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EFFECT OF SHEAR DEFORMATIONS ON THE BENDING OF 

MODERATELY THICK PLATES 

BY 

HAMED ABDALLA* and KAMAL HASSAN** 

ABSTRACT 

The Bergan and Wang approach for the shear inclusion in plate deformation 

has led to an energy expression which is a function of the only lateral 	• 

deflection. The corresponding Euler equation has been deduced and applied 

to a simply supported square plate with sinusoidal, uniform and concentra-

ted loads. Numerical calculations have been made for different thickness 

to span ratios and the results agree well with those of other investi-

gators. 

INTRODUCTION 

Reissner ill and Mindlin 12] plate theories are the widely used ones 

which take the shear effect into consideration. Both theories are charac-

terized by the existence of three independent functions:the lateral 

deflection and the two rotations due to shear. The corresponding energy 

expressions do not lead to the classical thin plate theory as the 

▪ thickness becomes very thin 13 -6] . 

• Bergan and Wang [7] have recently adopted an approach according to which, 

the potential energy of the plate is expressed as a function of only the 

lateral deflection. Moreover, the obtained expression converges to the 

classical thin plate energy as the thickness decreases. Based on Bergan-

Wang energy expression, we have deduced the corresponding Euler equation 

with its natural boundary conditions. This equation has been solved analyt-

ically for the case of simply supported square plate under different types 
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of loading with different thickness to span ratios. The numerical results 

are compared with those based on Reissner, Mindlin and three dimensional 

theories. 

BERGAN-WANG ENERGY EXPRESSION 

According to Bergan and Wang, the strain energy per unit area F, can be 

written as the sum of bending contribution F
b 
and shear contribution F

s
: 

• 	F = F
b 
+ F

s 
where 

Fb= 1/2 K13'  DbKio  

and 

F= 1/2 K
T 
D K 

s 
 

s s s 

in which( 	)
T 
denotes the transpose of a matrix, and the suffix b(s) 

stands for bending (shear). For a homogenous and isotropic material the 

above matrices are given by [7] : 
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2 	h
2 

with 	h
o 
-5(1-v) 

E is the Young's modulus,v is the Poisson's ratio and h is the plate thi-

ckness. Subscripts x and y denote partial derivatives. 

EULER EQUATION AND ITS BOUNDARY CONDITIONS 

In order to get the Euler equation, it is convenient to write the potential 

energy of the plate in the following form: 

V =II F(x,y,w,...,w 
YYYY) 

 dx dy—ffpw dxdy 

in which, the first integral is the strain energy ( see the previous 

section), the second integral is the potential energy of the external 

force p and x and y denote the cartesian coordinates of the mid-plane of 

the plate. Following the known technique of calculus of variations [8] , 

we allow the function w(x,y) to receive a variation en(x,y),where E is an 

arbitrary constant anin is an arbitrary admissible function, then we 

calculate the first variation of V which leads us finally to the required 

Euler equation: 

a 	aF 	a 	DP 	aF 	a2 
	aF 	a2 	aF  

) — 	) • 3w by 	;3wy  )tax2 ( Zw )+,Dxby (away) ay2 xx YY 
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For the simple case where the boundaries of the plate coincide with 

coordinate lines, we can express the natural boundary conditions as 

follows: 

for x = constant 
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. Similar expressions are easily obtained for y=constant. 

Substituting the expression of F in Euler equation and carrying out the 

derivatives, lead to the following rather simple form : 

2 	. 
D ( A2w+ h A 3w + hit  A 4w ) o  P 

where D - Eh 
	 

12(1-v2) is the flexural rigidity 

	

D2 	
B2  and 	A = (

aK
2 	2 ) is the laplacian operator. 

ay 

The boundary conditions can be also expressed in the simple following 

forms: 

For a clamped case : 

W = w = w = w 	= 0 on edge x = constant x xx xxx 

For a simply supported case : 

w = w = w 	= w 	= 0 on edge x = constant xx xxxx xxxxxx 

Similar expressions can be written for y=constant. 

3 
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Remarks : 

1- It is clear that the deduced Euler equation converges to the class- 

ical thin plate equation: 

D A2w = p as the thickness decreases. 

2- It can be easily seen that the first two boundary conditions for 

both clamped and simply supported cases are equivalent to those of class-

ical thin theory. 

EXAMPLES 

In this section we determine the maximum deflection of simply supported 

square plate of various thickness to span ratios for sinusoidal, uniformly 

distributed and central concentrated loads. The solution is obtained by 

application of Navier's approach 19,10] to the following system of fourth 

order partial differential equations: 

DL2u= p 

	

4 2 	2 h
o
Aw+ h

o Aw+w= u 

• with the following boundary conditions : 
• 
• 

	

u = u 	= 0 on an edge x = constant for the first equation. and xx 

w = w
XX = 0 on an edge x = constant for the second equation. 

Similar conditions are established for y = constant. It is obvious that 

this system of equations is equivalent to the eighth order partial differ-

ential equation which has been already deduced. 

The maximum deflection of the symmetrically loaded plate occurs at the 

center and will be expressed in the form : 

wmaX 
= ( 1 +4) w

c 

where w
e is the maximum deflection calculated by classical thin plate 

theory ando -is a 	correction term that shows the shear effect. In all 

examples we take Poisson's ratio to be 0.3. 

Example 1. Sinusoidal loading 

Consider p(x,y) = Po  sin (Trx/a) sin (Try/a) where 
P
o is the amplitude of the load and a is the plate side length. The 

maximum deflection in this case is given by : 
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The results are presented in Table 1 and compared with the values of 

Schafer III] who used Reissner theory, and Levinson and Cooke I-  12] who 
used Mindlin theory. 

Example 2. Uniformly distributed load 

• In this case p(x,y)=P0  and the corresponding solution is expressed as 

w = 

	

	mmx a 	sin 	sin miry  
m=1 n=1 mn 	a 	a  

where 

a - 
P 
mn 

1-( 
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• 	The maximum deflection is then given by 

(m+n-2)/2 w
max 

= E 	E 	(-1) 	a 
 m=1,3,... n=1,3,... 

Table 2. shows a comparison of the results with Salerno and Goldberg[13] 

solution of Reissner equations, Levinson and Cooke solution of Mindlin 

equations and the three dimensional solution of Srinivas and Rao [14]. 

Example 3. Central concentrated load 

The solution of this example is given by the same expressions of the 

previous one, except for P 	which is given by : mn 

4 a
2
P 	(-1) (m+n-2)/2 

P
mn 

- 
7

4D 	(m
2
+n

2
)
2 

In table 3, the results are compared with two types of finite element 

solutions of Reissner theory:conforming finite elements of Rao et al[3 

and hybrid finite elements of Wu 1151. 
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h/a 0.05 	0.1 0.15 	0.2 

Table 1. The correction term Ofor a sinusoidal load w
c=0.00257 a

4
Po/D) 

Authors 	0.014 	0.056 0.125 0.212 

Sch5ferL111 	0.012 	0.048 0.108 0.192 

Levinson and Cooke 

[12] 	 0.056 	0.226 

Table 2. 	The correction term d for a uniformly distributed load 

(w
c= 0.00406 a

4
Po/D) 

h/a 0.05 0.1 	0.15 0.2 

Authors 0.013 0.052 	0.119 0.219 
Salerno and Goldberg 

[13]  0.011 0.044 	0.099 0.176 
Levinson and Cooke 

[12] 0.052 0.208 
Srinivas and Rao 

[14]  0.054 0.129 0.333 

Table 3. The correction term dfor a central concentrated load 

(w
c
= o.o116 a

2
P/D) 

h/a 0.05 0.1 0.15 0.2 

Authors 0.022 0.062 0.105 0.140 
Rao et al 	[3] 0.019 0.082 0.266 0.329 
Wu 	(15] 0.008 0.075 0.181 0.322 

CONCLUSION 

Based on Bergan-Wang approach , an eight order partial differential 

equation for the deflection of thick plate has been derived. This equation 

which accounts for both bending and shear effects has been solved for a 

simply supported square plate subject to different types of loading with 

various thickness to span ratios. The results agree well with other 

. 
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solutions based on different theories. 
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