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ABSTRACT 

The paper proposes the use of a cam with a reciprocating or oscillating follower 
for the elimination of the fluctuation of the torque input to a planer mechanism. 
The cam is fixed to the input shaft, which is rotating at a uniform speed, and • 
the follower is maintained in contact with the cam by means of a spring. The 
expression of the input torque, which is required to drive a planar mechanism 
at a constant input speed, with the output leads and inertia forces considered, 
is derived. The cam profile is designed such that the cam input torque counters 
the fluctuating part of the mechanism input torque. This condition is employed 
in deriving the cam design equation, which is a differential equation describing 
the follower dsplacement. A special numerical method is proposed for the 
solution of this equation. Also, a formula is derived for the contact force 
between the cam and follower. This formula is applied at different mechanism 
positions, after the solution of the cam design equation, to check the contact 
between the cam and follower. The proposed method is applied to a four-bar 
linkage by using a disc cam with an oscilating follower as a numerical example. 

1. INTRODUCTION 

The input torque, which is required to drive a mechanism at a constant input • 
speed, in many cases, is fluctuating. Reduction of this fluctuation is usually 
recommended in order to reduce the variation in the input speed and the 
maximum torque to be delivered through the input shaft. In the bulk of the 
work devoted for this purpose the reduction was accomplished by either: (I) proper 
distribution of the link masses ifl]-[5]), or (2) attaching springs to some of 
the moving links ([6]-[9]). 

Sherwood [I] introduced a method for determining the mass distribution of 
the coupler of a four-bar linkage which yields the minimum fluctuation in 
the input torque when the mechanism is moving against no output load. The 
same problem was considered by Sherwood and Hockey [2], but with the use 
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of the principle of dynamically similar systems. This method was improved 
by Hockey [3], to avoid the unreal results which were obtained by its application. 
The improved method was applied by Hockey [4J to a four-bar linkage with 
output load. Elliott and Tesar [5] considered the planar four-link mechanisms: 
the four-bar, the slider-crank, the inverted slider-crank and the oscillating 
block mechanisms. For each of these mechanisms, they derived an expression 
to be used for determining the unknown link mass parameters by which the 
input torque at up to three of the mechanism positions can take predetermined 
values. 

Cenova [6] and Skreiner [7] suggested the use of a spring attached to the input 
and output links respectively, to reduce the fluctuation of the input torque. 
Mathew and Tesar [8,9] established a method for synthesis of spring parameters 
to satisfy specified energy levels in planar mechanisms. The method was employed 
for the minimization of the fluctuation of the input torque. 

In the present paper. it is shown that, complete elimination of the fluctuation 
of the input torque can be achieved by the use of a cam fixed to the mechanism 
input shaft and actuating a follower against a spring. Sections 3 to 6 deal 
with a reciprocating follower. The use of an oscillating follower is presented 
in section 7. 

2. MECHANISM INPUT TORQUE 

The torque required to drive a mechanism consists, in general, of two components, 
namely the torque To, which is necessary to overcome the loads acting on its 
output links, and the torque Tr, which is required to drive the mechanism against 

. the inertia forces and couples acting on the moving links. The planar mechanism 
under consideration is assumed to have n links numbered such that the driving 
crank, which is rotating at a uniform speed (Al, is link (1), whereas the numbers 
from n i  to n denote the output links. 

The first torque To  may be calculated, without considering the forces acting 
on the links individually, by the application of the principle of energy conservation, 
since the friction at all joints is ignored and the mechanism is regarded as 
a conservative system. Thus, the power input by To  is assumed to be equal to 
the output power exerted by the output links against the output loads. The 
expression defining the power delivered through an output link depends on 
the type of the load to be overcome by the link, i.e. whether the load is a force 
ora torque. For an output link moving against a force load, the power Pr  is 

• obtained from: 

P I' 	- S v r cos 'FP ' 

where: 	P 	link number , 

S = load force acting on the link , 

v r  = velocity of the point of the application of the load force on 
the link , 

Y P  = phase angle between F1  and vt. 
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When the output link is rotating against a load torque, the power is given by: 

PI7 = -T 	' 

where: 	TP = load torque acting on the link, 

1p = angular position of the link with respect to a fixed coordinate 
system. 

If the links are numbered such that the numbers from nl to n2-I belong to the 
• output links which overcome force loads, whereas the numbers from n2  to n refer 
• to the output links revolving against load torques, then the application of the 
• principle of energy conservation gives: 

n2-1 

Tout) = - j S1  v f  cos`' -/ 	Tff  . 	 (1) f  
l n2  F=n1  

The energy developed by the torque T r  appears as a change in the kinetic 
energy of the moving links of the mechanism, and therefore the power input 
by Tr  is equal to the rate of change of the kinetic energy of the moving links. 
The driving crank may be excluded in the calculation of the kinetic energy, 
since it is rotating at a uniform speed about a fixed axis. 

Thus, 

n  d 
L2 ml 	.2 	1 

Tr u3  = 	CIT [2 mt (xf + yP) —2 P=2 

where: 	m = mass of link (I), 

x1, yf  = coordinates of the mass centre of link (I) with respect to a 
fixed coordinate system, 

I 	= mass moment of inertia of link (I) about the axis perpendicular 

t = time. 

The input torque then is given by: 

T. = 	+T 1 	o 	r 

Assuming that the mechanism cycle corresponds to a complete revolution by 
the input crank, the mean driving torque Tin  may be obtained by equating the 
energy input to mechanism by the driving crank with the work done by the 
output links during a complete revolution of the driving crank, since the kinetic 
energy of the moving links is not changed by a complete mechanism cycle. 
This gives: 

Tm 
(4) 

211 

- 
(2) . 

to the plane of motion through its mass centre, 

(3)  
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where 	is the work done by the output link (r) against its load during a 
complete mechanism cycle. 

3. CAM INPUT TORQUE 

The torque required to drive the cam depends on the follower type, i.e. whether 
reciprocating or oscillating. In this section and in the next three sections the 
follower is assumed to be reciprocating, whereas in section 7 the use of an 
oscillating follower is considered. The driving torque consists of the torque 

• Ts, which is necessary to counter the effect of the spring force on the follower, 
• and torque Tf, which is required to drive the moving masses (the follower 
▪ and the equivalent mass of the spring) against their inertia forces. Both torques 
may be obtained by the application of energy conservation, as done in the 
foregoing section. This gives: 

Tse,) = Kz2 , 	 ( 5 ) 

and 
	

Tf 	(mf + me) za , 	 ( 6 ) 

where: 	K 	= spring stiffness, 

follower displacement, measured from the 	position which 
produces no load in the spring, and increasing as the follower 
moves away from the cam centre, 

follower mass, 

Me 	equivalent mass of the spring (=1/3 spring mass according to 
Rayleih's method [10]). 

From eqs. (5) and (6), it follows that, the torque required to drive the cam is 
given by: 

T-1 
c w [Kz + (mf + me) ii] 

	
(7) 

4. DESIGN EQUATION OF THE CAM 

In order to obtain a uniform total torque, the cam profile is so designed that 
the torque Tc  counters the fluctuating part of Ti. Thus: 

Tc = T 	- T. . fil 	I 
Substituting for Tc, this equation may he put in the forth: 

Kzz'+ M(02  z' z" = f' 

where: z' dz 
d .1• 1 

e  _ d2z _ 
d 	' 

z 

mf 

( 1 )  

( 9 ) 
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M = mf + me ' 
f'(•1'1  ) = Tm  - Ti  . 	 (10) 

Now, for every position of the driving crank ( 	), the output loads and the 
kinematic state (positions, velocities and accelerations) of the moving links 
can be determined, and accordingly f'( li ) may be calculated. Thus, eq. (9) is a 
differential equation relating the dependent variable z to the independent 
variable n. However, this equation may be simplified if its sides are integrated 
. with respect to SI, for its variation from an arbitrary initial value, say 	= 0, to 
. a general value 	This yields: 

1 	2 2 1 	2 2 2 K (z -z0) + -2- Mo) (z' -z'o) = f ( 	, 

where: 	z0  , z' = values of z and z' at 11 = 0 ,  0 

.2 2 	• 2 f ('11 )=T 	'I• - 	T 	d'I 	I in (x 4-jf )+ I 'I' 	+ E 1 	ml 	o 	2/_ 	1 l' 	P 	E0 

0 	1=2 

where: 	E0 = kinetic energy of links 2, 3, ..., n at 11 - 0. It is to be noticed 
that the solution of eq. (11) does not require the calculation of the accelerations 
zp and j;f, which are necessary for the solution of eq. (9). 

5. SOLUTION OF THE DESIGN EQUATION 

If z0  and zb are arbitrary assumed, then eq. (I I) becomes a quadratic first 
order differential equation in the dependent and independent variables z and 
P1 with known initial conditions, and accordingly it may be solved numerically. 
Obviously, it can not be insured that the solution obtained in this way satisfies 
the conditions imposed by the nature of the problem, which are: 

i. the value of z at 'PI  = 2IT must be equal to z0  , 
and 	ii. the value of z' at '1'1 = 21' must be equal to z•0  . 

However, from the definition of f (1) ),it can be seen that, it vanishes at Pi = 211, 
and therefore eq. (11) guarantees that, if one of the foregoing conditions is 
fulfiled, the other is also fulfiled. Hence, only one of the unknowns z0  or zb may 

- be arbitrary assumed, while the other is left for the fulfilment of the condi- 
' tions. Therefore, eq. (11) can not be solved by one of the known numerical 

methods of solution of the differential equations. The method proposed for 
solving eq. (I I) is presented below. 

Let the function period ( l'i - 0 to 211 ) be divided at (N-1) points into equal 
intervals each of length1I-1 , and the values of f ('Ii), z and z' at the ith point of 
these points be denoted by fi, zi, zli  respectively. The constants f I, f 2$•••7 N-1 can be calculated by the use of eqs. (1), (4) and (12), whereas the values of z 
and z' at the division points are to be determined by solving the equation. 
Application of eq. (11) at the division points gives: 

6 

(11) ' 

(12)  



1

DYN -131146 
SECOND A.M.E. CONFERENCE 

6 - 8 May 1986 , Cairo 

r • • 

1 	1 	2 	2 	2) = f K (zi2  - zo ) + -- M-) (z'.- z 0' i 	
(i=1,2,..., N-1). 	 (13) 

If the interval length MI is sufficiently small, then the values of z' at the 
mid-points between the (i-1) th , ith and (i+ 1) th points may be considered 
equal to (zi- zi_1)/Acr1 and (zi+ 1 -zi)/c.T1 respectively. Also the mean of these 
values may be taken as z'i , 1.c., 

Z. 	- Z. 
1+1 	1-1  z'. - i 	2.n`l'I  

.▪ By applying the same principle z'0 
may be expressed as: 

z i  - zm _, 
z' - 	" 	 • 

0 	2 Al'l  

Substitution into eq. (13) yields: 

K (zi2  -z0 )+Alkzi+i -z i _ i )2-(zczN _ I )2 ]= f i 	 (14) 

M 0)
2 

where: 	A - 
8 (.6`1"1 )2 • 

In the present method z0  is assumed, and therefore expression (14) represents 
(N-I) nonlinear equations in the unknowns z1, z2, ... and zN_ I . In order to solve 

. • these equations by Newton's Raphson iteration method they are put in homo- 

• geneous form: 

F. = 	 (15) 

2 
where: 	F. 	1 K (zi - zo )+ A [(zi+i -zi _ 1 )2-(z 1 -zN _ I )2 ]- f.. 

The iteration formula of this method may be written as: 

k+1 
1B. 	] - [B

k
] - I-  I)

k
1
-1 1C

k 1, 

where: 	[B
k 
 ] = [b i

k 
 , b2 , ... , bij_ i

]
T 
 , 

k 	
k' ••• ' c k 

	T 
[C

k 
 ] , [c i  , 	... 

cz 	N-1'
I 

 
k k k 

[pk] = an (N-1):;',(N-1) matrix with elements dII'
d12'..•'d(N-1)(N-0 

where: 	13!< = k th iteration value of z. , 

cl.<=. the value of F. at the k th iteration stage, i.e. when zi  is put equal 

to b. , 
oF. 

dij = the value of 
oz 
— at the k th iteration stage. 

(16)  

(17)  
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In order to put 2:F1/azi in a form which can be easily programmed for the 
use of digital computer, F1 is expressed in the form: 

1 	2 (i=1,2,...,N-1), F. = Uit  - V - fi  - 	K zo 	 (18) 
12 	1 v  2 where: 	U.i.  - A (z.i+J.  - zi_ 1 , 	+ -f, ,... zi  , 	 (19) 

V = A (z1  - zN_ 1 )2 
(20) 

Thus, -bFi/ezi  can be obtained from: 

OFi 	bU. 
I 	-bV 

Oz. = oz. 	oz. ' 	 (21) . 

	

1 	) 	1 
aU• 

where: 	ozI  - -2 A (zi+1 	1- ) 	 (j=i-1), 
1 

= Kz.i 	 ( j=1 ), 

= 2 A (zi+1 - zi .-1 ) 	 (0+1), 

= 0 	 (otherwise), 

oV bz. = 2 A (z1  - 	 ( j=1 ), 

-2 A (z1 - N-1) 	 (j N-1), 

= 0 	 (otherwise). 

Rapid convergence nby Newton's Raphson method is achieved if the starting 
values b?, b9, , are sufficiently close to the exact values of zi,z2...,zN_1, 
which satisfy the (N-1) equations. If M is small, reasonable starting values may 
be obtained by putting M = 0 in eq. (13). This yields: 

2. 

	

0, 	f 2 (b./2  z + 0 	K 	 (i=1,2,..., N-1). 	(22)  

However, if M is not small, the equations may be solved by the same method, 
but in successive steps. This is accomplished by replacing M by a smaller value 
MI, and solving the equations by the use of the starting values obtained from 

. eq. (22). The resulting values of the variables are then taken as starting values 
for the next step in which Mi  is increased to a greater value M2. In this way,the 
value considered for M is increased gradually until it reaches its actual value. 

6. CONTACT BETWEEN CAM AND FOLLOWER 

After determining the follower displacement z corresponding to the different 
positions of the driving crank, the contact force between the follower and 
cam is checked at the (N-1) division points, as well as at the end point of 
the mechanism cycie, which is referred to as point no. (N), to insure continuous 
contact between the follower and cam throughout the mechanism cycle. Since 
friction is neglected, the component of the contact force along the follower 
displacement may be expressed as: 



1 

(23) 

1
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The values of z'i' may be expressed, by the use of the values of z' at the mid-
point between the (i-l)th, ith and (i+1)th division points, as: 

z. 	- 2z. 	z. 1 1 	1 	1-1  
(Al, 

1 
This gives: 

F ci = (K -16A) zi  + 8A (zi-1+zi+1 ) (i=1,2,...,N)• 	(24) 

Seperation between the follower and cam occurs if any of the values of Fci  
is negative. This may be remedied by either: (i) increasing K, (ii) decreasing 
N1, or (iii) increasing z0. 

7. OSCILLATING FOLLOWER 

In many situations the use of an oscillating follower is preferred due to the 
smallness of its friction losses, especilly in the case under consideration, where 
the contact force may be relatively high and no output is taken from the 
follower. If the contact between the follower and cam is maintained by a 
torsional spring of stiffness K, the preceding 	equations are still applicable, 
but with z replaced by e, which is the angular displacement of the follower 
measured from the position which produces no force in the spring, and M re-
placed by I, which denotes the moment of inertia of the follower mass together 
with the equivalent mass of the spring about the axis of rotation of the follower. 

If a helical spring, with stiffness K, is used (Fig. 1), in addition to the above 
replacements, the design equation (eq. (11)) is changed to: 

	

2 	 I 2 '2  '2  —1 K 1-1- 	-H cos(13-0) -1/14H1 -H2 cos(13-00) J21+-2 lu..5 (0 -0 )=.1(11 ), (25) 1 2 	 0 
where: 	13 = the angle between QD and QE, when the spring is unloaded, 

H1 = fl + r> , 

H2 = 21'1 P2 ' 

P = 	- H2  cos 13 . 

Accordingly, eq. (14) is changed to: 

K-H2 cos (p-e.)]2  - tr- ■/H1  -H2  cos (p-edf 

+ A [(ei+1 	ei-1
)2 

- (el - eN-1)2]  = fi ( =1,2,...,N-I). (26) 

Fi and aloe., which are used in the solution of the (N-I) equations represented J. 
by expression (26), are in thiscase obtained from: 
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(30)  and 

where: 

V =A(01  - eN _ I )2 , 
OF. 

au! 
	 = -2A 	- e.1  ) be. 	1+1 	-1 

K[f- \1111 -H2  cos (p-ein H2  sin (P-01 ) 

2 VH1 -H2  cos (p-ei) 

= 2A (e. 	- 	) 

Fig.1: Oscillating follower with helical spring. 

F. = U. - V - f. - —I K [f- V 	- H2 cos (P-00 )12 
2 	' (27)  

= 0 	 (otherwise) , 
aV  
oe. = 2A 	- eN-1) 	 ( j=1 ) , 

= -2A 	 - (e1 	8N-1) 	 (j=N-1) , 

= 0 	 (otherwise) . 

• 	• 	• 

A (e.1+1  - 	+ 	K [2- IfH 1  - H2  cos (p-ei )1
2 

(28)  where: 	U. = 
2 j 



K [1)- V1-11 -H2  cos ()3-ein H2  sin ((3-oi) 

2 1/H1  - H2  cos (ved 

+ 8 A (0. 	- 20
1
. + 0

1. 1-1 ) 

M . ci 

I
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The starting values of the variables, which are used f r the solution of the 
equations by Newton's Raphson method, arc found by substituting for A, in 
eq. (26), by zero. This yields: 

2f. 
 -00)12 11 b0 -  1 --I 	I y H1 - 2 	W H2 H2 ) 	l< 

The contact between the cam and follower, in this case, is checked by calculat-
ing the moment of the contact force about the follower pivot at the N mecha- 

. nism positions defined above. The value of this moment at the ith point is 
• obtained from: 

(i=1 ,2,...,N). 	(32) 

8. EXTENSION OF THE PROPOSED METHOD 

Although only planar mechanisms were considered above, the preceding equations 
can be applied to spatial mechanisms, if the expressions including the kinetic 
energy of the moving links (expressions (2) and (12)) are modified. Also, if 
the mechanism is driven by a device which produces variable torque Tv  , such 
as an internal combusion engine, the spring-cam system may be used to counter 
the difference between the torque Tv  and Ti, in order to maintain constant 
input speed. In this case, the above equations can still be applied but vyitb 
the term Tm  in eqs. (8) and (10) replaced by Tv, and the term Tm  ll  in eq. (12) 

( 1 
replaced by / Tv d 1'1 . 

0 

9. EXAMPLE 

The proposed method was applied to the four-bar linkage, which is represented 
diagramatically in Fig. 2. The mass centres of the coupler AB and the output 
link BC are at points G2 and G3 respectively. The space-fixed coordinate system 
is Oxy. The mechanism data was: 

a1  = 0.09 m 	 a2 = 0.24 

a3 = 0.16m 	 a4 = 0.30 R1  

P2 = 0.12 rn 	 in2 = 1.2 	kg 	12=0.006 kgm2  

p3  = 0.05 m 	 m3  = 3.0 kg 	1 3=0.024 kgm2 

w = 30 rad/sec 	 T3 = -30 13/ 1+
31 Nm. 

(31 ) 
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The fluctuation of the input torque of this mechanism was eliminated by a cam 
operating an oscillating follower. The contact between the cam and follower 
was maintained by a helical spring. The particulars of the follower and spring 
(Fig. 1) were: 

1 
= 0.06 m 	 1

2 = 0.12 m 	 p = 90° 

e0  = 27° 	 1 = 0.0005 kgm2 
K=20000 N/m. 

The displacement diagram obtained by the proposed method is presented in 
Fig. 3. 

45 

40 

6 

Fig.2: Example mechanism. 

0 60 120 180 240 300 360 
cr1°  

Fig.3: Displacement diagram. 
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10. CONCLUSIONS 

1. The fluctuation of the input torque of a planar mechanism, with both output 
loads and inertia effects considered, can be completely eliminated by the 
use of a cam fixed to the input shaft. 

2. By the application of the principle of energy conservation, the mechanism 
input torque, as well as the cam input torque, can be determined without 
calculating the reactions between the moving parts, since they are regarded 
as internal forces. 

3. The method proposed for the solution of the cam design equation is straight-
forward and can be easily programmed for the use of digital computer. 

4. The proposed method may be applied in the design stage, as well as for 
smoothing out the input torque of excisting mechanism,  since it simply 
requires the addition of a spring-cam system without affecting the mechanism 
links or mobility. 
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