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ABSTRACT 
 
In this paper, an Eulerian formulation is developed from the more general Arbitrary 
Lagrangian Eulerian (ALE) formulation and is used in rolling process simulation. 
Starting from the basic principles of continuum mechanics, a consistent ALE 
formulation is derived. An Eulerian formulation is then obtained by fixing the finite 
element mesh in space. A finite element program based on the Eulerian formulation 
has been developed. The program is used to simulate a steady state rolling process. 
The roll pressure distribution is compared with published experimental results. 
Comparisons reveal the effectiveness of the developed formulation. 
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INTRODUCTION 
 
Finite element simulations of large strain metal forming processes have been 
traditionally based on the Lagrangian formulation. In the Lagrangian formulation [1], the 
finite element mesh, or reference configuration, is attached to the material points of the 
deforming body. In large strain situations, this can lead to excessive distortion of the 
finite element mesh and presents a major drawback of the formulation. Distorted 
meshes reduce the accuracy of numerical integrations and may ultimately result in 
singular stiffness matrices and computation termination. Another drawback of the 
Lagrangian approach is the difficulty to model non-material-associated boundary 
conditions. The fact that boundary conditions have to be specified on the moving 
material points alters the boundary conditions during the course of deformation. 
Although remeshing the material domain with a new finite element mesh can remedy 
the mesh distortion problem, the problem of incorrect representation of boundary 
conditions will persist between remeshes. In addition, certain approximations have to 
be introduced to interpolate the material properties for the new mesh from the 
corresponding old material points. The difficulties in using the pure Lagrangian 
formulation for metal forming simulation reduce the reliability and accuracy of 
simulations and often give rise to erroneous fluctuations in predicted forming loads and 
violation of the plastic incompressibility constraint. 
 
There are some attempts aiming at the adaptation of Eulerian (spatial) formulation, 
widely used in fluid flow simulations, to large strain and metal forming problems [2]. In 
the Eulerian description, the finite element mesh is fixed in space. The drawbacks of 
the Eulerian description are the difficulty to model changing material boundaries and 
the difficulty to model material-associated boundary conditions. However, the Eulerian 
description is well-suited for the analysis of metal forming problems of the steady-state 
type. 
 
The Arbitrary Lagrangian Eulerian (ALE) formulation can alleviate the drawbacks of 
both the traditional Lagrangian and Eulerian formulations. In the ALE formulation, the 
finite element mesh need not adhere to the material nor be fixed in space but can move 
arbitrarily. As the material deforms, the finite element mesh is moved continuously to 
meet any preset criterion (e.g. optimize elements shape) and the simulation should be 
completed without user intervention. Since its conception, ALE has been mainly 
formulated for use in the analysis of fluid flow problems [3]. The ALE technique was 
also applied in fluid-structure interaction problems to model the fluid domain while the 
structure domain was handled using the usual Lagrangian description [4]. ALE finite 
element formulation for the analysis of metal forming problems was later introduced 
using the operator split technique [5].  

 
An implicit fully coupled ALE formulation specifically designed for large deformation 
solid mechanics applications was developed by the author [6, 7]. Starting from the basic 
principles of continuum mechanics, ALE equilibrium equations were derived for both 
quasi-static and dynamic analyses. A new method for the treatment of convective terms 
that sidesteps the computation of the spatial gradients of stresses was used in the 
derivation. Details of the finite element discretization were presented and full 
expressions for the resulting matrices and vectors were given. The developed 
formulation was implemented into a 2-D finite element code for elastic-plastic materials. 
Several quasi-static and dynamic large deformation problems were simulated using the    
 



262 SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

program. The results showed the effectiveness of the ALE approach in handling contact 
boundary conditions and in preventing mesh distortion.  

 
In the current work, an Eulerian formulation which is a special case of the general ALE 
formulation developed in [6] is presented. The paper starts by highlighting the steps 
involved in the derivation of the fully coupled ALE equations. An Eulerian form of the 
equilibrium equation is then derived and developed into a 2-D finite element program. 
The program is used to simulate a steady state strip rolling process. Results are 
compared with the literature. 
 
 
GEOMETRIC DESCRIPTION 
 
In the ALE description of motion, the material domain at any time t  consists of the set 
of material particles, whereas the grid domain refers to the set of arbitrary grid points 
sharing a common boundary with the set of material particles. In Fig. 1, mX  and X g  act 
as markers for a material particle and a grid point that coincide at time t . Let t

i
m mx X t( , )  

and t
i
g gx X t( , )  be the vector functions that characterize the motion of the material 

particle X m  and the grid point X g  respectively. The position of X m  coincident with X g  
at time t  is given by the value of the functions t

i
mx  and t

i
gx  as i

t x  where, for 
definiteness, we have distinguished between the value of the function and the 
functional form. Thus, 
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The material velocity i

t v  and the grid point velocity t
i
gv  at time t  are given by 
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Throughout the derivation, notations similar to those used by Bathe [8] are adopted. 
Left superscripts indicate the configuration in which the quantity occurs whereas left 
subscripts indicate the configuration to which the quantity is referred. Left subscripts 
may be omitted if the quantity occurs in the same configuration in which it is measured. 
A quantity with no left superscripts or subscripts indicate an incremental quantity from 
time t  to t t+ ∆ . The boundary constraint, which ensures that the material domain and 
the grid domain have the same boundaries at all times, can be expressed as 
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where i

t n  is the unit normal to the boundary surface. 
 
The material derivative of an arbitrary function ft  is denoted by a superposed dot and 
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is defined to be the rate of change of the function holding the material particle X m  fixed 
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whereas the time derivative of the function ft  holding the grid point X g  fixed is 
denoted by a superposed prime 
 

 t
t

X

f
f
t g

′ =
∂
∂

. (6) 

 
The relation between the two time derivatives is given by [9] 
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Denoting the incremental material displacements from time t  to time t t+ ∆  by ui  and 
the corresponding incremental grid displacements by ui

g , we have the following 
relations 
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where i

tt x∆+  is the position of the grid point at time t t+ ∆ . 
 
 
CONSERVATION OF MASS 
 
The local form of conservation of mass, continuity, at time t  is given by 
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where ρt  is the material density. Using (7), the continuity equation with respect to an 
arbitrary moving grid point can be expressed as 
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EQUILIBRIUM EQUATION 
 
Employing an incremental approach, the governing equilibrium equations for ALE must 
be established for the configuration at time t t+ ∆ . The principle of virtual displacements 
at time t t+ ∆  can be written as 



264 SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 
 RdVe tt

V

tt
ijttij

tt

tt

∆+∆+
∆+

∆+ =δσ∫
∆+

 (13) 

 
where ij

tt σ∆+  are the components of the Cauchy stress tensor at time t t+ ∆  and ijtt e∆+  
is the strain tensor defined by 
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The external virtual work, Rtt ∆+ , is given by 
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in which B

i
tt f∆+  and S

i
tt f∆+  are the components of the body force per unit mass and the 

surface traction at time t t+ ∆ , respectively. 
 
Since the configuration at time t t+ ∆  is yet unknown, an approximate solution for (13) 
can be obtained by referring all variables to the known grid configuration at time t  and 
linearizing the resulting equation. In referring variables to the grid configuration, 
variables at time t t+ ∆  are assumed to be composed of their respective values at time 
t  plus an increment given by the time derivative of the variable holding the grid point 
fixed multiplied by the time increment ∆t . ρ Material density at time tt ∆+  can be 
decomposed into 
 
 ttttt ∆ρ′+ρ=ρ∆+  (16) 

 
which, upon substituting with the continuity equation (12), gives 
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Stress components at time tt ∆+  can be expressed in terms of the stresses at time t  
for the same grid point plus a stress increment tij∆σ′  

 
 tij

t
ij

t
ij

tt ∆σ′+σ=σ∆+  (18) 
 

and using (7), we get 
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The material rate of Cauchy stresses ij

t σ&  is calculated from the material constitutive 
relation which is usually given in terms of an objective stress rate tensor such as the 
Truesdell stress rate tensor defined by 
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The material constitutive relation in terms of the Truesdell stress rate is given by 
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where ij

t D  is the rate of deformation tensor given by 
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and ijkl

tC  is the fourth order material constitutive tensor. The variation in the strain 
components at time t t+ ∆  can be decomposed as 

 
 teee ijtijtijtt ∆′δ+δ=δ ∆+  (23) 

 
in which ijt e′δ  is the grid time derivative of ijt eδ  and is given by 
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Substitution in (23) gives 
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The body force per unit mass and traction force are incremented as 
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The incremental body and traction forces B

if  and S
if  are assumed to be known a 

priori. Incremental decomposition of elemental volume at time t t+ ∆  in terms of the 
elemental volume at time t  is given by 
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Similarly, incremental decomposition of elemental surface area is given by 
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where m

t n  is the unit outward normal to the surface at time t . 
 
Linearization is accomplished by expanding (13) using the previous incremental 
decompositions and neglecting higher orders in all incremental quantities. Substituting 
by (19), (25), and (28), the internal virtual work can be expanded, after linearization, 
into 
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The fourth integral on the RHS of (30) can be rewritten as 
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Applying the divergence theorem to the first integral in (31) and using (4) 
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Substituting in (30), the internal virtual work becomes 
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Considering the external virtual work on the RHS of (13), the body force term can be 
referred to the grid configuration by using (17), (26) and (28) to get 
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After manipulating the second integral on the RHS of (34) in the same manner as in 
(31), the body force term can be rewritten as 
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Similarly, by using (27) and (29), the traction force term of the external virtual work can 
be expressed as 
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Substituting by (33), (35) and (36) into (13), the principle of virtual displacements at 
time t t+ ∆  referred to time t  can be written as 
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Equation (37) represents the fully coupled ALE equation of motion. This equation can 
reduce to the updated Lagrangian formulation (if we choose to attach the grid to the 
material, i.e. i

g
i uu = ) and to the Eulerian formulation (if we choose to fix the grid in 

space, i.e. 0=g
iu ) as limiting cases. The constitutive relations in equations (20) to (22) 

can now be introduced into the third integral in (37) to give 
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where 
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The first two integrals on the LHS of (39) are exactly the same as those obtained using 
an updated Lagrangian formulation. The last two integrals on the LHS are the 
contributions to the stiffness matrix induced by mesh motion. Thus, ALE can be 
considered as a logical extension to the Lagrangian formulation with simple 
modifications to the equation of motion of current updated Lagrangian codes. Moreover, 
equation (38) represents the full expression for the external virtual work with explicit 
terms for load correction contribution to stiffness.  
 
Using standard finite element discretization procedure, ALE equilibrium equation (39), 
for an element or a group of elements, can be written in the form: 
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where ijK  is the tangent stiffness matrix with respect to material displacements, g

ijK  is 
the tangent stiffness matrix with respect to mesh displacements and iF  is the load 
vector.  
 
 
DEVELOPMENT OF EULERIAN FORMULATION 
 
In the general ALE formulation, a mesh motion scheme is used to specify the grid 
displacements in terms of the material displacements. Conventional finite element 
assembly and elimination techniques are then applied to solve for the material 
displacements. As indicated earlier, an Eulerian formulation can be obtained from the 
ALE formulation by fixing the grid in space, i.e. 0=g

iu . Substitution into equation (39) 
yields  
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ROLLING PROCESS SIMULATION 
 
A steady state strip rolling process is simulated as a case study for the use of the 
Eulerian formulation. The pressure distribution in the rolling process is to be 
determined. Rolling is one of the oldest and most important forming processes. Rolling 
is also one of the most challenging metal forming processes in simulation because of 
the complexity of representation of friction and the neutral point location on the contact 
arc. If the Lagrangian approach is employed, mesh distortion and boundary condition 
updating will add to the numerical difficulties and inaccuracies of simulation. Several 
attempts have been made to simulate the rolling problem using the finite element 
method [10, 11]. In these studies, which were based on the plane strain assumption, no 
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comparisons were made between the computed results and experimental observations. 
The data for the plane strain rolling problem considered in the current work is taken 
similar to an experimental analysis [12] in which the contact pressure distribution was 
measured. The material relation is in the form 
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ε
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in which eqσ  is the equivalent stress, p

eqε  is the equivalent plastic strain, yσ = 50.3 MPa 
is the initial yield stress, b = 0.05 and n = 0.26. Young’s modulus is 68.94 GPa and 
Poisson’s ratio is 0.3. Fig. 2 shows the finite element model in which only half of the 
domain needs to be considered. Table 1 gives the geometric data for two different 
rolling configurations. 
 
Considering the shape of the rolling pressure distribution along the arc of contact, the 
classical slab method always gives one pattern for the pressure distribution curve, 
known as the “friction hill”, with maximum pressure at the neutral point, regardless of 
the R/h0 ratio. However, for different rolling configurations, experiments [12, 13] showed 
that another pattern exists in which pressure distribution curves have double peaks with 
pressure drop in the middle of the arc of contact. Fig. 3 and Fig. 4 compare the 
experimental and computed pressure variations for the two configurations given in 
Table 1. Case # 1, with a relatively large R/h0 ratio, gives a friction-hill type of 
distribution. Case # 2 gives a double-peak pressure distribution, which is typical for 
small R/h0 ratios. It is observed that the computed results are in general agreement with 
the experimental ones as the two modes of pressure distributions were predicted. The 
discrepancies in the values of the arc of contact at the entrance and exit may be 
attributed to the rigid roll assumption in the finite element simulation. It is a known fact 
that roll flattening is an important aspect in rolling simulation which causes an increase 
in the arc of contact as shown in the experimental results. 
 
 

Table 1. Details of the rolling process case study 
Case # Initial Height 

h0 (mm) 
Final Height 

h1 (mm) 
Radius of Roll 

R (mm) 
R/h0 

1 2.057 1.588 79.375 39.0 
2 6.274 5.385 79.375 12.5 

 
 
 
CONCLUSIONS 
 
In this paper, a consistent derivation of the fully coupled ALE formulation, suitable for 
large strain metal forming problems, is presented. The formulation is based on an 
incremental decomposition followed by linearization as is commonly used to derive the 
conventional Lagrangian formulation. The ALE formulation is shown to be a logical 
extension to the updated Lagrangian formulation with an arbitrary moving reference 
configuration and the necessary additional stiffness terms to the equilibrium equation 
are identified. The developed ALE formulation was implemented in a finite element 
program. The power of the developed formulation is that it can be reduced to both the 
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Lagrangian and Eulerian formulations as limiting cases. The ALE-based Eulerian 
formulation is successfully applied in the simulation of a rolling process. The results for 
the roll pressure obtained using the developed formulation compare favorably with 
published experimental results. 
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Fig 2. Geometry and mesh for rolling problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison of roll pressure distribution for case # 1 
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Fig. 1. Description of motion 



272 SM Proceedings of the 13th Int. AMME Conference, 27-29 May, 2008
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comparison of roll pressure distribution for case # 2 
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