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ABSTRACT

The paper presents comprehensive design charts to be used for optimal selections
of multilayered beams with elastic faces. Model deflections and bending were
computed through the range of the geometrical and shear parameters which
cover soft and stiff core materials. The results include the first three eigen
frequencies for four combinations of end conditions of interest in bridge,
space-craft and machine designs. The computer aided investigation considered
the relative merits with respect to the simple homogeneous beam.
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CORE

INTRODUCTION

Recently, multilayered beams, plates, <hells and similar configurations are
being commonly proposed for vibration reduction and control. The employment
of such systems is needed particularly the vibration environment is severe
and the structural masses are to be light for acoustical pressure damping.
Typical applications are aerospace industry, bridges and modern machinery.
The undamped sandwich beam consists of two elastic faces which are usually
made of thin and stiff materials <eparated by a homogeneous or honeycombed
core. Cantilever configurations were mainly the object of investigations for
both damped and undamped cores, Kerwin, [1], Di-Taranto, [2], Mead and Markus,
[3). Mead and Markus, [4] worked into the problem of free bending vibration
of a three layered undamped systems. They reported a comparative analysis
on the effects of two different possible boundary conditions at the free-end.
These were the riveted and unrestrained free-ends. The natural frequencies
of such beams differ according to the type of end conditions. Usually the
analyses- and computer calculations are based on different assumptions to remove
the complexity of the problem, [3]. Rao, [5] derived the complete set of the
equations of motion and boundary conditions which govern the vibration of
sandwich beams using the energy approach. He <olved them for eight boundary
conditions seeking the frequency parameters but for the first two eigenmodes.
The numerical difficulties involved in programing the exact solution have been
successfully overcome by using a developed iterative approach. In addition,
he illustrated his formulae by examples for typical problerns, especially the
butlt in-free beam.

The work presented herein is confined to the complete analysis of the modal
and anti-nodal bending problem for four combinations of end conditions at
the first three eigenmodes. Design charts were casted to provide optimal
selections of the different geometrical and shear parameters for the dynamic
bending design of undamped sandwich beams.
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ANALYSIS

According to Mead model, [3] the complex equation of motion for small amnli-
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< VI <Slv = =l
Vo -X (LeY) V "2 (X7, -0V, + V1= 0 (1-a)
- = Sl
M, X (1+Y) V- al [X(7,+7%) V, -"zn Vil=o0 (1-b)

where the first one is real part and the second is the imaginary part.
For the undamped sandwich beam, the loss factor{, which represents the
damping in the core is neglected. In this case equation (1-a) reduces to

VI =1V ., =l =
Vo X (LeY) V T -a2 (V- XV ) =o ()

where Vp, is the normal mode of vibration with an expanded solution which may
be written in the following form

Vn:Al sin(af)+ A, cos(a f )+ Ay exp.(b f )+ Ay exp.(-bf)
+A5 exp-(c}) + A6 exp.(-c §) (3)

Six equations can be written according to the beam configuration described
by its two end conditions and which are listed in table. 1.

Table 1. Basic End Conditions

Free end Clamped end Pinned end
(T V =o0 V=o
n n n
viVoar ¥ =0 vlso [ |
n "ns n n n

In matrix form equations can be written as:
[e-lj] [Aj] = [o] (%)

where e.; are the matrix elements (see appendix A).

For a nontrivial solution and starting with initial estimates for the frequency
parameters apes. The Gaussian elimination technique is used to evaluate the
normalized coefficients Aj (j=1,2, .... 6), Rao, [5,6). Upon substitution in equation
(3), the mode shape can be evaluated and subsequently, the modal bendings
are deduced. For different geometrical and shear parameters (Y, X), anti-nodal
values of the dynamic bending moment along the beam span can be specified
for best designs concerning dynamic stress values.

DISCUSSION OF RESULTS

Referring to Figures | to 4 complete design information concerning the modal
and anti-nodal bending for the four beam configurations are reported. The
computational results are presented in graphical format as functions of the
geometrical and shear parameters for the first three eigenmodes.

Considering the free-free end conditions, results plotted in Fig. 1, show an
increase in the shear parameter X (stiffer core material) leads to an increase
in the modal bending, especially for the higher modes. Negligible effects are
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to Figs. I-b the anti-nodal values show peaks arround X = 1.70 for the first
mode, and for all values of Y. The peaks for the second mode are shifted
around X = 2.70 while for the third mode they are around X = 3.70. These
regions represent undesirable design selections, neglecting the very stiff core
region. For the clamped-clamped end conditions shown in Figs. 2-b, the anti-
nodal bending for the larger values of X increase as Y increases except for
X 250 at the first mode. The shear parameter X has no effect on the modal
bending beyond the value of 100 and Y = 20 as is clearly shown in Fig. 2-a.
For the clamped-free end (Figs. 3-a,b), the anti-nodal peaks are relatively
observed for high X values especially for higher modes [7]. For the pinned-
pinned end conditions where flexibility exsistto the effect of the shear parameter
X is pronounced and the anti-nodal bending values increase gradually with
the shear parameter X as shown in Figs. 4-a,b. In all caces, [7] and [8] the-
configuration with the geometrical parameter Y <1 slight changes are observed *
over the investigated X values for the anti-nodal modal bending values (homo-
geneous beam cases).

CONCLUSION

Design charts have been reported for four practical multi-layered undamped
beam configurations of the shear model. Specific information concerning the
modal and anti-nodal modal bending moment for different geometrical and
shear parameters for the first three eigenmodes are provided. The work presen-
ted herin is based on an extensive runs of the developed computer program
which analyzes sandwich beam configurations and can be used in bridge, space-
craft, and modern machinery designs.
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Fig1: Free-free sandwich beam
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Fig.2: Clamped-clamped sandwich beam

Modal
values of

for Y=20 and different

bending
X.



DYN— lll 12;]

1Y

R I | | I A
) X=100 [
Z 80 1 _
(] 4
Z *
W -
m -
00
2 - .
3 d
¥ 8,0_ b
]
16 1 ILI L1 I L1 l | I | ]_,L_I__JH
0, 0,2 04 06 08 10
(a) SPAN PARAMETER, f
4,0 I T r
gO.L 1 IJ]llnl [ERIRE FTTTI B A B NI
a5 10 ] ] T
Ej i M2 Y=2 o
m .
gﬁ,ﬂ—
o
z -
3 -
< | i
220 RN NI 14 lhul
i 80 ] ] |
z M3 7
9 B Y=20 .
] " i
40r \\ .
- ) -
- _— "
—0p W TR SN (17| M S W R
Mo 100 100 100
b) SHEAR PARAMETER, X

Flg.3: Clamped-free sandwich beam
a. Modal bending for Y=20 and different

values of X.

b. Anti-nodal bending for different X and

Y values.

SECOND A.M.E. COMNFERENCE

’nl' 6 - B May 1986 , Cairc
I T §
O X=100 .
% 8 / 200 .
Z L d
% X100
I/ :
G = p
o + M1 .
>80r M2 1
- M3 -
16 ) I | J 11 J I | N W S SN B l] 1 i
0, 0,2 04 0,6 08
(@) SPAN PARAMETER, f
—16 - T T
- M1 /1
08
L
%?8 Y I T T T |
o [ LI Y B
zZ M2
m .
. =
S
g2,
= -
" -
<
S |
00 Lot dald Lo bl Pl o1y
E&O — I
z | M3 -
< | Y=20 /
40t
—00 Laadnd oyl ll|ln_|nl
010 100 100 100
(b) SHEAR PARAMETER, X
Fig4: Pinned-Pinned sandwich beam
8. Modal bending for Y=20 and different
values of X.
b. Anti-nodal  bending for different X and

Y vahipe



| 1 ’ . SECOND A.M.E. CONFERENCE
DYN'“I 121l W 6 - 8 May 1986 , Cairo

NOMENCLATURE

Latin Letters

a,b,c Characteristics equation roots

B Model frequency parameter =) mLa/B

B Flexural Rigidity = (EI)i ,i=1,3

Central distance between face layers

E, Young's modulus of ith layer

G2 Core material shear modulus

Hi Half thickness of ith layer

L Area moment of inertia of ith layer about its own midline
Ki Longitudinal stiffness of face layers, i = 1,3
L Beam span

m Mass of beam per unit length

X Shear parameter = GZL2 (K|+K3)/2H2K1K3
Y Geometrical parameter = CZKIKB/B (K1+K3)

Greek Letters

w, n_th modal frequency

172 Loss factor of the core material

/‘lZn Loss factor of the sandwich be::pm

f Length ratio (X/L), (Span pararheter)

Superscripts for Letters

I, .., VI Designates the derivation with respect to, X.

- Designates the non dimensional values.
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APPENDIX

Elements of the matrix [c. ]
Free-free sandwich beam

e =0
e11 o
J:2 5
e = b
13

2
By =&
e = cz
e15 7C2
16
e = 0
ez1 = aul - a2
22 u Zns
e =b -a
23 ns

4 2
S b " 3he

o4 2

€25 =C "8
e = cl'L - a2
26 5 ns 3 5
By =4 +X(1+Y) a” - a. a
e = o
e32 = b2-X (1+Y) b> - b. 5
33 ns
"3u ) 33 o
€35 - c -X(l+Y)c -c.a -
€36 =35

Clamped-clamped sandwich beam

1 7°

€12 137147157167
921 =4

6‘22 =0

€3 =€y =P

. ";26 “

€3 =@ {a~ + XY)

£ "¢ 5

€33 =€y, :3 (2b -XY)
€35 = -€3,C (c"-XY)
eal = SIn a

942 = COS a

ey3 = eXp: b

-

I
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= (b 2)epr

—(b‘*-aZ)exp b

={c R
4

)exp.c
—(C -al )exp.-c

= (a +X(1+Y)a -a

2

.a)cos a
ns
61
(b5 X(1+Y)b” 8 Qb)epr
= -(b x(l+Y)b aZ .b)exp.-b
= (c —\((1+Y)c a c)nxpc

- -(c -X(1+Y) c3 a.rz1 .c)exp.-c

= exXps €
= exp. -
- acos a
- -a sin a
= b exp. b
= -b exp.-b
=€ XD €
-C exp. -
= (a5+XY a3) cos a
+ XY a3) sin a
= (bS—XY b3) exp- b
= -(bs—XY b?) exp. -b
- (7-XY ) exp. C

l.,s \/ \/ .~3\ P

= (a°

.
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Clamped-free sandwich beam

2
e, =0° €45 = c2 exp. C
B 273791459 5 6= e =, P
e, =a €5 = (au—an% sin a
€,y =0 e52:(a —an)cosa
e =-e,, = b e (bqaz)ex b
23 T %4 C 53 S P-
&5 = 26 = €5y = (b - a‘ )Pxp -b
4 2
e = a (a +XY) e.. =(c -a_ ) exp. C
31 55 i
ey, =0 . €g5¢ = (CL; ';n ) exp. —c
e =-e,, =b” (b°-XY) e, =[a +a X(1+Y) a }a cos a
33 34 3 2 61
€35 =-€3. = (c™-XY) € = [- a —a X(l+Y) +2 a2 ]a sin a
& = —ag sin a ey = (b b X(1+Y) -a ) b exp. b
€yy = —E; cos a o [- b b X(1+Y) + a J b. exp. -b
€43 = b2 exp. b €gs = [c ;c ;((I+Y) a ]c exp. C
eyy =b" exp. -b ecg = [Fe+CTX(1+Y) + a Jc exp. —c

pinned-pinned sandwich beam

€ =° €4y~ €XP- -b
C127%137%147%157167° S = R €
21°° ‘u = AP -
e = -a ey, = a Sina
922 =B, = b2 951 = —a2 cos a
23 24 2 52 2
€5 =€y = C €53 = b2. exp. b
€3 = ou sy = b2 exp. -b
€3 =2 €55 = C_ €xp. C
933 = 934 = bZ 956 = Cz exp. -C
35 = 9_36 = €l = a‘,“l sin a
€ =Sina €62 a“ cos a
€, =cCos a €63 = b exp. b
€43 = €xp- b Cep - b: exp. -b
€5 - ca exp. C
€, = C exp. -
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