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ABSTRACT 
  
The present paper develops an appropriate optimization model for placing 
frequencies of a typical wind rotor/tower structure in free torsional motion. The aim is 
to avoid large amplitudes caused by the yawing-induced vibrations in the case of 
horizontal-axis machines or rotational motion of the blades about the tower axis in 
case of vertical-axis machines. This can be a major cause of fatigue failure and might 
severely damage the whole structure of the wind generator. The mathematical 
formulation considers a single pole tower configuration having thin-walled circular 
cross section with constant taper along the tower height. The nacelle/rotor 
combination is modeled as a rigid mass elastically supported at the top of the tower 
by the torsional spring of the yawing mechanism. The resulting governing differential 
equation of motion is solved analytically by transforming it into a standard form of 
Bessel’s equation, which leads to the necessary exact solutions for the frequencies 
and mode shapes. Several cases of study are examined for different values of the 
yawing stiffness and damping parameters by considering both conditions of locked 
and unlocked yawing mechanism. Useful design charts are developed for placing the 
frequencies at their needed target values with no penalty of increasing the total 
structural weight of the system. In all, the developed model guarantees full 
separation of the system frequencies from the critical exciting torsional frequencies 
by the appropriate choice of the optimization design parameters. 
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NOMENCLATURE 
 
G         shear modulus of tower material 
H         hub height. 
h         tower wall thickness. 
ho        wall thickness at tower base. 
IN         mass polar moment of inertia of the nacelle/rotor combination    
J          second polar moment of the tower cross sectional area. 
Ky        yawing stiffness coefficient 
r          mean radius of the tower cross section. 
rH        mean radius at top of tower. 
ro         mean radius at tower base. 
t          time variable 
x          distance along tower height measured from its base. 
ϕ(x, t) elastic rotation of the tower section. 
ψ(t)     rigid body rotation of the rotor/nacelle combination relative to the top of tower 
ρ         mass density of tower material 
∆        taper ratio = (rH/ro) 
β         =(1 – ∆) 
ω        circular frequency of torsional vibration.   
ω̂        dimensionless frequency ( GH ρω ) 

)ˆ(            βω=ζ  
)(            ∆ζ=ξ  
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1. INTRODUCTION 
 
One of the most important aspects of R & D in the wind energy programs is the 
accuracy of analyzing structural dynamics of wind turbines; a crucial factor in 
determining fatigue life of the machine. Research is continuing for a better 
investigation of the dynamic interactions between the rotor, nacelle and the tower 
structures. A recent paper dealing with this issue and the simulation of wind turbine 
dynamics was presented by Florin Iov et al [1], who developed different tools for 
performing the analysis of the interaction between the mechanical system of the 
wind turbine and the electrical grid as well as the calculation of the dynamic loads on 
the turbine structure. In case of horizontal-axis machines, the rotation of the 
nacelle/rotor combination with respect to the tower axis is an important degree of 
freedom in wind turbine dynamics. Such a rigid body motion is produced by the 
yawing mechanism to direct the rotor towards the wind in order to maximize energy 
capture [2, 3]. Usually this is accomplished actively with an electrical or hydraulic 
yaw servo. A wind vane, placed on top of the nacelle, senses the wind direction. The 
servo is activated when the mean relative wind direction exceeds some predefined 
limits. Therefore, the wind machine spends much of its time yawed, so it would seem 
reasonable to expect that designs should have a sufficient understanding of the 
response of the turbine in that condition to take it properly into account.  There are 
frequent yaw system failures world-wide on wind turbines, where some statistical 
studies [4] indicated that such  failures accounts for about 10-15% of breakdowns in 
any given year the wind plant is in operation. This fact emphasizes the need to 
improve the design of yaw mechanisms in order to increase the availability of 
turbines and reduce their maintenance overheads. One of the most cost-effective 
solutions in designing efficient yaw mechanisms and reducing the produced 
vibrations is to separate the natural frequencies of the tower/nacelle/rotor structure 
from the critical exciting yawing frequencies. This would avoid resonance where 
large amplitudes of vibration could severely damage the whole structure. The 
frequency-placement technique [5, 6] is based on minimizing an objective function 
constructed from a weighted sum of the squares of the differences between each 
important frequency and its desired (target) value. Approximate values of the target 
frequencies are usually chosen to be within close ranges; sometimes called 
frequency-windows; of those corresponding to a reference baseline design, which 
are adjusted to be far away from the critical exciting frequencies. Direct maximization 
of the system natural frequencies is also favorable for increasing the overall 
stiffness-to-mass ratio level of the structure being excited [7-9]. This may further 
other design objectives such as higher stability and fatigue life and lower cost and 
noise levels. Practical models of beam structures were formulated in Ref.[10], where 
dynamic analysis and structural design were performed simultaneously by finite 
element method coupled with constrained optimization algorithm.  
 
The scope of the present work is to perform first the necessary exact dynamical 
analysis of a practical model of the wind turbine in order to be able to place the 
frequencies at their target values. Secondly, the behavior of the yawing fundamental 
frequency will be investigated in detail to see how it changes with the selected 
design variables. Cases of study include the locked and unlocked conditions of the 
yawing mechanism. Design variables encompass the cross-sectional properties of 
the tower and its tapering ratio, as well as the yawing stiffness and the rotor/nacelle 



Proceeding of the 12th AMME Conference, 16 -18 May 2006 Paper  DV-10 628 
 

 

inertia ratios. It is demonstrated that global optimality can be achieved from the 
proposed model and an accurate method for the exact placement of the system 
natural frequencies is deduced.  
 
 
2. GOVERNING EQUATION OF MOTION 
 
The system to be analyzed is illustrated in Fig.1. The rotor/nacelle combination is 
considered as a rigid body with mass polar moment of inertia IN spinning about the 
vertical axis, X, at an angular displacement ψ(t) relative to the top of the tower. The 
tower is in the state of free torsional vibration about its centroidal axis with an 
absolute angular displacement denoted by ϕ(x,t). The yawing mechanism is 
assumed to have a linear torsional spring with a stiffness Ky. Applying the 
elementary theory of torsion [11], the governing equation of the motion is cast in the 
following: 
 

                                              
t

)t,x()x(I]
x

)t,x()x(GJ[
x 2

2
p ∂

ϕ∂ρ=
∂

ϕ∂
∂
∂                                  (1.1) 

 

 

subject to the boundary conditions: 

at the tower base (x=0)               ϕ(0,t)=0                                                                         (1.2) 

 at the top of tower (x=H)         
x

GJ
∂
ϕ∂

|x=H )
td

d
t

(I)t(K 2

2

2

2
Ny

ψ
+

∂
ϕ∂−=ψ=                      (1.3)                         

where GJ(x) and ρIp(x) represent the torsional stiffness and the mass polar moment 
of inertia per unit length, respectively. The twisting angle ϕ(x,t) is assumed to be 
separable in space and time, )t(q).x()t,x( Φ=ϕ , where the time dependence q(t) is 
harmonic with circular frequency ω.        
The associated eigenvalue problem can be written directly in the form 

 

                                       0)x()x(I]
dx
d)x(GJ[

dx
d 2

p =Φωρ+
Φ                                             (2.1) 

The boundary conditions are obtained by substituting for q
td
qd 2
2

2
ω−=   in Eq. (1.3) to 

get: 
           at x=0                      Φ(x)=0                                                                                     (2.2)   

           at x=H                      0 Kdx
dGJ  y

o
=−

Φ
ψ

                                                                    (2.3) 
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                                                                                                                    Plan view    

                                                                                                                          

 

                      Fig.1. Horizontal-axis wind turbine in free yawing motion. 

where                               ] 
dx
d

I
GJ  [

N
2o Φ−

Φ

ω
=ψ                                                               (2.4) 

                      
Considering a tapered tower with thin-walled circular cross section (refer to Fig.1): 

                                                     J = Ip = 2πr3h                                                                    (3.1) 
 
where r and h are assumed to have the same linear distribution described by the 
expressions:  
 
                                                   )x̂1(rr o β−=                                                                    (3.2) 

                                                   )x̂1(hh o β−=                                                                   (3.3) 
 
x̂ and β are dimensionless parameters defined as: 

                                          
H
xx̂ = , )1( ∆−=β , ∆= rH / ro                                                        (4) 

       
where ∆ is the taper ratio of the tower. Substituting in Eq. (3.1), the second polar 
moment of the cross sectional area becomes 
 
                                                         )x̂1(hr2J 4

o
3
o β−π=                                                       (5) 
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3. SOLUTION PROCEDURE 
 

Introducing the transformation          y
ˆ
11x̂
ω

−
β

=                                                               (6) 

Eq. (5) takes the form                        y)
ˆ

(hr2J 44
o

3
o ω

β
π=                                                  (7) 

where GHˆ ρω=ω  is a dimensionless frequency parameter. Eq.(2.1) is now 
transformed into 
 

                                                     0
dy
d

y
4

yd
d

2

2
=Φ+

Φ
+

Φ                                                         (8) 

 

which can be further transformed to the standard form of Bessel’s equation by 
setting θ=Φ −)y( 23 , to get  
 

                                                   0)
4
9y(

dy
dy

yd
dy 2

2

22 =θ−+
θ

+
θ                                           (9.1)  

which has the solution           JCJC)y( 232231 −+=θ                                                     (9.2) 

where C1 and C2 are constants of integration and J3/2 and J-3/2 are Bessel’s functions 
of order k=±3/2, given by [12]: 
 

                                       )ycosyy(sin
y
2)y(J 32/3 −

π
=                                                 (9.3a) 

                                      )ysinyy(cos
y
2)y(J 32/3 +

π
−=−                                          (9.3b) 

 
                                Table 1. Definition of dimensionless quantities 

Quantity Notation Dimensionless 
expression 

Circular frequency ω  ω̂  = GH ρω  
Spatial coordinate x x̂ =x/H 
Mean radius of tower 
cross section r r/rr̂ b=  

Tower wall thickness h h/hĥ b=  
Second polar moment of 
area J J/JĴ b= )ĥr̂( 3=  

Polar moment of inertia of 
Nacelle/rotor mass IN JH/IÎ bNN ρ=  
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Yawing stiffness 
coefficient Ky )H/JG(

K
K̂

b

y
y =  

Structural mass M M
MM̂

b
=  

Baseline design parameters: Mb=structural mass=2πHrbhb,  
Jb=2nd polar moment of area(=2πrb

3hb), where rb=mean radius, 
hb=wall thickness; 2/frequencycircular ˆ b π==ω . 

 

Finally, the exact analytical solution of the associated eigenvalue problem can be 
shown to have the form: 
 

                                 ]
y

ycosysiny[B]
y

ysinycosy[A)y( 33
+

+
−

=Φ                                   (10.1) 

 
where A and B are constants depend on the imposed boundary conditions: 

 

at  )ˆ(  y βω=ζ=                         Φ(y)=0                                                                          (10.2) 

at  )(  y ∆ζ=ξ=                  0)Ĵ/K̂(
)dy/d(ˆ

y
o

=+
ψ
Φω                                                       (10.3) 

where                                       ]
dy
d

Îˆ
Ĵ[

N
o Φ+

Φ
ω

−=ψ                                                        (10.4)  

 
All quantities with the hat symbol (^) are dimensionless quantities obtained by 
dividing by the corresponding parameters of a baseline tower design having uniform 
properties and same structural mass, height and material of the optimized tower 
design (refer to Table 1). 
 
Applying the boundary conditions, as described by Eqs. (10.2-3), and considering 
only nontrivial solution of Eq. (10.1) the frequency equation can be shown to have 
the following compacted form: 
 

                                            0)Ĵ/K̂()Î/Ĵ(ˆ
ˆ

y
N

2
=−

+ωα
ω                                                      (11.1) 

 

 where                   
)ˆtan1( 3)ˆtan)(3(

]ˆtan)1(ˆ[ 
2 ωζ+ξ+ω−ζ−ξ

ωζξ+−ωξ
=α                                                (11.2) 
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It is to be noted that in the above equations Ĵ  is the dimensionless polar moment of 
area at the top of tower and is equal to ∆4

o
3
o ĥr̂ (refer to Eq.5). Special cases of  

Eq. (11) are summarized in Table 2. 
 
 

                   Table 2. Frequency equation for some special cases 

Case Reduced frequency equation 
Locked yawing mechanism 0Î/Ĵˆ N =+ωα  

Uniform tower with no taper Apply Eq.(11.1) with ω−=α ˆtan  

Stand-alone tapered tower with 
no attached masses at the top. 0]ˆ3[ˆtan]3)3[( 22 =ξζ−ω−ωζξ+ξ−  

 

  
Once the exact dimensionless natural frequencies have been determined the 
associated mode shapes can be obtained from: 
 

                         )]
y

ycosysiny)(
tan1
tan

()
y

ysinycosy[(A)y( 33
+

ζζ+

ζ−ζ
−

−
=Φ                    (12) 

 

4. FORMULATION OF THE OPTIMUM DESIGN PROBLEM 

Attractive goals of designing efficient structures of wind generators include 
minimization of total cost per energy produced, minimization of structural weight and 
maximization of the fundamental frequencies [9, 10]. The associated optimization 
problems are usually cast in nonlinear mathematical programming form [13]. The 
objective is to minimize a function F(XD) of a vector XD of design variables, subject to 
certain number of constraints Gj(XD)≤0, j=1,2,……M. In the present model 
formulation the design variable vector is defined to be: 
 
 
                                           XD = { ro, ho, ∆, Ky, IN }                                                        (13) 

 
To improve the accuracy and efficiency of the numerical optimization process, and to 
make the model valid for a variety of wind rotor/tower configurations and material of 
construction, appropriate scaling and non-dimensionalization of the various 
parameters and variables are recommended (refer to Table 1). 
 
The optimal design problem of the current torsional vibration of wind rotor/tower 
structure model may be cast in the following: 
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    Minimize the objective function:            )ˆˆ(F 2*ω−ω=                                            (14.1) 

    Subject to mass equality constraint:     1  x̂d ĥ r̂M̂
1

0
=∫=                                            (14.2) 

    and the side constraints:                   XL ≤ XD ≤ XU                                              (14.3)    

 

where ω* is the target frequency, M̂ is the dimensionless structural mass of the tower 
and r̂  and ĥ are defined in Table 1. XL and XU are the lower and upper limiting 
values imposed on the design variables vector XD. Several computer program 
packages are available now for solving the above design optimization model, which 
can be coded to interact with structural and eigenvalue analyses software [14]. 
 
    
5. RESULTS AND DISCUSSIONS 
 
The developed mathematical model has been implemented for calculating the 
frequencies of typical wind rotor/tower structure in free torsional motion. The target 
frequencies, at which the yawing frequencies needed to be close to, depend on the 
specific configuration and operating conditions of the wind machine. Various cases 
of study are examined including, tower alone and rotor/tower with both locked and 
unlocked yaw conditions. The main features and trends in each case are presented 
and discussed in this section.  
 

5.1. Torsional Frequencies of Tower Alone 
 
It is useful to consider first the case of stand-alone tower with no tip mass. This case 
of study can be regarded as a guide design condition with which the other conditions 
of locked and unlocked yawing mechanism can be compared. Fig. 2 shows the 
variation of the first three natural frequencies with the tapering ratio of a tower in 
torsional vibration. It is seen that the frequencies decrease with increasing taper. 
Towers having complete conical shapes shall have the maximum frequencies 
( 4934.4ˆ max,1 =ω  for ∆=0), which is favorable from structural design point of view. 
However, such configurations violate the requirement of having an adequate space 
at the top of the tower for supporting the wind rotor/nacelle combination.  
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In order to place any frequency at its desired value  ωi, the first step is to calculate 
the dimensionless frequency ω̂i  for known properties of the tower material and hub 
height, and then obtain the corresponding value of the taper ratio from the curves 
presented in Fig. 2. The next step is to choose appropriate value for the 
dimensionless thickness ho at the tower base and find the corresponding radius of 
the cross section ro at the determined taper ratio (see Fig.3), which should satisfy the 
equality mass constraint expressed by the equation 14.2. 
 
 
It is to be noted here that the wall thickness h0 shall be constrained to be greater 
than a preassigned lower bound, which can either be determined from the minimum 
available sheet thicknesses or from considerations of wall instability that might 
happen by local buckling. On the other hand, to insure the validity of wall thinness 
assumption, the selected design point (ro, ho) should fall inside the feasible domain 
defined by the upper left triangle of Fig. 3. 
 

 

 

 

 

 

 

 

 

 

 

 Fig. 2 Optimized tapered towers with 
constant mass (M=1.0)
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Fig. 1 Torsional frequencies of stand-alone 
tapered towers
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5.2. Frequency Placement of Combined Rotor/Tower Structure  

As has been mentioned before, the scope of this paper is not just to apply an 
optimization algorithm to find an optimum solution, which may not be the needed 
global solution. The main purpose, however, is to, first; perform accurate dynamic 
analysis in order to be able to pursue real design optimization. Secondly, the 
behavior of the fundamental frequency of the combined wind rotor/tower structure in 
free torsional vibration shall be identified thoroughly by developing its actual level 
curves to see how it is changed with the chosen design parameters. Figs. [4a- 4d] 
depict the required frequency charts for different values of IN of a locked yawing 
mechanism. Several other cases will be given in a more detailed technical report that 
will be available at the Department of Mechanical Engineering, National Research 
Center in Cairo, Egypt. It is seen from the charts that the objective function is well 
behaved, continuous and monotonic everywhere in the selected design space (∆, ro). 
Actually, the developed charts represent the fundamental frequency function 
augmented with the imposed mass equality constraint so that the problem may be 
treated as if it were an unconstrained optimization problem. The total mass is 
preserved at a constant value equals to that of a known baseline design. Now, it is 
possible to choose the desired frequency, which is far away from the excitation 
frequencies, and obtain the corresponding optimum variables directly from the 
developed frequency charts. More examination of these charts indicates that almost 
all of them have shown a distinct optimum zone which encompasses the global 
optimal solution. As the rotor/nacelle inertia increases the attained global optimum 
configuration changes from that one having higher thickness at tower base with low 
tapering ratio to a configuration with lower thickness and higher tapering ratio. 
Design cases for unlocked yawing mechanism are shown in Figs (5a) through (5e), 
where practical values of the dimensionless parameter K̂y  have been adopted on a 
logarithmic scale to cover a wide range of yawing stiffnesses of actual wind 
machines. A remarkable observation is that, as the yawing stiffness increases while 
keeping the rotor/nacelle inertia at a constant value, the global optimal solution 
moves from design points having higher values of the tapering ratio to optimal 
designs with fewer taper. Behavior for a fixed value of the stiffness and variable 
inertia has shown the same design trend of the locked condition. The maximum 
attainable frequencies for several design cases are summarized in Table 3. The 
associated optimum values of the chosen design variables, which satisfy the 
imposed mass equality constraint, are also shown. As a remarkable observation, the 
frequency increases for increasing yawing stiffness and decreasing the rotor/nacelle 
inertia with a higher rate. 
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Table 3.  Max. Yawing frequency, ω̂1,max  and the corresponding design 

parameters )r̂,ĥ,( oo∆    for constant mass, 0.1M̂ = . 
           ÎN  

K̂ y  
 

0.001 
 

0.01 
 

0.1 
 

1.0 

0.01 3.1625 
(0.6875, 0.6, 2.315) 

0.9988 
(0.8625,0.4625,2.489) 

0.316 
(1.0, 0.4, 2.5) 

0.099 
(1.0,0.5375,1.8605) 

0.1 4.0663 
(0.0875,1.1,2.49) 

2.8328 
(0.3,0.875,2.467) 

0.9879 
(1.0, 0.4, 2.5) 

0.3137 
(1.0, 0.4, 2.5) 

1.0 4.0851 
(0.075,1.1125,2.495) 

3.476 
(0.1875,0.9875,2.485) 

2.2105 
(0.4375,0.7375,2.497) 

0.9036 
(1.0, 0.4, 2.5) 

10.0 4.0909 
(0.075,1.1125,2.495) 

3.5191 
(0.175,1.0,2.4883) 

2.4859 
(0.375,0.8,2.474) 

1.4122 
(0.7625,0.5125,2.497) 

(∞) 
Locked 

4.0915 
(0.075,1.1125,2.495) 

3.5241 
(0.175,1.0,2.4883) 

2.515 
(0.375,0.8,2.474) 

1.4995 
(0.7,0.55,2.4907) 
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Fig. 4.b. 01.0ÎN =  
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Fig. 4.d. 0.1ÎN =  

     Fig. 4. Torsional frequency charts for the case of locked yawing mechanism, ( 1M̂ = ). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  

 

Fig. 5.a. IN=0.01 Ky=0.1 
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Fig. 5.b.  IN=0.01 Ky=1.0 
 

 

 

 

 

 

 

 

 

 

                                                           

 

 

 

 

 

Fig. 5.c. IN=0.01   Ky=10.0 
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Fig. 5.d. IN=0.1 Ky=1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.e. IN=0.1 Ky=10.0 
        Fig. 5. Torsional frequency charts for unlocked yawing mechanism, ( 1M̂ = ). 
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Fig. 6  Variation of the maximum fundamental frequency with yawing stiffness 
                 for different inertias of unlocked nacelle/rotor combination, ( )0.1M̂ = . 
 

6. CONCLUSIONS 

Efficient model for placing frequencies of a combined wind rotor/tower structure in 
free torsional motion has been presented in this paper.  
The mathematical procedure implemented, combined with exact Bessel’s function 
solutions, resulted in a beneficial tool that can be used for finding the optimal 
frequency design of a real-world wind turbine of any size and configuration. The 
model provides exact solutions to the vibration modes of a wind rotor/tower structure 
in free torsional motion, against which the efficiency of approximate methods, such 
as the finite element method, may be judged. Design variables include the tower 
tapering ratio, wall thickness and mean radius of the tower cross section.  
Useful design charts for placing the frequencies at their desired (target) values has 
been developed for a prescribed total structural weight, and known nacelle/rotor 
inertia and spring stiffness of the yawing mechanism.  
The fundamental frequencies can be shifted sufficiently from the range which 
resonates with the excitation frequencies.  
There are other factors that ought to be considered in future investigations. For 
example, the system response due to sudden yaw motion, which may cause severe 
bending and shearing stresses within the blades and tower structures, should be 
analyzed and examined. Another natural extension of this work is to optimize the 
performance of a wind machine by simultaneously minimizing vibration level and 
structural weight using a muli-criteria optimization technique. 
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