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OPTIMAL CONTROL OF A TURBOJET ENGINE 
A DYNAMIC PROGRAMMING APPROACH. 

MOHTASSEM BILLAH KADDAH ** 

ABSTRACT 

• 
This paper discusses the application of dynamic programming 
techniques in the domain of turbojet engine control system 
design. 

Based on a known detailed model of a by-pass double-spool 
turbojet engine, derived in previous works, we obtained an 
optimum control law governing the acceleration of the engine. 

The work discusses the adaptation of dynamic programming 
techniques to the specified problem. A detailed analysis of the 
problem characteristics is included and a discussion of computer 
implementation requirements is presented. 
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1. INTRODUCTION 

The dynamic programming ( DP ) technique represents a valuable 
tool for optimal control systems studies. However, in spite of 
the extended development of its theoretical background, its 
practical implementation is generally difficult. This difficulty 
increases in case of complicated models such as variable 
geometry turbojet engines. 

In this study, we have introduced the basic concepts of dynamic 
.programming and showed in detail the steps adopted in order to 
.apply it to the optimal acceleration problem of a double-spool 
-by-pass turbojet engine. 

2. PROBLEM DEFINITION 

2.1 ENGINE MODEL 

During our previous works [4,51, we have developed 
turbojet engine model specially adapted for 
studies. The engine is a double-spool by-paSs 
with variable exit nozzle area (fig. 1). 
Under the considered assumptions, the basic 
the engine would be: 

NLP 	 low pressure rotor rpm 
NHP 	 high pressure rotor rpm 

( neglecting the pnumatic effects ) 

and the basic input parameters are: 
C 	 rate of fuel flow 
S 	 exit nozzle area 

( neglecting the actuators dynamics ) 
several outputs may be computed from the model, the most impor-
tanty are: 

p., T. 	pressure 	and 	temperature 	at 
individual engine sections (i) 

F 	 engine thrust 
MLF 	 low pressure compressor 

margin 
MLH 	 high 	pressure compressor 	(HPC) 

surge margin 

a detailed 
control systems 
turbojet engine 

state parameters of 

(LPC) surge 

-f-.1 X r  U ) 

g' ( X, U ) 

( NLP , NHP ) 

( C , S ) 

( T5 . MLF MLR _ P 1 

The engine was represented by the following model: 

where 
X r = 

U = 

y
T 

( 2.1 ) 
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Due the pecularities of the considered model, equations (2.1) 
are non-linear implicit equations where f cannot be obtained in 
an analytical form. 

The solution of these equations is obtained through an ittera-
tive scheme based on conditions of common operation of 
individual engine components. The components are themselves 
represented by non-linear imperical or theoretical 
characteristics. 

2.2 ENGINE OPERATIONAL CONSTRAINTS 	• 
• 

In general depending on the aircraft type, the nature of 
missions and the needed engine performance characteristics, the 
following criteria should be clearly defined: 

- Engine 	protection : 	temperature 	limits, 
revolutions number, pressures, ... 

- Engine stability : performance fluctuations, 
surge margins, ... 

- Steady state performance thrust, fuel 
consumption, ... 

- Transient performance : thrust variations, 
combustion stability, transient durations, ... 

The general character of these cri.terea is the same for every 
-type of engine but their priorities may differ from one engine 
:type to the other. These priorities are determined through a 
deep understanding of the physical phenomena occuring within the 
engine. 

These criteria are further translated into a set of constraints 
which generally define extreme limits for the different engine 
parameters: state ( NLP, NHP ) ; inputs ( C, S ) and outputs 

( F, MLF, MHP, T5 , 	) 

S - S,114 	0 

T 	- 'PS 1„ ,,, 	N'5 0 

q ( X, U ) .' 0 	 MLF - MLFMaA 	0  

MLH - MLHm 	s<l" 0 ax 

NLP - NLPoutx 	 0 o 

NHP - NIIPmcvt  < 0 



0 

•A discussion of the basis of this choice was presented in 
previous works [1,4,5] 

The optimal control problem may thus be expressed as : 

Given the state equations 	 X = f ( X, U ) 

Find the control law U 	
Y 	g ( X, U ) 

, 
maximizing the criterion 	 J = /1? ( X, U ) dt 
Assuming the system is 	0- 
subject to the constraints 	 q ( X, U ) 	0 

2.3 CONTROL PROBLEM DEFINITION 

The aim of this study is to determine an optimal control law applicable to the acceleration of the engine from idle to maximum regimes and for the flight conditions ( H = 0 , M = 0). 

An optimal control law is determined for a given optimality criterion. We have chosen the integral of the thrust over the transient period to express the optimality criterion : 

• J = jr F ( X, U ) dt 

1 
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3. SOLUTION APPROACHES 

Two basic methods may be used for the solution of this problem : 

a- HAMILTONIAN APPROACH 
This approach results in general in an open loop control law It was discussed in detail in our previous work [5]. 

b- DYNAMIC PROGRAMMING APPROACH [2] 
This approach results in a closed loop control law, but its application is time consuming and necessitates the processing of large amounts of data. 

3.1 COMPARISON BETWEEN THE TWO APPROACHES 

.Considering the state space representation of the engine, the  

.aim of control system computations is to determine a set of 
'trajectories, within this space, covering the specified domain 
of engine operation ( fig. 2c ) 

The Hamiltonian approach is based on a repeated computational procedure allowing each time to calculate an optimal trajectory 
( fig. 2a ) 

The dynamic programming ( DP ) approach, on the other hand, 
allows an immediate solution for a given zone of the state space 
and resulting in a set of optimal trajectories within this zone. 
The procedure is then repeated for other zones until all the domain of operation is covered( FIG. 2B ). 
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FIG. 2 
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Within the scope of this work, we shall introduce and implement 
the dynamic programming approach. The results of application of 
the Hamiltonian approach will help overcome some of the 
difficulties related to DP, specially storage requirements. 

4. DYNAMIC PROGRAMMING APPROACH 

4.1 General 

Referring to the engine model ( equ. 2.1 ) and assuming an 
initial state X at a certain time t 

fig. 3 

   

t T 	 r 
Considering a given trajectory, we may represent the criterion J 
as: 

	

J = JiF ( X, U ) dt + 	F ( X, U ) dt 	(4.1) 
0 

at this instant t, we may only compute trajectories for the 
remaining period ( T-t ), i.e. we can only compute the the 
second term of the equation (4.1). 

.assuming a general control law 

I
U(t) I tt 6 ( t, T )1 

for which the second term may be determined as 

R ( X,t ; U ) = J F ( X(21, U(t) ) dt 
t 

taking into consideration that 

X = f ( X, U ) 	and X(t) = X 

for an optimal control law, this may be expressed as 
t■ 
R ( X, t ) = 	maximum 	R ( X,t ; U ) 

p(t ) I t E ( t,T)i 

defining a second point at a time = t + A T, and assuming A T to 
be suuficiently small, we may compute the new state X+ ESX from 
the state equation, whale 

AX = f f ( X,U, t ) dt, 
we can also express t 

L4bT 

R(X,t;U)=JF(X(t),U(t) ) d2 + jiF(X(t),U(2)) d t. 
t 	t taT 
= F(X,U(E)). PT + R(X+6X,t+tiT;U) 
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Further, assume that we have already determined an optimal 
trajectory starting at the point (X+AX,t+bT) then 

R(X,t;U)= F(X,U(t)).1iT + R(X+AX, t+AT) 

The optimum trajectory starting at the point (X,t) would then be 
A 
R(X,t) = 	maximum 	R ( X,t 	U ) 

U(Z)1Z 	(t,T)1 

i.e. 	R(X,t) = maximum [ F(X,U(t)).AT + R(X+AX,t+AT)] 
U(t) 	 (4.2) 

From this relation we may conclude that the optimal trajectories 
may be computed backwards in time starting at the final point 
t = T, since 

at t = T R ( X, T ) = 0 	>11' X 	( by definition of R ) 

Assuming suitable time intervals AT we may apply equation (4.2) 
for all the points (X,T-AT) and then repeat the procedure back-
wards until t=0. 

Y. 

fig. 4 

IA 
A 

r-oT 

, b) 

4.2 APPLICATION OF THE DP TO THE TJE PROBLEM 

4.2.1 PROBLEM SIMPLIFICATION 

Choosing a time horizon T sutficiently large, we notice that the 
engine regimes( NLP,NHP ) reach their final steady state ( max. 
regime) a long period before the time T 

X 

X 
LaT I 

6 ObT 

• fig. 5 

As seen from fig. (5), the optimal trajectory passing by the 
point (X, t+bT) may be considered similar to that passing by the 
point (X,t) but with a time delay AT, then, if 

R ( X, t ) 	= max IF ( X(2), U(t) ) dt. 
Lilt} t 

Land 	R ( X, t+t,T)= max J F ( X(t), U(t) ) dt. .1 
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we may express 
R ( X, t ) = R ( X, t+AT) + Fww*.AT 

where 	F rneo, is the thrust obtained at the final steady 
state point ( known design value). 

Further we may consider a trajectory at t=0, and get 
A A 
R(X)=R(X,0)=R(X,t) + F p,.t t<<T mo 

i.e. 

4.2.2 EXPRESSION OF OPTIMALITY CONDITION 

The optimal criterion was expressed as: 
A 
R ( X,t ) = maximum 	F( X, U ).6T + R ( X+AX, t+AT )1 

U (t) 

applying the simplification assumptions, we get 

R ( X ) = maximum \,.. [F(X,U)- FMS  1.AT + R (X+AX) 
U (t) 

where AX and AT are related by 

X = f ( X, U ) 	pT 

. It is clear that this relation is a reccurrent relation that may 
• be initiated at the final steady state regime (t=T ; X=X) where 

R ( X ) = Fmax  . AT 

4.3 PRACTICAL IMPLEMENTATION 

We have used the results obtained during the application of the 
Hamiltonian approach [5] to simplify the implementation of the 
DP and reduce the volume of processed data to a reasonable 
amount. 

4.3.1 COMPUTATIONAL GRID 

0 

R(X,t) = R(X) - Froax.t 

• fig. 6 

NNP --I.  Mak . fe3 IMC S. 

   

	 NLP 

   

    

We have computed the optimum trajectories through a scanning 
scheme in the state space. For this purpose, we have defined a 
grid as follows: 

- Step within the state variables = 200 rpm. 
- Grid is limited to a zone defined in the viscinity 
of the steady state operating line. 

L. 	 • • 	 -J 
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4.3.2 EXPLORATION LINES 

In order to solve the optimality equation at a point X, it 
should have already been solved at all reachable points x+Isx 
applying admissible values of commands U. 

In case of jet engine acceleration, we can neglect all the 
points for which both the state variables decrease. Thus when 
looking for a solution at point X, we shall limit our explora-
tion lines to directions where at least one of the two state 
variables increases. 

• Further, consider that an optimal trajectory originating at 
point X passes by the line AD 	 • 

fig. 7 

t4LP 
the point X+ 6 X will be the intersection of the optimal 
trajectory and the line AD. It is not a point on the chosen grid 
but it may be easily computed knowing A, B, C, D. 
We have thus chosen the grid points lying on exploration lines defined by 

NLP + NHP = constant 

NHP 

fig. 8 

Ar L P 

4.3.3 SOLUTION AT THE CURRENT POINT 

• Assume the exploration has reached a grid line i. We examine all 
its points and classify them as follows: 

- Non 	admissible 	points: 	points 	outside 	the 
exploration zone 

- Admissible points: points within the exploration 
zone, these are memorized and saved with the 
parameters of the corresponding optimal solution. 
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a- Domain of possible successors: 

Consider a point X on the next exploration line i+1. The points 
A, B, C, D were already processed during the exploration of the 
line i. Some of these points may be non-admissible. 

fig. 9 

NHP 
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We could limit the domain of possible successors to the segment 
AC. This would lead to erroneous results, since the obtained 
optimal trajectory is now constrained to pass between A and C. 
We have thus decided to extrapolate the results obtained in A, 
B, and C to obtain the point D. 

b- Solution of the optimality equation 

At a given point X, we scan all possible input values by 
considering a constant value of nozzle area S and stepwise 
varying the rate of fuel flow(AC= 0.01 kg/s.), then by changing 
the nozzle area by a step( tS = 0.005 m ) 

.For each couple (C,S) we have used the engine model to compute 
▪ the needed engine parameters( T5 , MLF, MLH, F, NLP, NHP ). •n 
case the considered couple is admissible, we calculate the time 
step T and then determine the value of the criterion 

J ( C,S ) = ( F - F 	). 6T + I.( X+ EX ) 

After scanning all couples ( C,S ) we come to one of the 
following conclusions : 

- None of the couples is admissible, then the corresponding 
point X is memorized as non-admissible. 

:- At least one of the couples is admissible, then that which 
•results in the maximum value of J(C,S) is the optimal couple, Lt 
is memorized with the criterion 

R.( X ) = max J ( C,S ) = J ( C,S ) 
c s 

We then proceed to the following point of the exploration line. 
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4.3.4 IMPROVEMENT OF THE ALGORITHM 

A considerable improvement may be reached if we use an improved 
scheme for the scanning of the input couples ( C,S ). If we 
consider the known optimal accelerations, we may compute a "most 
probable" successor for the point X 

FIG. 10 

• 

The value of the couple ( C,S ) obtained by interpolation of the 
known couples at A, B, C, D represent a good initialization for 
the scanning scheme. 

4.4 RESULTS 

The algorithm devised in the previous section was implemented on an IBM 360 44 mainframe. 

The simplification assumptions and the results obtained during 
the application of the Hamiltonian approach enabled us to use a scanning zone of width 400 rpm around the steady state operating points of the engine. This has limited the number of points 
defining the operational zone within the state space to only 
200 points and consequently overcomming the problem of stor4ge 
requirements. Nevertheless, the algorithm needed 90 minutes to run an acceleration. 

A sample of the preliminary results is shown in figures 11 & 12: 

Fig.11 represents the vectors NLP, NHP in 
each point within the exploration domain. These values are the basis for calculating the optimal trajectories and they represent a measure of the 

transient behaviour of the engine within this zone. 

In fig. 12 we may compare simulations of engine accelerations ( idle - max. regime ) starting at two different points. 

5. CONCLUSIONS 

Through a deep knowledge of the engine performance 
characteristics and using the preliminary results obtained by the Hamiltonian approach, we have succeeded in overcomming 
several of the implementation problems of dynamic programming. 

The obtained algorithm will allow us to investigate in a 
thorough way the problem of optimal control of engine. This 
investigation will necessarily lead to adjustments both in the 
engine model and the computational algorithm until the final Lphases of engine conception. 

...1 • • 



fig. 11 Vectors NLP and NHP 
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fig. 12 Optimal trajectories. 
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