =g, ()] p, (%)

kEK
< I P (x) y(g (x))g z P, (%) y(g, (x))+ £(x) = y"(x) (2.4) :
N kex K k k=1 K 4 .

Integrating (2.4), with respect to x, from g*(t) to t, for t sufficiently

large, we obtain

t t
$ ylg (t) p (X)dx+ § y'(g (t)) f g, (x)-g (t)] dx
kek =k gh(t) K k€K % g% (t) (e, k

S Y (B)-y'(g*(t)).
Since y'(t) increases and g'(t) 50 this inequality, 9fter some manipulation,

LEecomes _
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8 I oyig () f Py (X)dx=y' (g* (e[ = [gk(w g, (0] p (x)dx-1]

— ke K £+ (L) k ex g*(

L y'(t) (2.5)

i
from (2.7) the left-hand side of (2.5) is nonnegative for sufficiently large
t, while the right-hand side is pnegative, a contradiction. The proof is

complete.

- THEORIM 2.2. Assume that the hypotheses of theorems 1.1. and 2.1 are satis;

fied. Then $=5""US™ US”( or equivalently s°= &)

Proof. By theorem 1.1 , S::S+0° us— US0 Ug.. Let S°#¢ and y(t)e So. Then
y(t) is a bounded solution of (1.1) and by theorem 2.1 it should ascillate.

This contradicts the defiention of S°. Hence s® is empty and the proof is

complete,

COROLLARY 2.1. Consider the RDE

y" L) =p(t)y(t-t) = £(t), (2.6)

where p(t) >0 and continous, f(t)30and continuous and >0 constant and

% t
%ig sup [ (t=x) p(x) dx> 1 (2.7)
t-o
then,

s= s ys™ s .

In particular, every bounded solution of (2.6) is oscillatory,.
rroof . Take n=1;g(t)=t-T .g*(t)kt-F.oy Thevrem(2.2) 5°= ¢and since ST“bS‘“

consists of unbounded solutions it follows that every bounded solution of

(2.6) oscillates.

LY

EXAMPLE 2.1. Consider the RDE. .

y"(t)-a y(t-1)-by(t-2) —-Cy(t-k) -dy(t) = t (2.8)

where a,b,c,d are constants such that
0<a<2 , 0 <b< % , 0 <c< 1, d> 0

atb >2 ,
The hypotheses of Theorem 1.1 are satisfied with gk(t) =t-]1 and pk(t)
Hence, S= S US US US.
Also the hypotheses of Theorem 2.1 are satisfied with K={1,2},

- -t
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[— . . . —]
Pl(t)=3;P2(t)=b. Sl(t)=t'1: gz(t)=t-2: g*(t)=t“1,g:‘(t)=l. In fact,

t

S (atb) (t-s)ds= a;b :>1 and the condition (2.2) is satisfied. Hence Soqp
t"% d 4o =0 ™

and therefore '$='S US US .

]
| L

EXAMPLE 2.2. Consider‘the RDE.

y"(t)-(k+l)y(t=m)-K y(t) = 0 , K 30 (2.9)
Then
- t K+l .
f (K#L)(t-s)ds = 5= w2zl
t-m

and by Theorem 2.1 . every bounded solution of (2.9) is oscillatory. It is
easily seen that Eq. (2.9) has the bounded oscillatory solutions Cl cost +02

sint for any real numbers C1 and CZ'
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