
 

MILITARY TECHNICAL COLLEGE 

CAIRO - EGYPT DYN -14 111 

  

DESIGN CHARTS FOR VIBRATING THREE 
LAYERED BEAMS WITH VARIOUS BOUNDARY 

CONDITIONS 

S.H. Farghaly*, Y.K. Younes*  and R.M. Gad El-Rab**  

ABSTRACT 

The paper presents comprehensive design charts to be used for optimal selections 
of multilayered beams with elastic faces. Model deflections and bending were 
computed through the range of the geometrical and shear parameters which 
cover soft and stiff core materials. The results include the first three eigen 
frequencies for four combinations of end conditions of interest in bridge, 
space-craft and machine designs. The computer aided investigation considered 
the relative merits with respect to the simple homogeneous beam. 
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INTRODUCTION 

Recently, multilayered beams, plates, shells and similar configurations are 
being commonly proposed for vibration reduction and control. The employment 
of such systems is needed particularly the vibration environment is severe 
and the structural masses are to be light for acoustical pressure damping. 
Typical applications are aerospace industry, bridges and modern machinery. 
The undamped sandwich beam consists of two elastic faces which are usually 
made of thin and stiff materials separated by a homogeneous or honeycombed 
core. Cantilever configurations were mainly the object of investigations for 
both damped and undamped cores, Kerwin, [1j, Di-Taranto, [2], Mead and Markus, 
[3]. Mead and Markus, [4] worked into the problem of free bending vibration 
of a three layered undamped systems. They reported a comparative analysis 
on the effects of two different possible boundary conditions at the free-end. 
These were the riveted and unrestrained free-ends. The natural frequencies 
of such beams differ according to the type of end conditions. Usually 	the 
analyses• and computer calculations are based on different assumptions to remove 
the complexity of the problem, [3]. Rao, [5] derived the complete set of the 
equations of motion and boundary conditions which govern the vibration of 
sandwich beams using the energy approach. He solved them for eight boundary 
conditions seeking the frequency parameters but for the first two eigenmodes. 
The numerical difficulties involved in programing the exact solution have been 
successfully overcome by using a developed iterative approach. In addition, 
he illustrated his formulae by examples for typical problems, especially the 
built in-free beam. 
The work presented herein is confined to the complete analysis of the modal 
and anti-nodal bending problem for four combinations of end conditions at 
the first three eigenmodes. Design charts were tasted to provide optimal 
selections of the different geometrical and shear parameters for the dynamic 
bending design of undamped sandwich beams. 

MEAD SHEAR MODEL 
r Shear deformation 

rr Transverse deformation 
r rr Longitudinal deformation 

ANALYSIS 

According to Mead model, [3] the complex equation of motion for small amoli- 
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I 	—IV 	 —11 
Vn  -X (1+Y) V n  -an2 , [X(721n-1) Vn  + vn] = o 

422 X (1+Y) 	ans [x(7 2+ 44) Vin -7 n v111]  = 

(1-a) 

o 	 (1-b) 

where the first one is real part and the second is the imaginary part. 
For the undamped sandwich beam, the loss factor/2 which represents the 
damping in the core is neglected. In this case equation (I-a) reduces to 

I 	 IV  Vn -X (I+Y) V 	- a2  (Vn  - X Vn) = o n 	ns  (2) 

where Vn  is the normal mode of vibration with an expanded solution which may 
be written in the following form 

Vn=A1  sin(af )+ A2  cos(an+ A3  exp.(bJ)+ A4  exp.(-4) 

+A5  exp.(ci) + A6  exp.(-cf ) 	 (3) 

Six equations can be written according to the beam configuration described 
by its two end conditions and which are listed in table. I. 

Table 1. Basic End Conditions 

Free end Clamped end Pinned end 

V 	,--o n 
c/IV- a 2 	V 	=o n 	ns 	n 

II  
Vn = o 

- 
V

I 
n = o 

Vn= o 

-7,11 
v
n 
 = 0 

In matrix form equations can be written as: 

[e..
11

] [A.] = [o] 	 (4) 

where e11  are the matrix elements (see appendix A).  
For a nontrivial solution and starting with initial estimates for the frequency 
parameters ans. The Gaussian elimination technique is used to evaluate the 
normalized coefficients A1 (j=1,2, .... 6), Rao, [5,6]. Upon substitution in equation 
(3), the mode shape can be evaluated and subsequently, the modal bendings 
are deduced. For different geometrical and shear parameters (Y, X), anti-nodal 
values of the dynamic bending moment along the beam span can be specified 
for best designs concerning dynamic stress values. 

DISCUSSION OF RESULTS 

Referring to Figures 1 to 4 complete design information concerning the modal 
and anti-nodal bending for the four beam configurations are reported. The 
computational results are presented in graphical format as functions of the 
geometrical and shear parameters for the first three eigenmodes. 
Considering the free-free end conditions, results plotted in Fig. 1, show an 
increase in the shear parameter X (stiffer core material) leads to an increase 
in the modal bending, especially for the higher modes. Negligible effects are 
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to Figs. 1-b the anti-nodal values show peaks arround X = 1.70 for the first 
mode, and for all values of Y. The peaks for the second mode are shifted 
around X = 2.70 while for the third mode they are around X = 3.70. These 
regions represent undesirable design selections, neglecting the very stiff core 
region. For the clamped-clamped end conditions shown in Figs. 2-b, the anti-
nodal bending for the larger values of X increase as Y increases except for 
X 7150 at the first mode. The shear parameter X has no effect on the modal 
bending beyond the value of 100 and Y = 20 as is clearly shown in Fig. 2-a. 
For the clamped-free end (Figs. 3-a,b), the anti-nodal peaks are relatively 
observed for high X values especially for higher modes [7]. For the pinned-
pinned end conditions where flexibility exsist to the effect of the shear parameter 
X is pronounced and the anti-nodal bending values increase gradually with 
the shear parameter X as shown in Figs. 4-a,b. In all cases, [7] and [8] the• 
configuration with the geometrical parameter 	slight changes are observed 
over the investigated X values for the anti-nodal modal bending values (homo-
geneous beam cases). 

CONCLUSION 

Design charts have been reported for four practical multi-layered undamped 
beam configurations of the shear model. Specific information concerning the 
modal and anti-nodal modal bending moment for different geometrical and 
shear parameters for the first three eigenmodes are provided. The work presen-
ted herin is based on an extensive runs of the developed computer program 
which analyzes sandwich beam configurations and can be used in bridge, space-
craft, and modern machinery designs. 
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NOMENCLATURE 

Latin Letters 

a,b,c 	Characteristics equation roots 

any 	Model frequency parameter =Csii\AL
4/ B 

B 	Flexural Rigidity = (EI)i  , i = 1,3 

C 	Central distance between face layers 

E. 	Young's modulus of ith layer 

G2 	Core material shear modulus 

Hi 	Half thickness of ith layer 

Ii 	Area moment of inertia of ith layer about its own midline 

K. 	Longitudinal stiffness of face layers, i = 1,3 

L 	Beam span 

m 	Mass of beam per unit length 

X 	Shear parameter = G2L2  (K 1 +K 3)/2H2K I K 3  

Y 	Geometrical parameter = c2K 1 K 3/B (K 1 +K 3) 

Greek Letters 

n th modal frequency 

Loss factor of the core material 

Loss factor of the sandwich 13€4m 

Length ratio (X/L), (Span paraMeter) 

Superscripts for Letters 

I, .., VI Designates the derivation with respect to, X. 

Designates the non dimensional values. 
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APPENDIX 

Elements of the matrix [e..] 
Free-free sandwich beam 

ell  = o 2 

e12 = -a 

e13  

e14  = b
2 

= b
2 

2 

e16 = c
2 15 = c 

e21 
= o 	

2 
e
22 

= a
4 

-tans 
e23  = b

4

4
-a

2 

 ns2 
= b

4 2 
- ans e24 

e25 
= c4-ans 

4. 
e26 

= c5  aL ns 	3 	2 
e31 = a

5+X(1+Y) a- a. ans 
e32 

= o 

e33  = b5-X (1+Y) b3 - b. an
2 

 s 

e34 
= 5

33 
e35  = c -X(1+Y)c

3
-c.a

2 
ns 

e
36 = -e35 

e, 
=-a

2 sin a 

e42 a
2 

cos a 

e43  = b2  exp. b 

e
44 

= b exp. -b 
2 

e45  = c2  exp. c 

e46 c  4 exp. -c 
e51  = (a4  - an

2 
 d sin a 

e52  = (a - agc) cos a 
e53  (b4_a2ns) exp. b 

e54  = (b44  -a2ns) exp.-b 

e55  = (c 4-an

2

dexp. c 

e56  = (c5  - an

2

s) exp. -c 

e61 = (a +X(1+Y)a -an

2

s
.a)cos a 

e62 = -e61 
e63  = (b5-X(1+Y)b3-a2  .b)exp.b 3  ns 

e64 (b
5-X(1+Y)b -an2c.b)exp.-b 

065  = (c
5
-X(14-Y)c3-an2s.c)exp.c 

e66 	
(c5-X(I+Y) c3-an5.c)exp.-c 

Clamped-clamped sandwich beam 

e11  =  

e12 = e13=e14 =e15=e16=1  
= e21  a  

e22 
= 0 

e23 = -e24 = b  

e25 = e26 c  

e31 
= a

3 (a
2 

+ XY) 

e32 
= o 

e33  = -e34  = b3  (b2-XY) 

e35 = -e36=c3  (c2-XY) 

e
41 

= sin a 

= cos a 

= exp. b 

= exp. c 

= exp. -c 

= a cos a 

= -a sin a 

= b exp. b 

= -b exp. -b 

c exp. c 

- -c exp. -c 

= (a5+XY a3) cos a 

= -(a5  + XY a3) sin a 

= (b5-XY b3) exp. b 

e64 = -(b5-XY b3) exp. -b 

e65 = (c5-XY c3) exp. c 

r_5  NI NI .-.3‘ 

e
42 

e43 

e45 

e46 

e51 
e52 
e53 

054 
055 

056 
e61 

e62 

e63 



(b2-X Y) 

(c2-XY) 

e56 

e61 
e62 

e63 

e64 
e65 
066 

en  = o 

e12=e13=e14-e15-e16=°  

e25 = e26 c 
 2 
 

e23 = e24 

e21 ° 
e22 = -a  2 

= b2 

e31 = o 

e32 
e33 = e34 
e35 =  e36 
e41 = sin a 

e42 = cog a 

e43 = exp. b 

=a4 

= b4 

= c4 
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Clamped-free sandwich beam 

ell = o 

el2=e13=e14=e15=e16=1 

=a 

=o 

e23  = -e24 = b 

e25 	-e26 2 c 
e31 = a3 (a+XY) 

= 0 

b3 = = -e34 - "3  

= -e36 = c  
= -a2  sin a 
= -a2 cos a 

= b2 exp. b 

= b2 exp. -b  

e55 =(c4  -an
2  

e53 = (b4 -an
2  

e54 = (b4 an
2  

e46 = c2 exp. -c 

e51 = (a4-a2c) sin a 

e52 = (a1(  - 2s) cos a 

e45 = c exp• c 

= [-a4-a2X(1+Y) + aric ] a sin a 
[b4-b2X(1+Y)-a2 ) b. exp. b 

(c4 an2s) exp.  _c  

2 

a2x(1  y)-an2s]  a  

s) exp. c 

s) exp. b 

d exp. -b 

2 

	
cos a 

= [b +b 2 +bx(i+y) 	, al2Isi b. exp. -b 
= [c4-c2X(1+Y)-ar1,] 

2 

 c. exp. c 
[-c4+c2X(IfY) + apc] c. exp. -c 

e21 
e22 

e32 
e33 
e35  

e41 
e42 

e43 
e44 

pinned-pinned sandwich beam 

e44 = exp. -b 

e45 
e46 

e51 
e52 
e53 = 

e54 

e55 

e56 
e61 
e62 = 

e63 - 

e64  

e65 - 

e66 

= exp. c 
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= exp. -c 

= a2 sin a 

-a2 cos a 

b2. exp. b 

b2 exp. -b 

c2 exp. c 

c2 exp. -c 

a4 sin a 

a4 cos a 

b4 exp. b 

b4 exp. -b 

c4 exp. c 
4 c exp. -c 
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